Research on (Rifapentine)-NAT2-headache


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2014Effect of polymorphisms on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers.Hum PsychopharmacolTo identify genetic markers capable of predicting the pharmacokinetics, pharmacodynamics, and adverse effects of risperidone.Genotyping was performed in 70 healthy volunteers receiving a single 1mg oral dose of risperidone. Risperidone and hydroxyrisperidone plasma levels were measured using high-performance liquid chromatography combined with tandem mass spectrometry.Prolactin concentration was quantified by direct chemiluminescence.Poor CYP2D6 metabolizers showed higher risperidone Cmax, area under the curve (AUC), and t1/2, as well as lower clearance. They also showed lower Cmax and AUC and higher t1/2 for hydroxyrisperidone. Furthermore, individuals with a mutant VKORC1 genotype had a lower risperidone AUC and t1/2 and higher clearance. The hydroxyrisperidone AUC was lower in individuals with the COMT mutant genotype. Risperidone increased prolactin levels (iAUC and iCmax), which were higher in women than in men. The most frequent reactions were somnolence (47.1%), headache (21.4%), and dizziness (17.1%). Women had neurological effects and headache more frequently than men. The incidence of headache was associated with polymorphisms in the AGTR1 and NAT2; neurological effects were associated with CYP2C19.Differences in the pharmacokinetics of risperidone are due to polymorphisms in CYP2D6, COMT, and VKORC1. Differences in adverse reactions can be explained by gender and polymorphisms in CYP2C19, AGTR1, and NAT2.
2011Pharmacokinetics and tolerability of etamicastat following single and repeated administration in elderly versus young healthy male subjects: an open-label, single-center, parallel-group study.Clin TherEtamicastat is a new dopamine-β-hydroxylase (DβH) inhibitor currently in clinical development for the treatment of hypertension and heart failure.To evaluate the pharmacokinetics and tolerability of etamicastat after single and repeated administration in elderly subjects (aged ≥65 years) relative to young adult healthy controls (aged 18-45 years).This was a single-center, open-label, parallel-group study in young male adults (n = 13; mean [SD] age 32.6 [16.4] years; range, 18-44 years; weight 79.0 [16.4] kg; systolic blood pressure 117 [12] mm Hg and diastolic blood pressure 61 [7] mm Hg) and 12 elderly male volunteers (n = 12; age 69.3 [3.3] years; weight 69.2 [9.5] kg; systolic blood pressure 115 [13] mm Hg and diastolic blood pressure 64 [4] mm Hg), conducted in 2 consecutive periods. All subjects were white, except for 1 black elderly subject. In Phase A, subjects received a single dose of 100 mg etamicastat. In Phase B, subjects received 100 mg/d etamicastat for 7 days. The pharmacokinetic parameters of etamicastat and its acetylated metabolite BIA 5-961 were calculated after the single dose of Phase A and the last dose of Phase B. Subjects' N-acetyltransferase type 1 (NAT1) and type 2 (NAT2) genotyping was performed and acetylator status inferred.After a single dose of etamicastat 100 mg, mean (SD) plasma C(max) and plasma AUC(0-∞) were, respectively, 1.3 (0.5) ng/mL/kg and 12.4 (7.8) ng × h/mL/kg in elderly subjects, and 1.3 (0.4) ng/mL/kg and 10.0 (6.6) ng × h/mL/kg in young subjects. At steady-state, C(max) and AUC(0-24) were 1.8 (0.5) ng/mL/kg and 15.0 (6.4) ng × h/mL/kg in elderly subjects, and 1.5 (0.7) ng/mL/kg and 12.5 (6.5) ng × h/mL/kg in young subjects. Elderly/young geometric mean ratios and 90% CIs were, respectively, 0.944 (0.788-1.131) and 1.164 (0.730-1.855) for etamicastat C(max) and AUC(0-∞) after a single dose, and 1.225 (0.960-1.563) and 1.171 (0.850-1.612) for etamicastat C(max) and AUC(0-24) at steady state. Etamicastat steady-state plasma concentrations were reached after 3 to 4 days of dosing. The mean etamicastat accumulation ratio was 1.7 in both age groups. Following etamicastat single dose, mean (SD) BIA 5-961 C(max) and AUC(0-∞) were, respectively, 3.5 (2.1) ng/mL/kg and 28.4 (14.7) ng × h/mL/kg in elderly subjects, and 2.5 (1.5) ng/mL/kg and 16.5 (9.7) in young subjects. At steady state, BIA 5-961, C(max), and AUC(0-24) were 4.3 (2.6) ng/mL/kg and 34.6 (17.6) ng × h/mL/kg in elderly subjects, and 3.1 (2.0) ng/mL/kg and 22.2 (11.8) ng × h/mL/kg in young subjects. Large interindividual variability dependent on the NAT2 acetylator status was found in the pharmacokinetic parameters of etamicastat and BIA 5-961. Systemic exposure to etamicastat was higher and systemic exposure to BIA 5-961 was lower in NAT2 poor metabolizers compared with rapid metabolizers. No effect on heart rate and blood pressure was found in the young group. In the elderly, a decrease of supine blood pressure was observed. Postural changes in blood pressure were unaffected. Four adverse events (AEs) were reported by each group: nasopharyngeal pain, sciatica, asthenia, and back pain the elderly group, and headache (2 cases), insomnia, and myopericarditis by the young group. Myopericarditis led to study discontinuation for this subject and was considered to be of probable viral etiology. All other AEs were mild to moderate in intensity.The pharmacokinetic profile of etamicastat was not significantly different in these small groups of healthy young versus elderly adult male volunteers.