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ABSTRACT: Kinome-wide screening would have the advantage of providing structure−activity relationships against hundreds
of targets simultaneously. Here, we report the generation of ligand-based activity prediction models for over 280 kinases by
employing Machine Learning methods on an extensive data set of proprietary bioactivity data combined with open data. High
quality (AUC > 0.7) was achieved for ∼200 kinases by (1) combining open with proprietary data, (2) choosing Random Forest
over alternative tested Machine Learning methods, and (3) balancing the training data sets. Tests on left-out and external data
indicate a high value for virtual screening projects. Importantly, the derived models are evenly distributed across the kinome tree,
allowing reliable profiling prediction for all kinase branches. The prediction quality was further improved by employing
experimental bioactivity fingerprints of a small kinase subset. Overall, the generated models can support various hit identification
tasks, including virtual screening, compound repurposing, and the detection of potential off-targets.

■ INTRODUCTION

Protein kinases have been the focus of drug discovery efforts for
many years due to their central roles in signaling pathways
involved in the formation and progression of human cancer,
inflammation, and Alzheimer’s disease.1,2 Until February 2016,
30 small molecules targeting kinases were approved by the FDA
with many potential compounds still in clinical trials.3,4 The
majority of kinase inhibitors bind to the highly conserved ATP-
binding pocket, leading to low selectivity, which can easily
translate into unwanted side effects.5 Thus, having an
understanding about the binding profile of kinase inhibitors is
a prerequisite for drug discovery efforts. Sequence-based
phylogenetic relationships of kinases do not always allow
extrapolation to the bioactivity space,6 underlining the need for
kinome-wide profiling data for cross-reactivity estimation.
Although experimental profiling of compounds against a large
fraction of the kinome is experimentally feasible, it is too
expensive to be done on a regular basis for hundreds of
compounds even for big pharma companies. Extensive panels
of compounds tested against many different kinases exist,
containing both positive and, importantly, also negative
results.5,7−10 Together with other open resources, like
ChEMBL,11 a wealth of bioactivity measurements is freely
accessible. These sources provide valuable training data for

computational activity prediction models or virtual assays,
which are of great importance for hit identification, compound
repurposing and off-target detection.
Several attempts to predict binding profiles or free-energy

differences exist (including classical QSAR models and free
energy calculation tools) and can be feasible for drug design
projects (e.g., with respect to accuracy and project time
lines).12−14 The similarity ensemble approach (SEA) is based
on the chemical similarity of query ligands to known inhibitors
and resulted in successful predictions of unanticipated cross-
reactivity.15,16 Aside from predictors based on chemical
similarity, Machine Learning (ML) algorithms such as Support
Vector Machines (SVM), Naive Bayes (NB), and Neural
Networks comprise a popular toolbox for ligand-centric activity
and selectivity prediction.7,14,17−22 For instance, Yabuuchi and
colleagues successfully employed SVM to detect experimentally
confirmed inhibitors of GPCR and kinase targets.20 Further-
more, NB classification and regression yielded kinase activity
models with high predictive power.14,22 Neural Networks
employed by Manallack and colleagues achieved 79% correct
classifications on an external test set of 120 kinase inhibitors.17
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Deep Learning networks showed an average AUC of 0.83 on
ChEMBL data, outperforming competing methods, such as
SVM, K-Nearest Neighbor (KNN), NB, and also SEA.19 Beside
these ML algorithms, Random Forest (RF) is a popular method
to solve classification and regression problems using an
ensemble of decision trees and is able to yield very good
performance in QSAR modeling even without careful feature
selection and extensive parameter tuning.21,23,24

Extending a traditional target-centric screen to multiple
targets (e.g., kinome-wide) has the advantage of providing
multidimensional structure−activity relationships against hun-
dreds of targets simultaneously.25 Several studies address this
issue using a proteochemometric (PCM) approach and, thus,
combine chemical information with biological data about the
target.26 Although PCM holds promises, this survey will
primarily focus on assessing the predictive power of activity
prediction models derived solely from compound fingerprints
(FP) and experimental activities. Accordingly, we will address
the following questions: (1) which ML algorithm is best suited
for generating high-quality (HQ) activity prediction models for
a large kinase panel, (2) how does the composition of the used
data set and the inherent chemical diversity influence the
predictive quality in internal cross-validations and external
testing, (3) what is the most suited strategy to balance the data
in preprocessing and thus address the class imbalance problem
of ML,27 and (4) can ML be employed for accurate selectivity
and off-target prediction? In doing so, different ML method-
ologies and data balancing schemes are evaluated to yield
kinase-specific models with high accuracy. A combination of
encoding the chemical (Morgan f ingerprints) and biological
space (bioactivity f ingerprints) resulted in the best activity
prediction and allowed accurate inference of compound
selectivity.

