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ABSTRACT: Developing Janus kinase 2 (JAK2) inhibitors has become a significant focus for small-molecule drug discovery
programs in recent years because the inhibition of JAK2 may be an effective approach for the treatment of myeloproliferative
neoplasm. Here, based on three different types of fingerprints and Extreme Gradient Boosting (XGBoost) methods, we
developed three groups of models in that each group contained a classification model and a regression model to accurately
acquire highly potent JAK2 kinase inhibitors from the ZINC database. The three classification models resulted in Matthews
correlation coefficients of 0.97, 0.94, and 0.97. Docking methods including Glide and AutoDock Vina were employed to
evaluate the virtual screening effectiveness of our classification models. The R2 of three regression models were 0.80, 0.78, and
0.80. Finally, 13 compounds were biologically evaluated, and the results showed that the IC50 values of six compounds were
identified to be less than 100 nM. Among them, compound 9 showed high activity and selectivity in that its IC50 value was less
than 1 nM against JAK2 while 694 nM against JAK3. The strategy developed may be generally applicable in ligand-based virtual
screening campaigns.

1. INTRODUCTION

The Janus kinases (JAKs) are a family of intracellular non-
receptor protein tyrosine kinases that play prominent roles in
the cytokine-mediated JAK−STAT signaling pathway.1,2 The
JAK family consists of four enzymes, JAK1, JAK2, JAK3, and
TYK2. To date, three drugs targeting JAKs have been
approved by the U.S. Food and Drug Administration (FDA)
(Figure 1). Ruxolitinib (1), a JAK1/JAK2 inhibitor, is
approved for the treatment of primary myelofibrosis (PMF)
in 2011.3,4 Tofacitinib (2), a JAK1/JAK3 inhibitor with
moderate activity on JAK2, and baricitinib (3), which inhibits
JAK1 and JAK2, are approved for the treatment of rheumatoid
arthritis (RA).5,6 Among the four JAK subtypes, JAK2 emerged
in the recent years as a potential therapeutic target for
myeloproliferative neoplasm (MPN), which include polycy-
themia vera (PV), essential thrombocythemia (ET), and

PMF.7−10 JAK2 inhibitors have been developed and evaluated
in clinical trials for the treatment of MPN.11
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Figure 1. Ruxolitinib (1), tofacitinib (2), and baricitinib (3).
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Traditional ligand- and structure-based virtual screening
(VS) approaches have been used in the discovery of JAK2
inhibitors. For instance, Jasuja and colleagues designed dual
inhibitors of JAK2 and JAK3 by a pharmacophore- and
docking-based VS approach.12 Pharmacophore filtering and a
three-dimensional quantitative structure−activity relationship
(3D-QSAR) were used by Dhanachandra Singh and colleagues
in the discovery of JAK2 inhibitors.13 Over the past decade,
machine learning (ML) algorithms, such as Support Vector
Machine (SVM),14 Random Forest (RF),15 and deep learning-
based methods,16 have become increasingly popular for VS.
SVM is a learning machine for a two-group classification
problem. An SVM model developed by Liew and colleagues
was able to identify novel Lck inhibitors and distinguish
inhibitors from structurally similar noninhibitors at a false
positive rate of 0.27%.17 As a classification and regression tool,
RF is introduced and investigated for predicting the
quantitative or categorical biological activity of one compound
based on a quantitative description of the molecular
structure.18 Merget and colleagues successfully employed RF
to generate ligand-based prediction models for over 280
kinases, and in their work, RF generally outperforms alternative
machine learning models.19 Deep learning-based methods have
rapidly emerged to provide state-of-the-art performance in
fields such as computer vision and natural language
processing.20,21 Neural networks have also been successfully
applied in the cheminformatic domain through creative
manipulation of 2D or 3D chemical structures and
construction of the network architecture.22−24 Among these
ML algorithms, Extreme Gradient Boosting (XGBoost)
appears to be a very effective and efficient machine-learning
method in the realm of QSAR. It can make predictions, on the
average, better than those of Random Forest and almost as
good as those of deep neural nets with much less computa-
tional effort.25

