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ABSTRACT: In qualitative or quantitative studies of
structure−activity relationships (SARs), machine learning
(ML) models are trained to recognize structural patterns
that differentiate between active and inactive compounds.
Understanding model decisions is challenging but of critical
importance to guide compound design. Moreover, the
interpretation of ML results provides an additional level of
model validation based on expert knowledge. A number of
complex ML approaches, especially deep learning (DL)
architectures, have distinctive black-box character. Herein, a
locally interpretable explanatory method termed Shapley
additive explanations (SHAP) is introduced for rationalizing
activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear
support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining
the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high
potential for rationalizing predictions of complex ML models.

■ INTRODUCTION

Compound bioactivity prediction and structure−activity
relationship (SAR) analysis are major applications of machine
learning (ML) in pharmaceutical research.1−6 Supervised ML
methods are trained to search for structural patterns that
differentiate between active and inactive compounds. Since
prospective predictions using such activity models provide
decision support and guidance for compound exploration and
design, there is a high level of interest in obtaining accurate
models and in rationalizing their predictions.7−9 However,
while much attention has been paid to improving the
predictive performance of ML models, interpreting the
predictions currently is an underinvestigated area, despite its
high relevance.10,11

While statistical performance measures and method
validation procedures are of critical importance for ML, they
do not provide scientific insights into predictions, which can
typically only be achieved on the basis of expert knowledge.
On the other hand, rationalizing model decisions would assign
priority to meaningful predictions, help to extract knowledge
from ML models, and also increase the acceptance of and
confidence in predictions in pharmaceutical research.5,12,13 In
activity prediction, model interpretation generally relies on the
identification of chemical features that determine predic-
tions.14,15 For simplistic linear (Q)SAR models, the
interpretation of structural and/or property changes that

modulate activity is often straightforward.13 However, the
situation fundamentally changes when ML models become
complex, which often increases predictive performance at the
expense of interpretability, ultimately leading to the frequently
quoted “black-box” character of ML model and their
predictions.13,15 For example, the random forest (RF)16 and
support vector machine (SVM)17 algorithms are robust and
well-performing ML methods that have become very popular
in the field. However, RF and SVM models are very difficult to
interpret and exhibit black-box character, for different reasons.
In the case of RF, this is largely due to the generation of large
decision tree ensembles, leading to statistically driven
decisions; in the case of SVM, black-box character results
from the use of nonlinear kernels to facilitate data mapping
into feature reference spaces of increasing dimensionality.18

Currently, compound activity data grow at unprecedented
rates,19,20 leading to emerging big data phenomena in
medicinal chemistry19 and catalyzing the application of deep
learning (DL)21 strategies for activity prediction. Among ML
methods, DL architectures have shown particular promise in
data-rich fields such as image analysis22 or natural language
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processing23 and deep neural networks (DNNs) also gain
increasing popularity in chemical informatics and drug
design.24−26 Although some successful applications in com-
pound design and activity prediction using DNNs have been
reported, it remains unclear at present whether DL might
provide a consistent advantage over other ML methods in at
least some application scenarios.27−31 However, DNNs have
higher complexity than other ML models and their black-box
character is notorious. Any form of model diagnostics becomes
essentially prohibitive for DNNs, and domain experts struggle
to understand why DNN models succeed or fail,32 which
hinders advances in the field.
Several interpretation strategies have been proposed to

reduce the black-box nature of ML models.13 These
approaches can essentially be divided into model-specific and
model-agnostic (or model-independent) strategies. As a
model-specific approach, feature weighting has been applied
to better understand predictions of SVM18,33 and RF models.34

As a model-agnostic method, sensitivity analysis can be used to
investigate the influence of systematic feature value changes on
the model output.35 Sensitivity analysis has been applied to
different ML algorithms including neural networks36 but
becomes quickly inefficient with increasing dimensionality of
models and has thus hardly been used in chemical
informatics.13 An exception is provided by investigating partial
derivatives as a form of local sensitivity analysis that has been
applied in QSAR modeling.13 Here, for a given compound, a
perturbation is introduced to an individual feature and
calculation of the partial derivative provides an estimation of
its contribution to model performance.37,38 However, effective
use of partial derivatives is also limited given its intrinsic focus
on individual features. A principal advantage of model-agnostic
over model-specific interpretation approaches, if they can be
established, is that model-agnostic analysis alleviates the need
to balance model performance and interpretability.39,40

In this work, we introduce a conceptual new agnostic
interpretation method for ML models of arbitrary complexity
used for activity prediction. The Shapley additive explanations
(SHAP) approach41 is an extension of local interpretable
model-agnostic explanations (LIME)42 according to which
feature weights are represented as Shapley values from game
theory.43 As shown herein, SHAP is capable of interpreting
activity predictions from complex ML models. Features that
increase or reduce the probability of predicted activity are
identified and mapped onto molecular graphs to identify and
visualize structural patterns that determine predictions.