■ MATERIAL AND METHODS
Data Sets. Three data sets were employed for the generation of

activity prediction models, hereinafter termed Proprietary, Open, and
Combined. (1) The data set Proprietary is composed from an in-house
profiling panel from Merck KGaA with 4,712 compounds, 220 kinases,
and 1,035,549 data points in the form of pIC50 values (∼100%
coverage).28 (2) The second data set (Open) contains the Tang set10

(which is a collection of a the kinase profiling data sets of Metz,5

Davis,8 and Anastassiadis9), PKIS,29−31 and a curated ChEMBL kinase
inhibitor panel.32 The Open set provides a rich source of kinase
inhibitor data accessible to the public domain and can be obtained
from https://github.com/Team-SKI/Publications. After initial filter-
ing, the Tang data set comprises 1,356 compounds, 188 kinases, and a
total of 120,194 data points (∼50% coverage). The KIBA scores
introduced by Tang were converted to the negative log10 of the molar
concentration to make the values comparable to the remaining data
sets. The Open set was then extended by the Published Kinase Inhibitor
Set (PKIS) of GlaxoSmithKline, containing 366 compounds, 195
kinases, and a total of 71,369 data points in the form of pIC50 values
(100% coverage).29,30 In the last step, the Open set was extended by a
curated in-house databank of kinase inhibitor data from ChEMBL
21.11 This sparse panel added 38,988 compounds, 314 kinases, and
64,157 measurements. (3) The third data set is a Combined master
table of the data sets Proprietary and Open. Overlaps in compounds
and kinases from the different sources are shown in Figure 1. Only one
representative of duplicate compounds was kept according to the
following priority: Proprietary, Tang, PKIS, in-house ChEMBL.
Furthermore, we only considered data sets with at least 50 bioactivity
values per kinase (Table 1). Although it is known that bioactivity
values derived from different experimental designs do not always agree
and the ChEMBL database can be error prone, it is still feasible to
combine these data sets for large-scale ML predictions.33 The chemical

space of the used data sets was subsequently analyzed by means of a
Principal Component Analysis (PCA) using the statistical framework
R and associated plug-ins.34−37 Two different types of FPs were
calculated for all compounds using the RDKit38 (version 2015.09.2)
implemented connectivity- and feature-based Morgan FPs39 (ECFP-
like and FCFP-like, respectively) with an array length of 4,096 bits and
a radius of 4 each. The two FPs were concatenated for each
compound. In contrast to classical binary FPs, all calculated FPs were
count-based, where each feature is an integer number indicating how
often a substructure appears in a molecule. The pIC50 cutoff to
compose the active (positive) and inactive (negative) classes for each
kinase was set to 6.3, which corresponds to a concentration of 500 nM.
This cutoff was also used for the generation of binary bioactivity
fingerprints, where a compound is described by the experimental
bioactivity against a selected subset of kinases. For evaluation, an
activity threshold of pIC50 = 6 (corresponding to 1 μM) was also
tested.

The RF classifier of the Python library Scikit-learn (version 0.17.1)
was mainly used for the generation of activity classification models.40

The number of estimators (decision trees) was set to 2500 and the
maximum number of features to the log2 of the total number of
features. To assess the performance of the RF models over other
classification techniques, Scikit-learn’s NB classifiers (Gaussian NB and
Bernoulli NB41 using default parameters) and a Tensorflow Deep
Neural Network (DNN) classifier were used (version 0.7.1 using
skflow version 0.1.0).42 For DNN calculations, a Deep Learning
network with two hidden layers of 2048 neurons each, rectified linear
units,43 and stochastic gradient descent for weight optimization were
used. The input layer was preprocessed using normalization and
application of a tanh function. Furthermore, neuron Dropout at a
threshold of 0.5 was introduced to avoid overfitting.44 DNN
parameters were selected by starting from values reported in the
literature19 and optimizing on ABL1 as an exemplary kinase. A simple
K-Nearest Neighbor classification serves as a baseline model. All ML
calculations were performed in Python, making further use of the
packages NumPy (version 1.10.4) and Pandas (version 0.17.1). An
exemplary jupyter notebook is provided at https://github.com/Team-
SKI/Publications.

Balancing Methods. In kinase profiling data, active compounds
are heavily outnumbered by inactive compounds. This is referred to as
the class imbalance problem, which can lead to poor performance of
ML algorithms.27 Besides random under- and oversampling of the
majority/minority class, undersampling was performed based on
centroid clustering, Nearest Neighbor (NearMiss45) search and PCA-
Centroids, while oversampling of the minority class was performed by
the SMOTE-algorithm (Supporting Information).46

Figure 1. Venn diagram of compounds (left) and kinases (right) from
different sources. Whereas only few kinases are unique for a single data
source, many compounds only appear in one source.