In this paper, XGBoost was employed to build JAK2-centric
classification and regression models. Three groups of models
were developed based on three kinds of fingerprints (FPs), and
each group comprised a classification model and a regression
model. These models would serve as tools to screen JAK2
inhibitors from the ZINC database.26 The classification models
were tested on the DUD-E set containing JAK2 inhibitors and
decoys and further evaluated by comparing the performance
on VS test sets with docking methods. The regression models
were built to predict the specific activity values of active
molecules identified by classification models. In order to
minimize the scope of experimental screening and reduce the
false positive rate, molecules that were simultaneously
identified by three groups of models would be subjected to
in vitro bioactivity evaluation. Here, we are dedicated to
quickly and efficiently obtaining JAK2 inhibitors from a large
molecular database via our approach of screening based on
machine learning models.

2. MATERIALS AND METHODS
2.1. Data Collection. 2.1.1. Data Set 1. For the work

described here, we mainly collected data from PubChem and
the Binding database (BindingDB). To build classification
models, 4607 active molecules of JAK2 with their molecular
structures and IC50 values and 216,460 compounds, which
were found inactive against JAK2 with molecular structures,
were collected from PubChem. Additionally, 6149 JAK2
inhibitors with IC50 values were downloaded from BindingDB.

To combine the data collected from the two databases, the
CID code was chosen as the unique identification and the
repeated molecules with lower activity were further removed.
As a result, 7234 active and 216,460 inactive molecules of
JAK2 were collected.
For developing machine learning models, the data set should

be split into training and test sets. Data splitting by random
division has been demonstrated to offer more realistic
predictions of the learning algorithms.27 Thus, we randomly
split the data into a training set and a test set by a 4:1 ratio
using “shuffle” in Python. The resulted training set contained
178,955 molecules (5787 active and 173,168 inactive
molecules), and there were 44,739 molecules in the test set
(1447 active and 43,292 inactive molecules).

2.1.2. Data Set 2. Based on data set 1, the molecules of
JAK2 were further divided followed by a threshold rule: active
(≤10 μM) and inactive (>10 μM). The reasons for choosing a
threshold of 10 μM are as follows: (1) the 10 μM is a cutoff for
starting follow-up activities after high-throughput screening
(HTS).28 (2) Another is to see if the threshold rule could exert
good effects on the models. Finally, there were 6734 active
molecules (5387 molecules in the training set and 1347
molecules in the test set) and 216,960 inactive molecules
(173,568 molecules in the training set and 43,392 molecules in
the test set).
In data sets 1 and 2, active compounds were heavily

outnumbered by inactive compounds, which was referred to as
the class imbalance problem. The class imbalance problem
could lead to poor performance of ML algorithms.29 Ensemble
learning methods of which Boosting and Bagging are the most
successful approaches have been extensively used to handle
class imbalance problems.30 In this work, the classification
models were developed based on XGBoost (one of the
boosting approaches). The area under the receiver operating
characteristic (ROC) curve (AUC), which was suitable to
evaluate imbalanced data sets, was employed to evaluate the
performance of our classification models.

2.1.3. Data Set 3. Active molecules and their IC50 values
were collected from data set 1. Particularly, two molecules
whose IC50 values were far greater than 1000 μM were
removed. Thus, the IC50 values of the data set ranged from
0.004 nM to 1000 μM, which was wide enough to build a good
activity prediction model. Finally, there were 7232 active
molecules (5786 molecules in the training set and 1446
molecules in the test set).

2.1.4. Date Set from DUD-E.31 In addition, 153 active
molecules and 6500 decoys of JAK2 were collected from
DUD-E to validate the performance of the classification
models.