■ RESULTS

Principles of Explanation Models and the LIME
Approach. Explanation Model. The principal goal of an
explanation model g is to simplify or locally approximate a
complex model f that cannot be directly interpreted. Additive
feature attribution methods generate an explanation model via
a linear function of binary variables, as shown in eq 1:

∑ϕ ϕ′ = + ′
=

g x x( )
i

M

i i0
1 (1)

where x′ ∈ {0,1}M, M is the number of input features, and
ϕ ∈i .42 The presence or absence of a feature value impacts
the model, which can be referred to as a feature contribution
(ϕi). Accordingly, a weight must be assigned to each variable.

Therefore, the SHAP method has been devised, which
represents an extension of the LIME approach.

LIME. The LIME methodology generates the explanation ξ
of an instance x according to eq 2:

ξ π= + Ω
∈

x f g g( ) argmin ( , , ) ( )
g G

x
(2)

where G is a class of interpretable (linear) models, is the loss
function to minimize, πx the proximity measure between an
instance z and x (kernel defining locality), and Ω(g) an
optional regularization term to control (limit) model complex-
ity.42

For the interpretation of a given test instance x, the
following procedure is applied.

(i) Artificial samples are obtained by permuting features of
the test instance x.

(ii) These samples are weighted by the value of a kernel
calculated for them and x.

(iii) A model g is trained to predict f(x) with coefficients
corresponding to feature importance estimates.

It follows that LIME builds a linear model g in a feature region
proximal to the test instance, although model f might be
nonlinear, as illustrated in Figure 1. This figure also shows that

samples similar to x receive high weights, due to the
application of the kernel function. This conceptual framework
provides the basis for the development of the SHAP
methodology detailed in the following.

SHAP Method. Shapley Value Concept. Shapley values
from cooperative game theory provide a connection between
LIME and the SHAP methodology. Specifically, Shapley values
were introduced in the 1950s to measure contributions of
individual players to a collaborative game.43 They provide a
theoretically grounded partition of payoff or credit among
members of a team by considering the average of all
contributions made by a player.43 This concept can be applied
to feature attributions by considering the success of a team (or
total credit) as an output (prediction), and each player’s
contribution (or player’s payoff) as the feature importance.

Figure 1. Local approximations for model interpretation. The active
(red) and inactive (blue) regions in feature space correspond to the
decision function of the complex model f. The dashed gray line
represents the decision function of the simple explanation model g,
which locally approximates the global model. The largest red dot is
the active instance x to be explained, while the other dots are artificial
samples that are weighted by the kernel function with respect to x.
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Therefore, in this context, Shapley values facilitate the
distribution of a model’s prediction resulting from an input
feature vector over the individual features.
To obtain the contribution of a feature i, all operations by

which a feature might have been added to the set (N!) and a
summation over all possible sets (S) is considered. For any
feature sequence, the marginal contribution through addition
of feature i is given by [f(S∪{i}) − f(S)]. The resulting
quantity is weighted by the different possibilities the set could
have been formed prior to feature i’s addition (|S|!) and the
remaining features could have been added ((|N| − |S| − 1)!).
Hence, the importance of a given feature i is defined by eq 3:

∑ϕ =
!

| |! | | − | | − ![ ∪ { } − ]
⊆ \{ }N

S N S f S i f S
1

( 1) ( ) ( )i
S N i

(3)

It follows that Shapley values represent a unique way to divide
a model’s output among feature contributions satisfying three
axioms: local accuracy (or additivity), consistency (or
symmetry), and nonexistence (or null effect).
SHAP Formalism. Additive feature attribution methods

typically do not consider two properties that are of high
relevance for assessing feature importance, i.e., local accuracy
and consistency, as referred to above. Taking these axiomatic
properties into account was a main motivation for proposing
the SHAP concept.41 The property local accuracy forces the
sum of individual feature attributions to be equal to the
original model prediction. In addition, consistency ensures that
feature importance correctly accounts for different models on a
relative scale. Hence, if a change in a feature value has larger
impact on a model A than a model B, feature importance
should be larger in A. These properties can be considered by
expressing feature weights as Shapley values.43

A weighting procedure for artificial samples is a key aspect
for connecting Shapley values to the LIME approach, which
allows the approximation of Shapley values. In LIME, heuristic
choices are made to select , Ω(g), and πx. By contrast, the
SHAP method introduces a special kernel function that is
related to the Shapley value definition, assuming that feature
weights follow the two axioms of interpretability.41 Specifically,
SHAP uses the following procedure for interpreting an
instance x:

(i) Training data is organized by k-means clustering and the
k samples are weighted by the number of training
instances they represent. These samples constitute a
background data set with “typical” feature values.

(ii) Artificial samples are obtained by replacing features of
the test instance x with the values from the background
data set.

(iii) These artificial samples are weighted by the value of the
SHAP kernel calculated for them and x.

(iv) A weighted linear regression model g is trained to
predict f(x). The model coefficients are Shapley values
corresponding to feature importance estimates.

Sampling all possible feature subsets is time-consuming.
Therefore, the input vector is permutated for an individual
prediction by setting its features on and off, thereby examining
feature influence. Herein, 1000 artificial samples were
generated in each case and missing features were simulated
by replacing them with the values obtained from a k-means
clustering of the training set (k = 100). A feature obtained a
large weight if its replacement with an artificial (non-

informative) value led to a significant change in model output.
Weights of artificial samples were determined according to the
number of feature-addition sequences that a given subset
accounted for on the basis of the SHAP kernel. Local linear
regression resulted in coefficients representing feature weights
as Shapley values. These weights indicate how important a
feature is for a given prediction and include the direction
(sign) of feature influence. The expected explanatory value is
calculated as the mean of the model output probability over
training set instances. For a given compound, the original
output probability (of activity) given by model f is then
retrieved by summing the expected (or base) value and all
SHAP values.