Table 1. Sizes of Final Data Sets Used for Creating Activity
Prediction Models

compounds kinases data points

Proprietary 4,712 220 1,035,549
Open 39,970 263 247,739
Combined 44,603 291 1,280,016
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Cross-Validation and Model Evaluation. The balanced data sets
were split into five equal parts for a 5-fold cross-validation (CV). Thus,
in each fold, a model was trained on 80% and tested on the remaining
20% of the data. Additionally, 10 external (left-out) data sets were
composed for every single fold, each containing the active compounds
from the respective test set combined with randomly drawn inactives
from the compounds dismissed in the preceding undersampling step.
For model quality assessment, the average Areas Under the ROC-
Curve (AUC), the average sensitivities (recall of positive class) and the
average specificities (recall of negative class) of the 5-fold CVs were
evaluated. Furthermore, the average AUCs and specificities of the
external test sets were calculated. There is no need to calculate the
sensitivity for these data sets because the positive compounds are
identical to those of the CV test sets. Paired Mann−Whitney U tests
were performed to assess statistical significance.

■ RESULTS

This section will be structured as follows: first, the effect of
different data sources (Proprietary and/or Open) on the
predictive power of RF models will be assessed. An analysis
of the chemical space of the data sets will serve as an
explanation for the dependency of the model applicability on
the chosen data source. Moreover, the distribution of high-
quality (HQ) models across the kinome phylogeny will be
analyzed. Second, alternative ML classifiers will be trained and
the predictive power evaluated. In an analogous fashion, various
data balancing techniques will be used and evaluated in
comparison to the results obtained by random undersampling.
Third, the training data will be extended by bioactivity
fingerprints and the corresponding RF classifiers evaluated. In

Figure 2. Boxplots of (a) average Random Forest model quality metrics and (b) standard deviations of 5-fold cross-validations (CV) on various data
sets. Black lines depict the median, and boxes illustrate the interquartile range (IQR) of the distribution. Whiskers extent to 1.5·IQR from the
median. Although models based on Open data show higher average AUC, sensitivity, and specificity, the standard deviations of the 5-fold CV are
significantly higher compared to the results obtained based on the Proprietary and Combined data sets. Hence, models derived from the latter two
data sets are more robust.

Figure 3. AUC plotted against the number of active compounds per kinase for the (a) Open and (b) Combined data sets. In both cases, no
correlation between the achieved AUC and number of actives exists. (c) Binned average AUC against number of active compounds. Bins have a
range of 50 actives. Models with a high number of actives generally result in prediction models with high AUC values.
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the last section, the applicability of the various presented
methods for predicting selectivity scores will be analyzed.
Kinase Activity Classification Models. Activity Predic-

tion with Random Forest Classifier Yields High-Quality
Models. The Random Forest (RF) methodology was used on
the Morgan FPs to create a dedicated activity prediction model
for each kinase after balancing the data sets using random
undersampling. Random undersampling is the easiest, most
intuitive method for data balancing but nevertheless yields very
good performance.27,47 The RF models yield reasonable
prediction results on the Proprietary data set with an average
AUC of 0.67 ± 0.09, a sensitivity of 0.56 ± 0.06, and a
specificity of 0.69 ± 0.11 (Figure 2a). Surprisingly, models
trained on Open data exhibit a much higher average predictive
power with an average AUC of 0.88 ± 0.09. However, the
much higher standard deviations of the 5-fold CVs indicate that
these results are largely affected by the random splits of the
underlying training and test data (Figure 2b). Therefore, the
models trained with Open data are much less robust and can be
expected to generally have less prediction power. The
Combined data set shows the best results regarding average
model quality metrics (AUC of 0.76 ± 0.12, sensitivity of 0.63
± 0.12, and specificity of 0.78 ± 0.13) and simultaneously very
high robustness (i.e., low standard deviations in Figure 2b). It is
notable that only 0.7% of all models show a drop in AUC >

0.05 on left-out data, making the models trained on Combined
data well applicable on new data sets. Overall, 118 models were
generated with an average AUC > 0.8 based on the Combined
data set. As a baseline, the results were compared to a simple
Nearest Neighbor (KNN with K = 1) classification on raw,
unbalanced data. The resulting models have significantly lower
predictive power with an average AUC of 0.66 ± 0.10 (p ≪
0.001). Employing a threshold of pIC50 = 6 did not change the
model performance (0.76 ± 0.11), although the average
number of actives increased from 485 to 651.

Effect of Training Data on Model Performance. Next, we
investigated how the content of the training set, such as the
number of actives and the diversity of covered chemical space,
affects the prediction power. Interestingly, the obtained AUCs
do not correlate with the number of actives (Figures 3a,b).
Please note that most models of the Open set were trained on a
low number of actives (33% have <50 actives), indicating that
these models might be overfitted. By including the Proprietary
kinase panel, the average number of actives increased from 219
to 485 compounds. Although the average AUC values exhibit a
slight drop, the models are more robust, as evidenced by the
much lower standard deviation in the CV (cf. Figure 2b). As
expected, the higher number of active compounds (and
associated increased size of the balanced training set) has a
positive effect on the model quality. To further test whether the