2.1.5. Data Set of the VS Test. Furthermore, in order to test
the VS effectiveness of the classification models, 13 JAK2
inhibitors were collected from the literature, which were not
included in the two databases mentioned above. The IC50
values and molecular structures are shown in Table S1.
Moreover, we downloaded three sets of inactive molecules
from ZINC, which contained 2000, 10,000, and 20,000
molecules.32−43

2.2. Chemical Representations. All the molecules were
represented by three types of molecular FPs: (1) The MACCS
fingerprint uses “1” or “0” to indicate the presence or absence
of the substructure, and the length of which is 166 bits. (2)
The extended-connectivity fingerprint (ECFP) is a vector with
a fixed length (e.g., 1024 bits), which initially uses unique
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identifiers to demonstrate structures around all heavy atoms of
a molecule with a defined radius, and can be classified as
ECFP_2, ECFP_4, ECFP_6, etc. The appended number is the
effective diameter of the largest feature and is equal to twice
the number of iterations performed. For example, if three
iterations are performed, the largest possible fragment will have
a width of six bonds.44 (3) Mol2vec is an unsupervised
machine learning approach inspired by natural language
processing techniques. Mol2vec learns vector representations
of molecular substructures that are pointing to similar
directions for chemically related substructures. Compounds
can be encoded as vectors via summing up the vectors of the
individual substructures and then fed into modeling
approaches for prediction of compound properties. In this
study, the Mol2vec model was pre-trained based on a corpus
containing 19.9 million compounds and then utilized to feature
new samples.45 Finally, 300-dimensional embeddings were
generated for all compounds. MACCS and ECFP were
calculated using the RDKit46 (version 2019.03.1). Here,
three kinds of chemical representations were employed for
the generation of classification models and regression models,
herein after termed MACCS+ECFP2 (the two FPs were
concatenated for each compound), Mol2vec, and ECFP_4.
2.3. Methods for Model Building. In this study, we used

a scalable end-to-end tree boosting system called XGBoost
(https://github.com/dmlc/xgboost), which is used widely by
data scientists to achieve state-of-the-art results on many
machine learning challenges.47 XGBoost builds on previous
ideas in gradient boosting, which builds a sequential series of
smaller trees where each tree corrects for the residuals in the
predictions made by all the previous trees. XGBoost has many
adjustable parameters compared with RF, which has a handful
of adjustable parameters (e.g., number of trees, fraction of
descriptors used at each branching, node size, etc.).25 Here, we
introduce some parameters we used to build classification and
regression models: eta (step size shrinkage) was set to 0.1; the
max depth (maximum depth of a tree) was set to 10; the
colsample_bytree (what fraction of descriptors would be
examined for each tree) was set to 0.7; and the
colsample_bylevel was set to 0.7. Gamma was set to 0.1; the
objective was set to “binary: logistic” and “reg: linear”.
2.4. Cross-Validation and Model Evaluation. The

training data set were split into five equal parts for a fivefold
cross-validation (CV). The performances of classification
models were evaluated by the following metrics: AUC,
accuracy (Q), sensitivity (SE), specificity (SP), and precision
(PR). The metric used to evaluate the performance of
regression models was R2, which was the coefficient of
determination between predicted and observed activities in
the test set. R2 measures the degree of concordance between
the predictions and corresponding observations. Here, R2 was
calculated by r2_score available in scikit-learn.48 Some of the
metrics were calculated using the equation in Table1.
2.5. Cell-Free Kinase Activity Assays. Homogeneous

time-resolved fluorescence (HTRF) assays were conducted to
evaluate the inhibition of JAKs by different compounds.49 The
assays were performed with the HTRF KinEASE kit (Cisbio
Bioassays, Codolet, France) according to the manufacturer’s
instructions. Briefly, test compounds were diluted in DMSO
with a 10-fold gradient series to generate a six-point curve with
an initial concentration of 10 μM. The enzymes were mixed
with the test compounds and the peptide substrates in the
kinase reaction buffer. Following the addition of related

reagents, the signal of time-resolved fluorescence energy
transfer (TR-FRET) was detected using a Synergy H1
microplate reader (BioTek Instruments, Winooski, Vermont,
U.S.A.). The half maximal inhibitory concentration (IC50) was
calculated by nonlinear regression.