Model Building and Analysis Strategy. ML models
were built for 10 activity classes summarize in Table 1. These

classes were assembled on the basis of specific structural and
activity data selection criteria detailed in the Experimental
Section. As negative training and test instances, compounds
with unknown activity status were considered inactive and
randomly assembled, as also reported in the Experimental
Section. Feature contributions were systematically calculated
for test set compounds. First, model performance for three
different ML algorithms and two molecular representations is
reported. Then, the effect of feature removal is investigated.
SHAP results for RF models are compared to Gini importance,
and the relationship between SHAP values obtained for
different ML methods is examined. Next, representative
examples are shown to illustrate SHAP results. Individual
predictions using ML algorithms are interpreted and differ-
ences in feature importance are explored. Furthermore, for
individual predictions, important (fingerprint) features are
mapped onto compounds and visualized.
While our study is focused on method development and

evaluation, it is essential to carry out the analysis on newly
generated ML models and their predictions to ensure
independence of ML assessment (rather than reliance on
previously reported models) and reproducibility of the results.

Global Model Performance. Accurate predictions are a
key requirement for meaningful model interpretation. If ML
models are not predictive, the prioritized chemical patterns do
not correlate well with activity prediction. Thus, initially, the
predictive performance of SVM, RF, and DNN models over
different compound activity classes was determined. Models
were built on the basis of the state-of-art ECFP4 and easy-to-

Table 1. Compound Data Setsa

CHEMBL
identifier target

no.
compounds

no.
ASs

mean
pKi

229 α-1a adrenergic receptor 243 80 7.8
4860 Apoptosis regulator Bcl-2 283 67 9.0
244 Coagulation factor X 679 154 7.5
264 Histamine H3 receptor 955 216 8.0
237 κ opioid receptor 716 160 7.5
344 Melanin-concentrating

hormone receptor 1
409 73 7.4

259 Melanocortin receptor 4 443 57 6.9
1946 Melatonin receptor 1B 285 70 8.2
233 μ opioid receptor 831 194 7.6
4792 Orexin receptor 2 399 81 6.9

aReported are the CHEMBL identifier, target name, number of
compounds, number of analog series (ASs), and mean pKi values for
10 compound activity classes.
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understand MACCS fingerprints. Table 2 reports average
model performance on the basis of the AUC, BA, and MCC
measures. Overall, activity predictions for the 10 activity classes
were consistently accurate for the investigated methods and
molecular representations, hence providing a sound basis for
model analysis. Overall, rankings of test compounds yielded
AUC values greater than 0.9, BA of ∼90%, and MCC values of
around 0.8 or larger. Figure 2 reports the distribution of MCC
values for all ML method/representation combinations. As
anticipated, MCC values were larger for ECFP4 than MACCS,
albeit by a confined margin. In addition, RF predictions were
generally slightly less accurate than SVM and DNN
predictions. Although hyperparameter combinations were
optimized (see Experimental Section), alternative parameter
settings did not have a large influence on the predictions
because active compounds were overall easily distinguishable
from random ZINC examples. Taken together, the results
showed that the test system setup was appropriate for our
proof-of-principle investigation of a new model interpretation
methodology.
Feature Importance. To interpret the prediction for a test

compound, SHAP calculations were carried out resulting in a
set of feature weights. Initially, the distributions of ECFP4
features with nonzero SHAP values (feature weights) were
determined for all test compounds. Figure 3a shows how many
feature variables were contributing to the RF, SVM, and DNN
predictions of individual test instances. SVM and DNN
distributions were centered on smaller values than RF,
indicating that more features were required to provide local
explanations for RF predictions. The average number of
features with nonzero SHAP values for a test instance was 68
and 67 for SVM and DNN, respectively, and 96 for RF. These
numbers represented less than 10% of the entire ECFP feature

population obtained for the activity classes, revealing that
limited numbers of features were important for the predictions.
Because some features with nonzero SHAP values might not

contribute significantly to predictions, absolute SHAP values of
features were normalized with respect to the total sum of
SHAP values for a given prediction, resulting in a percentage
value for a feature. This percentage represents the fraction of
feature weights that a given variable is accounting for,
considering both negative and positive contributions. Thus,
the cumulative SHAP percentage for a given number of top-
ranked features can be calculated per test instance. Figure 3b
shows the distributions of cumulative SHAP percentage values
for different numbers of top-ranked features. The distributions
were nearly identical for all three ML methods and showed
that the top-1, -5, -10, and -20 ranked features generally
corresponded to 7%, 25%, 40%, and 60% of the cumulative
(total) feature weights of a prediction, respectively. These
findings indicated that top-ranked features provided sufficient
information for model interpretation.