Figure 4. First two principal components of PCA of compounds from the Combined data set with measurements against kinases KDR, EGFR, and
MET, respectively. Connectivity-based Morgan FPs were used as input. Besides the majority cluster, the Proprietary data (from Merck KGaA)
occupies several further distinct clusters in the chemical space.
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models derived from the Open data are overfitted, the
Proprietary data set was used for external validation. The
performance of the Open models drops significantly (average
AUC of 0.56 ± 0.06, Supporting Information, Figure S1). On
the other hand, models based on Proprietary data show
reasonable prediction results when externally tested on the
Open data (average AUC of 0.65 ± 0.13; p ≪ 0.001 compared
to Open models; Supporting Information, Figure S1). Although
there is no direct correlation between the number of active
compounds and the AUC, models with a large number of
actives (>1000) usually result into prediction models with very
good AUC values above 0.8 (Figure 3c). The large error bar of
the first bin in Figure 3c indicates that, regardless of a possibly
high AUC, reliable predictions can hardly be derived from
models with very small training sets.
Analysis of Chemical Space of Data Sets Explains

Importance of Proprietary Data Set. To explain the positive
effect of the Proprietary data set on model robustness, a PCA
was performed on the connectivity-based part of the Morgan
FPs of compounds measured against the kinases KDR, EGFR,
and MET (Figure 4), respectively. These kinases show drastic
differences in AUC when trained on Proprietary and evaluated
on Open data and vice versa (p ≪ 0.001); furthermore, these
three kinases provide very large data sets with overall 10,072,
9,307, and 7,636 measurements, respectively. Distinct clusters
are observable in the chemical space of the PC1−PC2 planes.
Whereas the majority of the compounds in the Proprietary,
Tang, and PKIS data accumulate to one big cluster, the
Proprietary panel additionally occupies several further distinct
clusters. Thus, the Proprietary data set has a larger chemical
diversity in the training and test sets. Resulting models
accordingly have a higher chance of being applicable in diverse
drug discovery efforts. This indicates that aside from model
quality metrics, such as AUC, also the chemical space of the
training sets and real test sets should always be assessed.
Interestingly, the compounds from the public domain (Tang,
PKIS, and ChEMBL) tested against EGFR also show a notable
diversity from the main cluster, which might explain the higher
AUC of the EGFR model based on Open data compared to the
KDR and MET models (0.65 vs 0.56 and 0.58, respectively).
Analyzing the principal component space to higher dimensions
up to PC20 further underlines the chemical diversity in the
Proprietary panel (data not shown). Worth mentioning is that
on average 97% of the compounds are DFG-in binders
according to a classification scheme described by Zhao et
al.48 Considering only “DFG-in” binders did not change the
prediction performance (both AUC: 0.76 ± 0.12), while only
92 models with AUC ≥ 0.7 could be obtained for “DFG-out”
binders. This indicates that DFG-out binders can safely be
included when training DFG-in models and that not enough
data is in general available to derive dedicated DFG-out models.
High-Quality Models Are Evenly Distributed Across the

Kinome. Although a strong traditional research bias shifts
kinase drug discovery toward already validated drug targets,
such as the tyrosine kinases (TK group),49,50 driver mutations
in kinases in all kinase groups are present in a variety of cancer
types.49 Many of these yet untargeted kinases show high
predicted druggability scores and might, thus, provide
opportunities for novel, competition-free drug discovery
projects.32 Encouragingly, HQ models, i.e., models with an
AUC of ≥0.8, are evenly distributed across the entire kinome
(Figure 5).

Table 2 summarizes the 35 best models (AUC ≥ 0.9). Beside
AUC, sensitivity and specificity are generally also very high in
these models, making them excellent tools for the identification
of truly active and inactive compounds. As indicated by the
high AUC and specificity on external data sets, the models are
well applicable on external data sets for VS for new inhibitors of
these kinases. Exceptions might be the models obtained for
kinases DCAMKL1, DYRK4, MNK1, NEK9, and TGFbR2, as
they are derived from a very small number of active compounds
(Table 2).

Random Forest Generally Outperforms Alternative
Machine Learning Methods. Model generation was repeated
using two NB classifiers (Gaussian and Bernoulli NB), a K-
Nearest Neighbor (KNN; with default settings, K = 5) and a
Deep Neural Network (DNN) predictor, again employing
randomly undersampled data sets. Each method was tested on
the Combined data set (using the same data preparation as
before). Comparison of AUC and specificity, extracted from the
5-fold CV and external data sets, indicates that the RF models
are generally superior to the alternative ML methods in our
analyses (Figure 6). Only DNN yields similarly good results
with an average AUC of 0.76 ± 0.12. Interestingly, the DNN
and KNN classifiers achieve higher sensitivity than the RF
models, which, however, comes with a decline in specificity,
particularly in the case of KNN.