3. RESULTS AND DISCUSSION
3.1. Chemical Diversity Analysis. To verify the diversity

of chemical space of the JAK2 inhibitors that we collected to

develop the classification models and regression models, a
principal component analysis (PCA)50 was performed on the
7234 active molecules of JAK2 with ECFP_4 as input. As
demonstrated by the chemical space defined by the first two
principal components in Figure 2, distinct clusters indicating
high diversity were observed and the chemical space of the
training set overlapped that of the test set.

3.2. Classification Models. Based on three types of
fingerprints and two kinds of data sets (data set 1 and data set
2), six classification models were built (models 1A, 1B, 2A, 2B,

Table 1. Description of the Evaluation Metrics to Assess the
Classification Model

metrics equationa

accuracy (Q) (TP + TN)/N
sensitivity (SE) TP/(TP + FN)
specificity (SP) TN/(TN + FP)
precision (PR) TP/(TP + FP)
MCC S = (TP + FN)/N

P = (TP + FP)/N

MCC = −
− −

N
S P

TP / SP
PS(1 )(1 )

aTP is the number of correctly predicted actives (true positives), TN
is the number of correctly predicted inactives (true negatives), N is
the total number of molecules in the database, FN is the number of
mispredicted inactives (false negatives), FP is the number of
mispredicted positives (false positives). The MCC (Matthews
correlation coefficient) is applied to evaluate the performance of
classification models. The perfect model produces an MCC value of 1.

Figure 2. First two principal components of PCA of JAK2 inhibitors.
Besides the majority cluster, the data occupies several further distinct
clusters in the chemical space.
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Figure 3. Receiver operating characteristic (ROC) curves of models 1A, 1B, 2A, 2B, 3A, and 3B. (A) ROC curve of model 1A. (B) ROC curve of
model 1B (C) ROC curve of model 2A. (D) ROC curve of model 2B. (E) ROC curve of model 3A. (F) ROC curve of model 3B.

Table 2. Performance of the Six Classification Models on the Test Set

fingerprints training set test set

model data set type length 5-CV(AUC) SE SP PR Q MCC

model 1A 1 ECFP_2 + MACCS 1024 + 166 0.994 0.9481 0.9998 0.9928 0.9981 0.9692
model 1B 2 ECFP_2 + MACCS 1024 + 166 0.996 0.9636 0.9996 0.9871 0.9985 0.9745
model 2A 1 Mol2vec 300 0.994 0.9109 0.9995 0.9836 0.9966 0.9448
model 2B 2 Mol2vec 300 0.994 0.9065 0.9995 0.9823 0.9967 0.9420
model 3A 1 ECFP_4 1024 0.995 0.9488 0.9998 0.9935 0.9981 0.9696
model 3B 2 ECFP_4 1024 0.996 0.9584 0.9997 0.9885 0.9984 0.9725
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3A, and 3B). The models were tested on the internal test sets
and further evaluated on the DUD-E data set and VS test set to
evaluate generalization ability and VS effectiveness of our
models.
3.2.1. Performance on the Internal Test Sets. The AUC

values of our models are shown in Figure 3, which were all
close to 1, showing great predictive power of our classification
models. The detailed prediction performance of the six models
is shown in Table 2. In general, our six models have a high
capacity to separate actives from inactives in terms of SE, SP,
PR, Q, and MCC values, which all exceeded 0.9. The
performances of models 1B and 3B that were built based on
data set 2 were better than those of models 1A and 3A that
were based on data set 1 (without a threshold rule) in terms of
MCC values. The performances of model 2B were nearly the
same as those of model 2A, and performances of models that
were built on Mol2vec were not as good as those on the other
two types of FPs, suggesting that Mol2vec was different with
the other two and was not sensitive to the 10 μM threshold
applied to data set 2. The SE values of six models were
approximately 0.9 and were not good enough compared to the
SP values, which were close to 1. Sensitivity (also known as the
recall), which measures the proportion of positives that are
correctly identified, may be related to the number of active
molecules fed into the model. Similarly, specificity (also called
as the true negative rate) measures the proportion of negatives
that are correctly identified and may have a close relationship
with the number of inactive molecules. Since the number of
active molecules on the training set was far less than the
inactive molecules, the SE values of our models were not high
enough compared to the SP values.
3.2.2. Prediction on the DUD-E Data Set. In order to assess