Feature Elimination. The next step was exploring whether
SHAP values indeed identified features that were important for
predictive performance. Therefore, for each data set and ML
model, SHAP values were calculated for all test compounds.
Then, absolute SHAP values were averaged over test
compounds to obtain an ECFP4 feature importance ranking.
Finally, features were systematically eliminated, either
randomly or in the order of SHAP ranking, and the ML
models were generated again using the reduced feature sets.
Following this protocol, RF, SVM, and DNN control models
were built after removal of 4, 10, 80, 160, and 320 ECFP4
features. Figure 4 shows the median MCC values of SVM, RF,
and DNN models across all activity classes for varying numbers
of features. The results revealed that random elimination of up

Table 2. Classification Performancea

ECFP4 MACCS

metric SVM RF DNN SVM RF DNN

AUC 0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02)
BA 0.89 (0.30) 0.84 (0.05) 0.91 (0.03) 0.88 (0.04) 0.84 (0.04) 0.89 (0.03)
MCC 0.87 (0.03) 0.80 (0.07) 0.88 (0.03) 0.83 (0.06) 0.79 (0.06) 0.81 (0.05)

aArea under the ROC curve (AUC), balanced accuracy (BA), and Matthew’s correlation coefficient (MCC). Mean (and standard deviation) values
are reported across 10 activity classes. Performance values are given for two molecular representations (ECFP4 and MACCS) and three ML
methods (SVM, RF, and DNN).

Figure 2. Global classification performance. Boxplots show value distributions of Matthew’s correlation coefficient (MCC) across 10 compound
data sets using SVM (red), RF (green), DNN (blue) models and two fingerprints (ECFP4, left; MACCS, right).
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to 320 features did not notably affect the performance of ML
models, which remained essentially constant, providing further
evidence for general ECFP4 feature redundancy. By contrast,
removal of features with large average SHAP values led to a
substantial decrease in model performance for the three ML
algorithms.

For all ML methods, the MCC value distribution after
feature removal according to SHAP values was significantly
larger than the one after random elimination (Wilcoxon test, p-
values ≪0.0001). These results confirmed that SHAP values
provided a quantitative measure of feature importance for
predictions using different ML models.

Figure 3. Distribution of SHAP values. (a) shows distributions of features with nonzero SHAP values over all test compounds (Count) for RF,
SVM, and DNN predictions. (b) shows distributions of cumulative SHAP percentage values for different numbers of top-ranked features.

Figure 4. Feature removal. MCC values are shown for varying numbers of ECFP4 features, which were removed randomly (red) or according to
decreasing mean absolute SHAP values (blue). Results are shown for SVM (left), RF (center), and DNN (right) models.
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SHAP versus Gini Importance. In an additional control
calculation, SHAP feature weights were compared to Gini
importance,34 which has become a popular measure for the
assessment of variable importance in decision tree-based
methods such as RF. Gini importance is equivalent to the
mean decrease in Gini “impurity”, which measures the
probability of a new sample to be incorrectly classified at a
given node in a tree weighted by the proportion of samples
representing the data partition. Gini feature importance values
were calculated during RF model building56 and were thus not
dependent on test instances. Gini calculations yielded absolute
(nonsigned) values, which were thus compared to mean
absolute SHAP values determined from predictions of all test
compounds. Figure 5 compares feature weights obtained using
both approaches for RF models of four activity classes. Each
point represents the weights for a given feature using SHAP
and Gini importance. There was strong correlation between
these orthogonal feature weights (i.e., one derived on the basis
of training, the other on the basis of testing), without any
outlier or notable inconsistency. However, while Gini feature
importance is confined to decision tree methods, SHAP is
generally applicable.
SHAP Comparison. Next, relationships between SHAP

values for the same compound sets and different ML methods
were examined. Despite algorithmic differences, which might
affect variable prioritization, ML models with predictive power
should detect similar chemical patterns that differentiate
between active and inactive compounds for a given molecular
representation.
Figure 6 shows mean absolute SHAP values for test

compounds from two activity classes. SHAP values originating
from SVM and RF models were compared in a pairwise
manner to corresponding values from DNN models based
upon the ECFP4 (Figure 6a) and MACCS (Figure 6b)
representations. Correlation coefficients were high, ranging
from 0.90 to 0.98 for ECFP4 and from 0.83 to 0.95 for
MACCS. Highly weighted features were consistently priori-
tized for models generated with all ML methods, thus

confirming algorithm-independent consistency of feature
relevance. We note that features that are important in a local
explanation model might not be globally relevant. Therefore,
some features influencing individual predictions might yield
small (but nonzero) mean SHAP values because they were not
prioritized in the majority of explanation models.
Feature weight relationships between different ML methods

were also examined across all activity classes. Therefore,
correlation between mean absolute SHAP values for models
generated with different methods was determined. The
resulting distributions or correlation values are shown in
Figure 7. All method combinations displayed high correlation
of feature importance, especially SVM and DNN, with a
median correlation coefficient of 0.97 and 0.95 for ECFP4 and
MACCS, respectively. SHAP mean values were overall more
strongly correlated for ECFP4- than MACCS-based models.
Taken together, the results in Figures 6 and 7 revealed that

SHAP values of features originating from models built using
ML algorithms were highly correlated, showing that the
different methods prioritized similar chemical patterns for
predictions that were consistently detected in the basis of
SHAP values.