Figure 5. Kinome map of the performance of activity prediction
models by Random Forest. Kinases are colored based on their AUC
value. High-quality models (AUC ≥ 0.8) are scattered well across the
kinome tree and cover almost all kinase families. FDA approved kinase
inhibitor targets are depicted as red triangles. Figure was created with
KinMap (http://kinhub.org/kinmap).
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Table 2. Quality Measures of Activity Prediction Modelsa with an AUC ≥ 0.9 of the 5-Fold CV

group kinase av AUCb av sensb av specb av AUC extb av spec extb no. actives

AGC PKCa 0.93 ± 0.01 0.85 ± 0.03 0.86 ± 0.01 0.92 ± 0.01 0.84 ± 0.02 293
PKCb 0.97 ± 0.02 0.87 ± 0.03 0.94 ± 0.06 0.97 ± 0.02 0.95 ± 0.00 195
PKCg 0.91 ± 0.03 0.79 ± 0.06 0.93 ± 0.05 0.91 ± 0.02 0.92 ± 0.01 98
ROCK2 0.93 ± 0.01 0.85 ± 0.02 0.90 ± 0.03 0.93 ± 0.01 0.90 ± 0.01 1169

CAMK CHK1 0.92 ± 0.01 0.80 ± 0.02 0.96 ± 0.01 0.91 ± 0.01 0.94 ± 0.01 1482
DCAMKL1 1.00 ± 0.00 0.40 ± 0.49 0.80 ± 0.40 0.88 ± 0.13 0.92 ± 0.06 8
MNK1 0.92 ± 0.06 0.78 ± 0.22 0.85 ± 0.20 0.92 ± 0.08 0.93 ± 0.03 21
PIM3 0.91 ± 0.03 0.74 ± 0.05 0.94 ± 0.04 0.91 ± 0.03 0.95 ± 0.01 372

CMGC DYRK1A 0.91 ± 0.03 0.76 ± 0.06 0.90 ± 0.02 0.89 ± 0.03 0.86 ± 0.01 360
DYRK1B 0.90 ± 0.03 0.69 ± 0.08 0.89 ± 0.04 0.88 ± 0.02 0.86 ± 0.02 183
DYRK4 0.93 ± 0.09 0.85 ± 0.20 0.80 ± 0.27 0.88 ± 0.14 0.59 ± 0.22 18
GSK3B 0.94 ± 0.01 0.82 ± 0.03 0.93 ± 0.01 0.94 ± 0.01 0.91 ± 0.01 1266
JNK1 0.92 ± 0.01 0.81 ± 0.02 0.94 ± 0.02 0.92 ± 0.01 0.94 ± 0.00 648
p38a 0.92 ± 0.01 0.84 ± 0.01 0.92 ± 0.01 0.92 ± 0.00 0.92 ± 0.01 2580

TK DDR2 0.90 ± 0.03 0.70 ± 0.08 0.94 ± 0.03 0.89 ± 0.03 0.93 ± 0.01 273
EGFR 0.96 ± 0.01 0.89 ± 0.02 0.92 ± 0.01 0.96 ± 0.01 0.92 ± 0.00 1905
ErbB2 0.96 ± 0.01 0.92 ± 0.03 0.90 ± 0.01 0.96 ± 0.01 0.90 ± 0.01 765
JAK1 0.95 ± 0.02 0.89 ± 0.02 0.92 ± 0.04 0.95 ± 0.02 0.90 ± 0.02 308
KIT 0.94 ± 0.02 0.83 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 724
TNK1 0.91 ± 0.10 0.80 ± 0.24 0.97 ± 0.07 0.88 ± 0.09 0.84 ± 0.08 32
TYK2 0.93 ± 0.02 0.80 ± 0.04 0.93 ± 0.04 0.93 ± 0.02 0.93 ± 0.01 190

TKL BRAF 0.97 ± 0.01 0.91 ± 0.04 0.91 ± 0.04 0.98 ± 0.01 0.92 ± 0.02 378
LRRK2 0.93 ± 0.01 0.84 ± 0.06 0.89 ± 0.05 0.93 ± 0.02 0.87 ± 0.01 297
TGFbR2 0.91 ± 0.11 1.00 ± 0.00 0.80 ± 0.16 0.94 ± 0.06 0.72 ± 0.10 15

STE COT 0.91 ± 0.05 0.92 ± 0.05 0.78 ± 0.18 0.90 ± 0.03 0.78 ± 0.18 113
PAK1 0.90 ± 0.06 0.64 ± 0.23 0.96 ± 0.08 0.91 ± 0.04 0.96 ± 0.02 25

other AurA 0.92 ± 0.02 0.83 ± 0.02 0.88 ± 0.04 0.92 ± 0.01 0.88 ± 0.02 1062
AurB 0.93 ± 0.02 0.82 ± 0.03 0.89 ± 0.01 0.93 ± 0.01 0.89 ± 0.01 973
AurC 0.90 ± 0.02 0.73 ± 0.04 0.90 ± 0.01 0.89 ± 0.02 0.89 ± 0.01 680
CDC7 0.95 ± 0.02 0.87 ± 0.05 0.91 ± 0.02 0.95 ± 0.01 0.91 ± 0.01 353
NEK9 1.00 ± 0.00 0.70 ± 0.40 0.90 ± 0.20 0.95 ± 0.08 0.95 ± 0.02 10
PLK1 0.93 ± 0.03 0.81 ± 0.03 0.97 ± 0.01 0.93 ± 0.02 0.97 ± 0.01 358
PLK3 0.91 ± 0.03 0.75 ± 0.06 0.92 ± 0.04 0.91 ± 0.04 0.95 ± 0.01 125
TTK 0.99 ± 0.00 0.96 ± 0.02 0.94 ± 0.03 0.98 ± 0.00 0.94 ± 0.01 213
Wee1 0.98 ± 0.01 0.92 ± 0.06 0.94 ± 0.04 0.98 ± 0.01 0.94 ± 0.04 201

aObtained via Random Forest. bAbbreviations: av, average; sens, sensitivity; spec, specificity; ext, external.