the generalization ability of the classification models and

further compare the performance of models of A with the
models of B, we tested our models on external JAK2 molecular
data collected from the DUD-E data set. Being consistent with
the results of internal evaluation, the performance of models
1B and 3B was greater than that of models 1A and 3A, and
there were no distinct differences between model 2A and
model 2B in terms of the metric values (Table 3). Although
the SE and MCC values exhibited a slight drop compared to
the results of internal test sets, they were high enough with an
average value close to 0.9, and the values of other metrics were
all equally great with those of the internal test. We could
conclude that our models have great generalization ability. The
AUC values were also analyzed (Figure 4).

3.2.3. Prediction on the VS Test Set. Glide and AutoDock
Vina were employed to evaluate the performance of our
classification models.51 Details of the two docking methods are
shown in Table S2. The performance on the test set of 2013
molecules of the six models were significantly better than that
of the two docking methods (Figure 5A). Models 1A, 1B, and
3B exhibited superior enrichment power that ranked 13 active
molecules in the top 15 (0.1% false positive rate), and model
1B was the best model that ranked 13 active molecules in the
top 13. Models 2A and 2B ranked 12 actives in the top 33 (1%
false positive rate); the last one was ranked at 50. Obviously,
model 3B had a greater performance than that of model 3A for
recognizing an active compound that was ranked at 229 by the
latter. Instead, Glide could rank five actives in the top 15 and
six in the top 33. AutoDock Vina ranked one active molecule
in the top 15 and top 33. The two structure-based docking
methods ranked molecules by scores calculated by their inner
methods. However, there was no standard of scores to
discriminate actives and inactives, which makes it possible
that the top 1 was the inactive compound when the data set
comprised inactives. As for classification models, compounds
were ranked according to the predicted class-membership
probability values, which generally had a threshold of 0.5.
Compounds with probability values greater than 0.5 were
denominated as actives and those otherwise as inactives. In
general, the performances of models of B were better than
those of models of A on the VS test, and the former were
further compared with the two docking methods on two other
test sets containing 10,013 and 20,013 compounds. The
increase in the number of molecules was inevitably

Table 3. Performance on the DUD-E Set of Six Models

models SE SP PR Q MCC

model 1A 0.8824 0.9995 0.9782 0.9969 0.9275
model 1B 0.8954 0.9998 0.9928 0.9975 0.9416
model 2A 0.8824 0.9982 0.9184 0.9956 0.8979
model 2B 0.8758 0.9983 0.9241 0.9955 0.8974
model 3A 0.7582 0.9998 0.9915 0.9944 0.8645
model 3B 0.9216 0.9998 0.9930 0.9981 0.9556

Figure 4. ROC curves of models 1A, 2A, 3A, 1B, 2B, and 3B. (A) ROC curves of models 1A, 2A, and 3A. (B) ROC curves of models 1B, 2B, and
3B.
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accompanied by an increase in calculation time. However, it
took about 2 min to calculate 10,000 molecules by our
classification models. In contrast, AutoDock Vina took
approximately 70 h to calculate 10,000 molecules, and the
speed of Glide (standard precision) was nearly the same. With
the increase of interference molecules, the sharp drop of the
enrichment power of the two docking methods could be clearly
observed (Figure 5B,C and Table S3).
Combining the VS test results with the results of the internal

test and DUD-E test, we could conclude that our six
classification models were all excellent in the identification of
JAK2 inhibitors and the threshold rule improved the
performance of models 1A and 3A, whereas there was no

distinct difference between models 2B and 2A. Thus, models
1B, 2B, and 3B were chosen as the final classification models in
the three groups.