Visualization of SHAP Values. To rationalize model
predictions, features with highest SHAP values for individual
predictions were extracted, first for the simplistic MACCS
fingerprint that encodes the presence or absence of predefined
chemical patterns. Figure 8 shows MACCS feature weights for
the correct prediction of three compounds using SVM, RF, and
DNN models. The first compound (Figure 8a) was an
antiapoptotic Bcl-2 inhibitor and the second (Figure 8b) a
melanin-concentrating hormone receptor 1 antagonist. The
third compound (Figure 8c) was a factor X inhibitor. For each
ML model and test compound, SHAP values for MACCS
features are reported in a separate graph. Positive and negative
feature contributions are identified using sequential red and
blue arrows, respectively. The length of each arrow is
proportional to the SHAP value for a given feature, and the
MACCS keys corresponding to the top-ranked variables with

Figure 5. Relationship between SHAP and Gini importance. For four activity classes, RF models were built to predict the activity of test
compounds. For each ECFP4 feature, mean absolute SHAP values for test compounds and Gini importance are reported for RF models. In
addition, the correlation coefficient for feature weighting methods is reported.
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(largest absolute SHAP value) are given. The expected value is
obtained as the average model output over training set
instances and corresponds to the predicted probability of a test
compound with unknown feature values. It is also referred to
as the base probability. SHAP values quantify the influence of a
given feature on a prediction and modify the expected value.
When SHAP values are added to this base value, the output
probability of the original ML model is obtained (shown in
bold).
The three compounds in Figure 8 were correctly classified as

actives by the three ML algorithms. Moreover, different
methods shared most top-ranked features, indicating that
similar chemical patterns determined the prediction of a given
compound. However, the absolute importance values differed
between ML methods and other features with smaller SHAP

values also contributed to the predictions, resulting in different
final output probabilities. DNN models produced the highest
output probabilities of activity for these test compounds,
whereas RF models gave the smallest ones.
Figure 9 shows feature weights for three other exemplary

compounds, which were represented by ECFP4, including a κ
opioid receptor (Figure 9a), melanocortin receptor 1B (Figure
9b), and orexin receptor 2 (Figure 9c) ligands. ML models
correctly predicted these active compounds and SHAP values
were calculated to examine the prioritized features for the
predictions. In this case, positive and negative feature
contributions were displayed using the ECFP4 feature index
(obtained after fingerprint folding). Again, most highly
weighted features were common to SVM, RF, and DNN
models. RF gave the overall lowest output probability, due to

Figure 6. Comparison of SHAP values. Mean absolute SHAP values for features originating from different ML models are compared in a pairwise
manner. Each data point represents a pairwise value comparison for a given feature. Different ML models were generated on the basis of (a) ECFP4
and (b) MACCS.
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smaller individual feature weights. The corresponding
substructures of top-ranked important features shared by the
three algorithms were mapped onto the compounds. In Figure
9a, feature with index #566 is highlighted, which was relevant
for the three models applying a SHAP threshold value of
∼0.07. Feature #566 was ranked top-1 (SVM), -2 (RF), and -2
(DNN). On the other hand, in Figure 9b, the highlighted
feature #637 was ranked top-5 (SVM), -1 (RF), and -6
(DNN). However, in the latter case, features ranked higher
than #637 (SMILES, [CH2]CNC(C)O) represented
substructures of #637 (#1010, CC; #29, [CH2]NC; #118,
[CH2]NC(C)O; #236, CC([NH])O; #960, [CH2]C-
[NH]) and were thus correlated. Finally, in Figure 9c,
highlighted features include #843 (ranked top-1 (SVM), -1
(RF), and -2 (DNN)) and #268 (ranked top-2 (SVM), -3
(RF), and -1 (DNN)). The SHAP values representations in
Figures 8 and 9 provide global explanations for a given
prediction and enable comparison of feature importance across
different models and methods.
Feature Mapping onto Compounds. The use of the

ECFP4 fingerprint made it possible to map highly weighted
topological features onto molecular graphs and analyze
resulting substructures. Although ECFP4 folding might lead
to feature “collisions” (i.e., different atom environments might
be encoded by the same element), such collisions were only
very rarely observed for individual compounds because of their
generally low number of hash values compared to the size of
the folded fingerprint. In global model interpretation, a unique
weight is obtained for each feature. SHAP values explain
individual predictions, and for a given compound, correspond-
ence between a given feature and substructure is generally
unequivocal. Furthermore, different mapped features might
contribute to the formation of coherent, overlapping, or
distinct substructures. Figure 10 provides an example for the
rationalization of a prediction on the basis of SHAP values.
Figure 10a depicts the mapping of the most relevant features
onto a compound active against the κ opioid receptor, and
Figure 10b gives an overview of the positive and negative
feature contributions. All three ML models correctly predicted
this test compound, and the substructures resulting from
mapping of features that determined these predictions were
explored. For feature mapping, a threshold should be defined
that can be based on the absolute SHAP value, the signed value

(accounting for positive or negative contributions), or the
number of top-ranked features. Therefore, depending on the
application, different types of threshold values can be used. In
this case, the threshold was iteratively varied, and results for
different SHAP threshold values are shown in the figure.
In Figure 10a, the top-1 and -2 ranked features from SVM,