Figure 6. Boxplots of model quality measurements for Random Forest and alternative Machine Learning approaches. The plotted results are based
on the Combined data set.
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The AUC values of the external test sets of each classifier are
highly correlated (Supporting Information, Figure S2).
However, this does not necessarily mean that an alternative
method cannot perform better than RF on a single kinase
(Figure 7). Notably, the alternative ML methods only

contribute one HQ models with an AUC ≥ 0.9, which is not
also obtained with RF, although the majority of these models
are commonly found by at least two of the four approaches.
The unique HQ model was obtained by the DNN approach.
On the other hand, the RF method is able to create seven
unique HQ activity prediction models. Lowering the HQ cutoff
to an AUC of 0.8 further confirms the superiority of RF and
DNN over the other methods. While RF generates eight unique
HQ models, seven additional kinases get HQ models using
DNN (Figure 7 and Table 3). In many cases, however, the

ΔAUC between DNN and RF is very small or the models were
derived from only a small number of active compounds (Table
3). Accordingly, in this study, RF was still preferred over DNN,
mainly due to lower computational cost of training and the
access to feature importance information, which increases
model interpretability.
Although RF generally outperforms the other classifiers, it

can still be useful to assess and compare the performance of
alternative methods. For instance, HQ models can be
generated, which might not be accessible by solely using RF.
Considering multiple independent classifiers might therefore
boost the probability of success in a ligand-based VS
endeavor.51

The Impact of the Balancing Technique. Besides random
undersampling, various other techniques for data balancing
have been explored (cf. Supporting Information for detailed
information). In summary, two fundamentally different
approaches for data balancing, undersampling and over-
sampling, might serve different purposes. Whereas under-
sampled models might be useful to capture a large number of
potentially active molecules (high sensitivity), oversampling
seems to be more applicable for detecting true negative
compounds (high specificity). The balancing methods which
yielded the best results were random undersampling, PCA-
Centroids undersampling, and random oversampling (Support-
ing Information, Figures S3 and S4).

Bioactivity Fingerprints. Compound profiling data contain
valuable information on the tested compounds on a variety of
targets. Comparing compounds on the basis of their biological
profiles instead of chemical similarity can provide comple-
mentary information and be a valuable source for hit
expansion,52 repurposing projects,53 designing screening
subsets54 as well as to identify targets of phenotypic
screenings.55 Here, bioactivity FPs were generated based our
Proprietary panel, where each bit was set to one if the pIC50 was
≥6.3 and to zero otherwise. To determine the 20 kinases with
the largest information content for such predictions, we trained
an RF regressor to predict the selectivity score S based on the
entire experimental bioactivity profile of the Proprietary data
set. S is defined as the number of kinases inhibited by the
compound divided by the number of all tested kinases:56

=S
no. inhibited kinases

no. kinasesC (1)

Thus, the lower the value of S, the higher the selectivity of a
given compound C. Importantly, the RF algorithm does not
only predict S but also provides valuable information about the
feature importance, which is a list of kinases in the present case.
The identified kinases are spread across the entire kinome and
include KDR, RSK2, AMPKa1, MARK2, SIK, IRAK1, CHK2,
FGFR2, MELK, HIPK2, JAK2, FGFR3, MARK1, MSK1,
CDK7, FGR, AMPKa2, FLT1, CDK5, and HIPK1. Next,
bioactivity FPs of these 20 kinases were used for bioactivity
prediction, resulting in good model performances with an
average AUC of 0.79 ± 0.07 (Figure 8); thus, these models
outperform those obtained based on chemical information.
Increasing the number of kinases in the bioactivity fingerprint
(FP length) further improves prediction results (average AUC
for 30 kinases, 0.81 ± 0.07; for 40 kinases, 0.82 ± 0.07). Also,
concatenating bioactivity and chemical FPs to one combined
input results in excellent activity prediction models for a larger
number of kinases (154 models with AUC ≥ 0.8) (Figure 8).
The main improvement over using plain Morgan FPs is an
increased average sensitivity. Thus, by determining the activity
of a small panel of only 20 kinases in combination with
chemical FPs, a bioactivity panel can be meaningfully extended
to a large number of kinases using an RF classifier. It should be
noted that the bioactivity part of the combined FP was
processed by a modified implementation of Google’s Winner-
Takes-All hashing algorithm57 to adjust the FP length of 20
bioactivity values to the length of the Morgan FP. This step is
required to avoid highly imbalanced FP lengths, which lead to
biased selection of features in the individual decision trees.