3.3. Regression Models. Based on three different types of
chemical representations and data set 3, we built three
regression models (models 1C, 2C, and 3C) to predict IC50
values of the active molecules. R2 of three models calculated on
the training sets were 0.97, 0.97, and 0.95 and on the test sets
were 0.80, 0.78, and 0.80 (Figure 6). The performances of our
regression models were in line with those of SVR models in the
current study.52

To further evaluate the generalization ability of our
regression models, JAK2 inhibitors that had a smile format
of molecules and exact IC50 values were collected from the
CHEMBL database. Since the 10 μM threshold rule was
applied in the classification model and our regression model
was developed to predict the activity of active molecules, we
further removed molecules whose IC50 values were more than
10 μM and got 4116 molecules from CHEMBL. The R2 of
three models on the external test set were 0.80, 0.78, and 0.78
(Figure 7).

3.4. Virtual Screening and Biological Evaluation. To
accurately and efficiently acquire JAK2 inhibitors from the
ZINC database, we developed a hierarchical strategy to
integrate three classification models and corresponding three
activity prediction models (Figure 8). Generally, our
hierarchical procedure consists of three steps: (1) filtering
the raw data set using Lipinski’s rule of five, (2) classifying the
molecules that passed the structure filter into actives and
inactives by classification models and predicting the activity
values of the actives using regression models, and (3) picking
molecules according to their predicted IC50 values and
chemical structure features.
In detail, RDKit was used to calculate properties of the 7234

JAK2 inhibitors, such as the molecular weight, A log P, and the
number of hydrogen-bond donors and acceptors. Thus, there
was a range for their properties that could be used to roughly
filter the ZINC database containing 42,271,452 molecules
(downloaded from http://zinc12.docking.org/subsets/
everything). A total of 20,761,052 compounds passed the
filter and were subjected to models 1B, 2B, and 3B. These
three classification models predicted the relationship possibil-
ities that ranged from 0 to 1 of the input molecules, and the
value of 1 meant that this model considered the molecule to
have a 100% probability of being active. Here, 18,100, 56,144,
and 18,082 molecules whose values of probability were greater
than 0.5 were retrieved from three classification models and
were put into three corresponding regression models. To
acquire highly potent JAK2 inhibitors, we retained 5537, 9758,
and 5809 molecules whose predicted activity values were
greater than 100 nM from the three regression models. To
make the final molecules simultaneously satisfy the three
groups of models according to their CID number, 1702
molecules that repeatedly existed in the results of the three
activity prediction models were selected. Considering that the
pyrrolopyrimidine scaffold was used by three FDA-approved
drugs, we decided to pick molecules with the same or similar
scaffold (e.g., pyrrolopyridine) to conduct the experimental
evaluation. Thus, 30 molecules with a pyrrolopyrimidine-like
scaffold were picked, and 13 molecules, which were
commercially available, were subjected to in vitro biological
evaluation.

Figure 5. (A) Comparison of the ability to distinguish actives and
inactives of models 1A, 1B, 2A, 2B, 3A, and 3B, Glide, and AutoDock
Vina on the VS test set (2013 molecules). Active molecules (blue) are
expected to gather at the bottom of the histogram. (B) Comparison of
the performance of models 1B, 2B, 3B, Glide, and AutoDock Vina on
the VS test (10,013 molecules). (C) Comparison of the performance
of models 1B, 2B, and 3B, Glide, and AutoDock Vina on the VS test
(20,013 molecules).
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The results of biological evaluation are shown in Table 4.
(The details for structure confirmation of 13 purchased
compounds are shown in Figure S3.) Ruxolitinib and
tofacitinib were employed as positive drugs for JAK2 and
JAK3 inhibitors, respectively. Ruxolitinib showed high JAK2
potency (JAK2 IC50 < 1 nM) and tofacitinib showed high
JAK3 potency (JAK3 IC50 < 1 nM). Among 13 biological
tested compounds, eight compounds showed potency against
JAK2, and the IC50 values of six compounds were identified to
be less than 100 nM. Compound 9 exhibited high JAK2
potency (JAK2 IC50 < 1 nM) and high selectivity versus JAK3
(IC50 = 694 nM). The predicted and actual biological values of
the 13 compounds were compared, and some showed high
accuracy (Figure 9). The inhibitory profiles of compounds that
showed potency against JAK2 or JAK3 clearly showed a dose-