RF, and DNN models are highlighted. For the three models,
mapping of important features lineated the same or similar
substructures. Figure 10b provides a complementary view of
cumulative positive or negative feature contributions. In this
case, RF and DNN models predicted a lower probability of
activity (p of ∼0.60) than the SVM model (p = 0.97), which
largely resulted from negative feature contributions, especially
for DNN, which were absent in the SVM model. SHAP results
suggest that RF and DNN models made use of the absence of
some features to discriminate between active and inactive
training compounds. However, such prioritization had a
negative impact on the model output for this exemplary active
test compound, leading to a lower output probability.
Accordingly, a noninformative bias in the training set was
likely exploited by these two ML models. For example, both
models penalized the absence of feature #12 (SMARTS
pattern: [#6D4v4+0H0R], SMILES: C), which was present in
91% of the positive and only in the 8% of the negative training
compounds. The representation also shows that the majority of
features with positive contributions to the prediction of activity
were conserved.

Comparison of Structural Analogs. Analog series
provide interesting test cases for local model diagnostics. In
most cases, analogs from the same series are predicted to be
active because of their high structural similarity. However,
there can be exceptions where small structural differences
between compounds abruptly change the predicted probability
of activity. Such incorrect predictions are of particular interest
to better understand intrinsic limitation of activity predictions,
provided the underlying models can be interpreted. Figure 11
presents the SHAP analysis of SVM predictions for two
histamine H3 receptor antagonists with comparable potency
(having pKi values of 6.2 and 6.3, respectively). One was
predicted correctly, the other incorrectly. Figure 11a shows the
ECFP4 features with the highest positive and negative
contributions on predicted activity. The first analog was
accurately predicted (p = 0.98), but the second was not (p =

Figure 7. SHAP value correlation between ML models. For each activity class, the correlation between mean absolute SHAP values was calculated
for different ML models. Boxplots report the pairwise correlation of SVM vs RF (green), SVM vs DNN (blue), and RF vs DNN (purple) for two
molecular representations (ECFP4, left; MACCS, right).
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Figure 8. continued
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0.19). The substructure formed by features with the highest
positive contribution was shared by both compounds but
obtained a larger SHAP value for the first analog. Moreover,
the correctly predicted compound did not yield any feature
with a negative contribution. By contrast, for the incorrectly
predicted analog, features making a large negative contribution
were identified. Consequently, the substructure formed by
features with largest negative contribution according to the
SVM model was only present in the incorrectly predicted
analog. Figure 11b reports the base and SHAP values for the
two compound predictions. Even though most of the variables
with positive contributions were shared by both compounds,
the second analog exhibited a number of features that
negatively impacted the prediction. Thus, SHAP analysis
uncovered a model error and made it possible to rationalize
why these two analogs produced different model outputs. On
the basis of such insights, it can be attempted to further
optimize SVM models for individual predictions.
Global Model Diagnostics. SHAP analysis can conven-

iently be used as a global model diagnostic by comparing
decisions of different ML models on the same compound data
set, which aids in model selection. Moreover, consensus
features can be identified across methodologically distinct
models that can be selected for practical applications. Figure 12
presents an example of SHAP-based model comparison and
selection. Figure 12a shows a score plot of predicted

probabilities of activity for compounds using DNN and SVM
models. Red dots in the upper-right panel represent active
compounds that are correctly predicted by both methods, and
blue dots in the bottom-left panel are inactive compounds
correctly detected by SVM and DNN. The compounds falling
into other regions of the plot have been incorrectly predicted
by only one of the methods. An exemplary active compound
that is correctly predicted by DNN but not by SVM is
indicated. In Figure 12b, the SHAP contribution plots are
shown for this compound and the SVM and DNN models. It is
evident that many features were equally weighted using SHAP
for predictions with both models. However, SVM was found to
assign negative contributions to a number of atom environ-
ments that were not considered by DNN. To further reduce
the black-box character of these model predictions, highly
weighted features were mapped onto this compound, as
depicted in Figure 12c. The SHAP threshold was adjusted such
that top-1 as well as -3 ranked features with positive
contributions were obtained from both SVM and DNN
models. For SVM, the top-ranked features with negative
contributions were also selected. Such features were absent in
the DNN model, as discussed above. Figure 12c shows that
features important for the prediction of activity mapped to the
same region in the molecule. However, SVM also negatively
weighted similar parts of the compound formed by overlapping
atom environments, thus reducing the output probability.

Figure 8. SHAP values for MACCS keys. Shown are two exemplary test compounds that were represented using MACCS keys and correctly
predicted by SVM, RF, and DNN models including a (a) Bcl-2 inhibitor, (b) melanin-concentrating hormone receptor 1 antagonist, and (c) factor
X inhibitor. SHAP positive (red) and negative (blue) feature weights are given for the three models. The expected base and output value (bold) is
also shown. The following symbols are used: A, any element symbol; Q, heteroatom; X, other than H, C, N, O, Si, P, S, F Cl, Br, I; $, ring bond; !,
aliphatic bond; %, aromatic bond.
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Thus, in this case, the model diagnostic detected SVM-
dependent inconsistencies in feature prioritization, which were
absent in the DNN model. On the basis if these observations,
the DNN model would be prioritized.