Selectivity Score and Identification of Off-Targets. So
far we have investigated the performance quality when it comes
to predicting the activity of compounds against a particular

Figure 7. Overlap among various Machine Learning methods of high-
quality models with an AUC of ≥0.9 and ≥0.8, respectively.

Table 3. High-Quality Models Generated by Deep Neural
Networks But Not by Random Forest

AUC AUC

kinase
Deep Neural
Networks

Random
Forest ΔAUC

no.
activesa

AUC ≥
0.8

BRD2 0.85 ± 0.20 0.15 ± 0.30 0.70 7

CDK8 0.83 ± 0.07 0.79 ± 0.05 0.04 101
MLK2 0.81 ± 0.14 0.76 ± 0.13 0.05 20
PDK1 0.80 ± 0.02 0.79 ± 0.02 0.01 501
PHKg1 0.95 ± 0.10 0.75 ± 0.39 0.20 7
PKACb 0.80 ± 0.40 0.60 ± 0.49 0.20 5
PKR 0.80 ± 0.25 0.70 ± 0.29 0.10 8

AUC ≥
0.9

PHKg1 0.95 ± 0.10 0.75 ± 0.39 0.20 7

aNumber of active compounds in data set.
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kinase. It is equally important to have a reliable estimation of
the selectivity profile. The latter can be quantified by the
selectivity score S (cf. above). Employing the 118 HQ-RF
models (based on Morgan FPs of the Combined set) with AUC
≥ 0.8, we reconstructed a complete panel of predicted activity
probabilities for the compounds of the Proprietary data (N =
4,712) from the respective test sets of a 10-fold cross validation.
On the basis of the experimental pIC50 values (binarized at
6.3), S was calculated for each compound. Compounds with an
S-value of 0 were removed due to inactivity across the entire
kinase panel. From the 118 HQ models, 68 kinases were in the

Proprietary panel, which consists of an almost complete matrix
of bioactivity values. Hence, the calculated selectivity score Scalc
is the average of the binary classification results (default
probability cutoff: 0.5) obtained by these 68 kinase models. The
calculated Scalc shows no predictive power of S with an Rext

2 < 0.
Similarly, an RF regressor trained on the predicted panel of 68
kinases resulted only in an average Rext

2 of 0.17. However, an RF
regressor trained on a bioactivity FP of 20 selected kinases (cf.
above) resulted in very accurate selectivity regression model
with an average Rext

2 of 0.85 ± 0.01 (Figure 9a). Notably, this is
not trivial because the plain average of the 20 experimental

Figure 8. Boxplots of model quality measurements for Random Forest using chemical and/or bioactivity fingerprints based on Proprietary data.
Adding bioactivity FPs mostly results in improved sensitivity. A concatenation of both FPs yields excellent performance in activity prediction. Plotted
are results obtained from 5-fold CV.

Figure 9. (a) Selectivity prediction based on bioactivity fingerprints obtained by Random Forest regression achieves an Rext
2 of 0.85 ± 0.01. (b) Plain

averaging of experimentally obtained bioactivity fingerprints (Scalc) does not correlate with the experimental S. The calculation both in (a) and (b)
are done based on 20 kinases.

Table 4. Sensitivity and Specificity of (Off-)Target Predictiona

average median

fingerprint no. kinases sensitivity specificity sensitivity specificity

Morgan FP 68 0.40 ± 0.39 0.90 ± 0.10 0.33 ± 0.33 0.93 ± 0.05
bioactivity FP 97 0.48 ± 0.41 0.72 ± 0.33 0.50 ± 0.50 0.86 ± 0.14
combined FP 154 0.54 ± 0.41 0.69 ± 0.36 0.60 ± 0.40 0.85 ± 0.15
bioactivity FP 68b 0.47 ± 0.42 0.72 ± 0.29 0.50 ± 0.50 0.83 ± 0.14
combined FP 68b 0.61 ± 0.41 0.70 ± 0.31 0.75 ± 0.25 0.85 ± 0.12

aConsidered were only prediction models with an AUC ≥ 0.8 and which were in the Proprietary panel. bFor comparison of the fingerprints, the
bioactivity and combined FPs were also evaluated on the 68 HQ models based on Morgan FPs.
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activity values does not yield an accurate estimate of the overall
selectivity (Rext

2 < 0, Figure 9b).
Finally, the predicted panel was evaluated for correct kinase

classifications per compound to assess the predictive power of
our models for off-target identification and compound
repurposing. Although the 68 HQ models do not allow a
reliable estimation of selectivity scores (cf. above), they can in
fact be used to reliably identify off-targets (Table 4). On
average, 40% of all compound targets are correctly detected
while only 10% false positive targets are among the predictions.
Using bioactivity FPs for off-target prediction further increases
the sensitivity of the predicted off-targets while the specificity
drops slightly. Again, the best results are obtained with a
combination of Morgan and bioactivity FPs. These findings
strongly emphasize the applicability of the presented approach
for unprecedented virtual kinase profiling at a large scale.