dependent pattern (Figure S1). PAINS screening was applied
to these compounds, and all of them passed the test53 (Figure
S2). Though all 13 molecules used pyrrolopyrimidine-like
scaffolds, five compounds did not show potency against JAK2,
and the IC50 values of eight compounds spanned at least 4
orders of magnitude, indicating that, except for the scaffold, the
structures of other components of the compounds were
important for potency and selectivity. Compounds 9 and 11
were docked into JAK2 (PDB ID: 2XA4) to see the binding
mode of molecules that exhibited high potency against JAK2
(Figure 10). These two compounds interact with a backbone

Figure 6. Scatter plot of models (A) 1C, (B) 2C, and (C) 3C on the training and test sets.

Figure 7. Scatter plot of models 1C, 2C, and 3C on the external test
set.

Figure 8. Flowchart of our ligand-based hierarchical screening
strategy.
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of hinge residues (Leu932) by a pyrrolopyrimidine scaffold,
and other parts of the two molecules interact with different
residues of the protein. These 13 molecules would provide us
with diverse chemical structures connected to the same

scaffold for designing and optimizing molecules based on the
pyrrolopyrimidine scaffold to improve their potency on JAK2
and selectivity versus other JAKs.

4. CONCLUSIONS
In the present work, the development and application of
classification models and regression models based on XGBoost
methods were reported. We developed six classification models
based on three different types of FPs and a threshold of
splitting in the data set and evaluated the six models by
comparing their performances on internal test sets, the DUD-E
set and VS test set. The results showed that employing 10 μM
as the threshold of JAK2 inhibitors and applying this rule to
the data set enhanced the quality of the models. The best three
models produced MCC values of 0.94, 0.97, and 0.94. We also
built three regression models based on the three FPs, and their
R2 values calculated for test sets were 0.80, 0.78, and 0.80. We

Table 4. Active Compounds Identified by Models and the
Results of Their in Vitro Biological Testsa

aNo significant inhibitory effects were observed.

Figure 9. Column chart of predicted and tested IC50 values.
Compounds that were identified as inactive are colored gray.

Figure 10. (A) Binding mode of compound 9 (cyan stick) in the
context of JAK2 (white cartoon). The hydrogen bonds between
compound 9 and residues Leu932 and Asn981 are illustrated as blue
lines. (B) Binding mode of compound 11 (cyan stick) in the context
of JAK2 (white cartoon). The hydrogen bonds between compound
11 and residues Leu932 and Lys857 are illustrated as blue lines.
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could see that models 1B and 3B performed equally on all
kinds of tests, and the R2 values of regression models 1C and
3C were almost equal, which might be because they all used
ECFP fingerprints to represent their molecular structures. The
quality of models based on Mol2vec was slightly inferior to
that based on ECFP, and the distinct differences were reflected
on the number of molecules that passed the classification and
regression models. From the screening results, it could be seen
that the intersection of the three groups could at least reduce
the number of molecules by two-thirds. Finally, we selected 13
commercially available compounds with pyrrolopyrimidine-like
scaffolds to conduct the experimental evaluation, and eight of
them showed activity against JAK2. The IC50 values of six
compounds were identified to be less than 100 nM.
Compounds 9 and 11 exhibited high JAK2 potency and high
selectivity versus JAK3. These 13 molecules would provide
ideas for our subsequent pyrrolopyrimidine-based molecular
optimization. We expect that our strategy may be generally
applicable in ligand-based campaigns and our current work
may serve as a starting point to develop novel JAK2 inhibitors
with high potency and selectivity.
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