■ CONCLUSIONS
In this work, the SHAP method has been introduced for the
interpretation of compound activity predictions using ML
models, regardless of their complexity. As an ML model

diagnostic, SHAP is generally applicable to ML models
including ensemble and DL models, which makes it possible
to shed light on their black-box nature. SHAP values quantify
feature importance for ML in a consistent manner.
Furthermore, the SHAP analysis scheme introduced herein
provides visual access to feature importance and enables
structural interpretation of ML predictions including DNNs.
By application of the SHAP methodology, variables with
increasing influence on predictions can be explored and detect

Figure 9. SHAP values for ECFP4 features. Shown are two exemplary test compounds that were represented using ECFP4 and correctly predicted
by SVM, RF, and DNN models including a ligand of the (a) κ opioid receptor, (b) melanocortin receptor 1B, and (c) orexin receptor 2. The
representation is according to Figure 8. In addition, top-ranked features are highlighted in compound structures.
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potential sources of bias of predictions or confirm their
consistency and further validate a model. It is important to
consider the applicability domain of explanatory methods
because interpretations will be strongly influenced by training
data and conditions. Here, it is important to note that the
SHAP methodology is applicable to essentially all ML
approaches including regression techniques. For ML methods
and especially in the context of DL, SHAP offers novel
opportunities for the rationalization of predictive models and
for reducing or eliminating their black-box character. In future
work, SHAP analysis might be further extended to better
understand multitask learning for compound activity pre-
diction.

■ EXPERIMENTAL SECTION
1. Compound Data Sets. Machine learning inevitably depends

on compounds from the literature and their reported activity data.
ChEMBL is the primary repository for active compounds from the
medicinal chemistry literature.44 From ChEMBL version 24, 10
activity classes were selected for ML.
For each selected compound, literature reference(s) and the

presence of direct interactions (i.e., assay relationship type “D”) with a
human single-protein target at the highest confidence level (i.e., assay
confidence score 9) were required. As potency measurements,
explicitly specified (assay-independent) equilibrium constants (Ki
values) were required. Activity measurements provided in ChEMBL

were taken from original publications. When multiple Ki values were
available for a compound and fell within the same order of magnitude,
the mean value was determined. If differences between measurements
exceeded 1 order of magnitude, the compound was discarded. Only
compounds with (mean) pKi of at least 5 were ultimately selected to
exclude borderline active compounds from further consideration.
Furthermore, compounds with potentially inconsistent activity
records including comments such as “inactive”, “inconclusive”, or
“not active” were discarded. Taken together, these criteria exclusively
select compounds with highest ChEMBL confidence scores and
highest activity data confidence.45 In addition, all compounds meeting
high-confidence selection criteria were screened for pan-assay
interference compounds (PAINS)46 using substructure libraries
from public filters44,47,48 and compounds with PAINS alerts were
discarded (less than 1%).

Selected data sets were required to contain at least 200 compounds
belonging to at least 50 different analog series computationally
determined49 on the basis of matched molecular pair (MMP)
relationships.50 Selection of activity classes consisting of large
numbers of analog series ensured the presence of defined subsets of
structurally analogous compounds that were distinct from others.
Activity classes of sufficient size and intraclass structural diversity were
essential for meaningful ML-based activity modeling. Since this study
aimed to detect chemical features determining activity predictions,
confirmed activity of compounds against a given target based on high-
confidence activity data was another key criterion for an activity class.
Table 1 specifies selected classes, which consisted of 243−955
compounds and 57−216 analog series, respectively. To prevent

Figure 10. SHAP visualization for ECFP4. SHAP results are shown for an exemplary κ opioid receptor antagonist. In (a), the probability of activity
predicted by SVM (left), RF (center), and DNN (right) is reported at the bottom of the boxes and the most important features for determining
these predictions (top-1 and top-2) according to SHAP analysis are mapped onto the compound and highlighted. For top-ranked features, the
corresponding SHAP values are reported. In (b), positive (red) and negative (blue) feature contributions are shown for SVM (top), RF (middle),
and DNN (bottom). The output value (bold) corresponds to the output probability of each ML model.
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potential structural bias of predictions,51,52 analogs from different
series were selected as positive (active) training and test instances.
Training sets contained 70% of the analog series per activity class and
corresponding test sets 30% of the series. On average, training and
test sets included 366 (157 to 683) and 163 (70−278) active
compounds, respectively. As negative (inactive) training and test
instances, compounds were randomly selected from ZINC,48 i.e.,
consistently 1000 compounds per training and test set.
2. Molecular Representations. Extended connectivity finger-

print with bond diameter 4 (ECFP4)53 is a topology descriptor
encoding layered atom environments as numeric identifiers using a
hashing function. SMARTS patterns corresponding to each atom
environment (codified by a hash value) were stored. Therefore,
ECFP4 features can be mapped back onto the compounds. This
feature set fingerprint is variable in size, but a constant-length 1024-bit
representation was obtained through modulo mapping. In addition,
MACCS structural keys54 were used in a binary fingerprint format
encoding the presence (bit set on) or absence (off) of 166 predefined
structural patterns or fragments. The OEChem toolkit55 and in-house
Python scripts were used for fingerprint calculations.
3. Machine Learning Models. 3.1. Support Vector Machine.