■ DISCUSSION AND CONCLUSION
Various methods for data set preparation and Machine
Learning (ML) were employed to generate activity prediction
models for over 280 kinases. The most important findings
which improved the model quality were (1) the combination of
open data with the proprietary data set from Merck KGaA, (2)
choosing the RF classifier over alternative ML methods, and
(3) balancing the data sets using random undersampling. An
average ROC AUC ≥ 0.7 was achieved for ∼200 kinases, of
which 118 prediction models had an AUC ≥ 0.8. Tests on left-
out data suggest a reliable applicability in virtual screening
projects. Moreover, the models also enable reliable virtual
kinase profiling and, thus, the detection of potential off-targets
for compounds of interest.
The results are well in line with findings reported in recent

literature, especially regarding the bias of the used training data.
For instance, Bora et al. trained RF classifiers for 107 kinases, of
which 100 achieved AUC values >0.9.58 However, external

validation of these models on the Metz and Anastassiadis data
sets5,9 strongly indicated an overfitting, as also experienced in
our models trained on the Open data set only. Namely,
although in our case 113 models with average AUC values >0.9
were derived based on Open data, external testing on the
Proprietary panel resulted in rather low predictive power. On
the other hand, as seen in model evaluation on left-out data
(Figure 2a) and the low standard deviations in cross-validations
(Figure 2b), our kinase activity models based on the Combined
data do not show a strong dependency on the respective
random training/test set split and are, thus, applicable on a
larger chemical space.
For further external validation, we tested our models on 43

compounds, which were previously also used by Schürer and
Muskal.22 These compounds were not present in our training
set. Because the underlying assay for these compounds
(KINOMEScan56,59) was measured at a high concentration of
10 μM, a high cutoff of 95% inhibition was used for binary
classification of these external test cases (this roughly
corresponds to a pIC50 of 6.3, the cutoff used for model
training). Without the necessity for adjusting the RF classifier
probability cutoff for binary classification (default: 0.5), only
three compounds were wrongly classified to be active and one
compound wrongly classified as inactive (marked in gray and
red, respectively; Figure 10a). Although the latter shows
inhibition well above 95%, the predicted activity probability is
slightly below the 0.5 cutoff. Encouragingly, a Cohen’s κ value
of 0.65 indicates a high predictive power of the tested models.60

Because it is very difficult to derive an accurate estimation of
the pIC50 from a single point measurement at activities above
80%, a second cutoff was set to 80% inhibition. In this case,
only two false negatives appear, increasing Cohen’s κ value to
0.79. To further minimize the error that might result from
inhibition data conversion, the binary classification was
evaluated using a varying threshold for experimental activity

Figure 10. (a) Classification results of external data using the RF classifier. With a default probability cutoff of 0.5, only four wrong classifications at a
95% inhibition cutoff and two wrong classifications at an 80% inhibition cutoff appear for the RF classifier. Cohen’s κ values of 0.65 and 0.79,
respectively, suggest a very high predictive power. (b) ROC analysis of binary classification of the external data with varying experimental inhibition
cutoff. An AUC of 0.85 confirms the successful application of the models on the external test set.
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in a ROC analysis (Figure 10b). A very high AUC of 0.85 and a
good early enrichment of true positives suggest that the
classifiers can be applied successfully on the external data set
regardless of the chosen cutoff for experimental activity.
Regarding the data balancing, random undersampling

produced the models with the best performance, followed by
the PCA-Centroids undersampling, which showed a higher
sensitivity at the cost of a decline in specificity. A great
improvement in the classification performance could be
achieved by adding experimental activity values of a small
kinase subset (20 kinases) to the chemical FP, yielding HQ
models with an AUC ≥ 0.8 for 154 kinases of the 220 kinases in
the Proprietary panel. This strongly suggests that bioactivity FPs
from only a small number of kinases (in combination with
Morgan FPs) contain enough information to accurately
propagate bioactivity values to a kinase panel almost 10 times
the size of the experimental subset. Furthermore, the
combination of RF classification and bioactivity FPs of only
20 kinases allowed a reliable prediction of global compound
selectivity S. Importantly, this cannot necessarily be derived
directly from the raw experimental activity values.
In line with other studies, the RF classifier outperformed the

Naive Bayes methods,21 while the Deep Learning approach also
generated models with excellent predictive power. It might be
possible that a more extensive parameter study and the
expansion of the Neural Network layers would further improve
the performance of the Deep Learning activity prediction.61

Notably, the Deep Learning approach also benefited from
balanced training sets (data not shown).
Overall, the evaluation results of our prediction models

strongly indicate a positive impact on future screening projects
and off-target identification tasks. The former can be used to
assess for a particular kinase of interest which compounds
should be ordered for experimental verification (virtual
screening) or to prioritize already investigated compounds
from previous projects on new kinase targets (repurposing). On
the other hand, the identification of off-targets is a prerequisite
for the rational design of selective kinase inhibitors.62 In
ongoing research, it will be assessed how the addition of
proteogenomic information and the combined usage of RF
classifiers with Deep Learning networks can further improve
the predictive power of the activity prediction models.
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