The SVM classifier finds a hyperplane in a multidimensional space
that maximizes the distance between the support vectors of each class,
known as margin.17 The support vectors are the training instances of
one class that are closest to the other class. SVM enables nonlinear
modeling through the application of the kernel trick,56 i.e., the use of
kernel functions to map training compounds into a higher-
dimensional feature space representation in which the classes might
be linearly separable. For compound classification, the nonlinear
Tanimoto kernel54 is one of the best performing kernel functions.57,58

The SVM implementation of scikit-learn56 with customized Tanimoto
kernel was used for all calculations.

3.2. Random Forest. RF is an ensemble of decision trees (DTs)
that aims at reducing the variance of individual trees.16 RF is based on
bootstrap aggregating according to which training DTs with distinct
compound subsets are generated. In addition, a random subset of
features is used to minimize correlations between DTs. The final RF
prediction results from a consensus across the DT population. RF
calculations were carried out with scikit-learn.59

3.3. Feedforward Deep Neural Networks. A DNN is a series of
functional transformations (neurons) that learn how to modify input
values to obtain a desired output.60 Accordingly, DNNs have an input
layer, multiple hidden layers, and an output layer. First, a neuron’s
input values (x1, ..., xD) are linearly combined considering a set of
weights (w) and biases (b). Then, a differentiable nonlinear activation
function (h) is applied to obtain the neuron’s output (yj) according to
eq 4:61
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where n indicates the layer number. Training aims at determining the
weights and biases that minimize the cost function (e.g., cross-
entropy).21 Gradient descent is applied to update weights by
considering small steps (defined by the learning rate) in the direction
of the negative gradient and can be efficiently calculated using
backpropagation.60 DNNs were generated using TensorFlow61 and
Keras.62

3.4. Hyperparameter Optimization. Model hyperparameters were
optimized through internal 2-fold cross-validation and grid search.

Figure 11. Rationalizing SVM predictions for two analogs. (a) Two analogs are shown (with ECFP4 Tanimoto similarity of 0.6), and features with
the largest positive and negative contributions to SVM predictions are highlighted. SHAPth indicates the SHAP threshold value for the top-1 ranked
feature (such that only this feature is obtained). The analogs have different predicted probabilities of activity (Pactive). (b) For the analogs, features
with positive (red) and negative (blue) SHAP values are visualized.
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The same randomized data splits were considered for training (80%)
and internal validation (20%) for different ML methods.63 Best
hyperparameters were selected according to area under the ROC
curve (AUC) optimization (average across folds).
For SVM, the regularization term C was optimized with candidate

values of 0.01, 0.1, 1, and 10. In addition, SVM models were built with
and without class weights.58 The use of class weights consists in
penalizing errors on the minority class more than errors on the
majority class.

For RF models, the number of trees was consistently set to 500 and
three numerical hyperparameters were optimized including the
minimum number of samples required to split a leaf node (1, 5,
10) or an internal node (2, 8, 16) and the maximum number of
features considered when searching for the best split (i.e., square root,
log2). Furthermore, models were built with and without class weights.

Different network architectures were tested for DNN models, with
the following number of neurons in hidden layers: [100,500],
[200,100], [2000,1000], [200,100,100], and [2000,1000,100]. The
activation function was Rectified Linear Unit (ReLU) except at the

Figure 12. Interpretation of DNN and SVM predictions. (a) Score plots show the output probabilities of activity against orexin receptor 2 for DNN
and SVM models. A green square marks an exemplary compound that is incorrectly classified by SVM (p = 0.44) but correctly predicted by DNN
(p = 0.69). (b) Plots for SVM and DNN report SHAP feature values that modify the base value (0.22), with a positive (red) or negative (blue)
sign, to yield the final output probability (bold). For the DNN model, features with negative contributions to the output probability were absent.
(c) ECFP4 features with largest positive and negative SHAP values are shown for the SVM model (i.e., the top-1 feature and the top-3 ranked
features). For the DNN model, only the features with positive SHAP values are available.
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output layer, where a sigmoid function was applied. In addition, three
initial learning rates (0.1, 0.01, 0.001) were tested and values were
reduced when reaching a loss plateau. L2 regularization and drop-out
(25% or 50%) were applied to all hidden layers. Three batch sizes (64,
128, 256) were tested, Adam was used as the optimization function,
and the number of epochs was set to 50 and 200 during internal and
external validation, respectively.
3.5. Performance Measures. Predictive performance on test sets

was evaluated using three metrics: AUC, balanced accuracy (BA),64

and Matthew’s correlation coefficient (MCC).65 BA and MCC are
defined by eqs 5 and 6, respectively.

= +BA
1
2

(TPR TNR)
(5)

= × − ×
+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
(6)

To statistically compare MCC values before and after feature
elimination, nonparametric Wilcoxon tests66 were carried out.
4. Feature Contributions. Feature contributions were assessed

following the SHAP approach detailed in the Results sections. The
feature contributions represented by Shapley values are meant to
satisfy three axioms including local accuracy, consistency, and
nonexistence (or null effect).67,68

5. Data Availability. Compound activity classes used here are
made available in an open access deposition on the ZENODO
platform.69
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