Research on (Isoniazid)-TLR4-shock


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2021TLR4 and TNFR1 blockade dampen M1 macrophage activation and shifts them towards an M2 phenotype.Immunol ResThe Gram-negative bacterial lipopolysaccharide (LPS)-induced sepsis has emerged as major concern worldwide due to the pressing need to develop its effective treatment strategies which is not available yet. LPS is the major causative agent in the pathogenesis of septic shock. In macrophages, LPS interacts with cell surface TLR4 leading to reactive oxygen species (ROS), TNF-α, IL-1β production, oxidative stress and markedly activated the MAPKs and NF-kB pathway. Post cell isolation, the macrophages were subjected to administration with neutralizing antibodies to TLR4 and TNFR1 either alone or in combination prior to LPS challenge. Subsequently, we performed flow cytometric analysis along with Western blots, reactive oxygen species production, and TNF-α, IL-1β release. Outcomes suggested that the dual blockade of TLR4 and TNFR1 was indeed beneficial in shifting the LPS-induced M1 polarization towards M2. Both TLR4 and TNFR1 exhibited dependency during LPS stimulation. Furthermore, the switch towards the M2 phenotype might be responsible for the decreased levels of TNF-α, IL-1β, NO, and superoxide anion and the simultaneous elevation in the activity level of anti-oxidant enzymes like SOD, CAT (catalase), and GSH content in the isolated peritoneal macrophages. Simultaneous blocking of both TLR4 and TNFR1 also showed reduced expression of NF-kB, JNK, and COX-2 by promoting TNFR2-mediated TNF-α signaling. The increased arginase activity further confirmed the polarization towards M2. Thus it may be inferred that dual blockade of TLR4 and TNFR1 might be an alternative therapeutic approach for regulating of sepsis in future.
2021Targeting the extracellular HSP90 co-chaperone Morgana inhibits cancer cell migration and promotes anti-cancer immunity.Cancer ResHeat shock protein 90 (HSP90) is secreted by cancer cells into the extracellular milieu, where it exerts pro-tumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a monoclonal antibody targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, this data defines Morgana as a new player in the HSP90 extracellular interactome and suggests that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress anti-tumor immunity.
2021Evaluation of heat shock protein 70 and toll-like receptor 4 expression in gingival crevicular fluid in response to orthodontic forces.Clin Oral InvestigThe aim of this study was to assess the concentrations of heat shock protein 70 (HSP70) and toll-like receptor 4 (TLR4) during orthodontic tooth movement and to compare their levels with interleukin-1β (IL-1β), a well-known proinflammatory biomarker.This study consisted of 20 patients (8 males, 12 females; mean age 14.75 ± 2.34 years) who needed maxillary premolar extraction and segmental canine distalization. Concentrations of HSP70, TLR4, and IL-1β were examined before extraction (T1), at the 1st (T2), 4th (T3), 7th (T4), 14th (T5), and 30th (T6) days of canine retraction by enzyme-linked immunosorbent assay analysis of gingival crevicular fluid samples. Statistical analyses were performed with repeated measure ANOVA and Spearman's rank correlation coefficient analysis (p < 0.05).HSP70 increased gradually from T1 to T6 and showed significant differences between T1-T6 and T2-T6 (T1:3.28 ± 0.92 ng/ml; T2:3.72 ± 0.66 ng/ml; T6:9.35 ± 2.45 ng/ml). The lowest TLR4 concentration was at T1, peaked at T3 and remained constant afterwards with significant differences between T1-T3, T1-T4, and T1-T6 (T1:0.71 ± 0.02 pg/ml; T3:1.04 ± 0.11 pg/ml; T4:0.95 ± 0.06 pg/ml; T6:1.00 ± 0.07 pg/ml). IL-1β increased from T1 to T6 with significant differences between T1-T4, T1-T5, and T1-T6 (T1:55.71 ± 5.48 pg/ml; T4:100.11 ± 16.92 pg/ml; T5:103.71 ± 23.19 pg/ml; T6:125.12 ± 22.04 pg/ml). The increase in HSP70 and TLR4 from T2-T3 showed a significant correlation (r = 0.598; p = 0.005).The increased levels of HSP70, TLR4, and IL-1β show the contribution of these mediators to the inflammatory response from the early stages of orthodontic tooth movement.The regulation of HSP70, TLR4, and/or IL-1β secretion during orthodontic force application could provide alterations for desired optimal tooth movement.
2021Chronic heat stress delays immune system development and alters serotonin signaling in pre-weaned dairy calves.PLoS OneExposure to heat stress can alter the development and immune system function in dairy calves. Serotonin is an immunomodulatory biogenic amine that functions as a neurotransmitter and as a stress-response mediator. Our objectives were to characterize the patterns of serum serotonin concentrations and the pattern of serotonin-related genes expressed by immune cells of calves exposed to chronic heat stress or heat stress abatement during early life, and to explore whether these might relate to immune system development. Dairy calves were exposed to chronic heat stress (HS; n = 6) or heat stress abatement (cooling, CL; n = 6) across the prenatal (late gestation, last 46 d) and postnatal (from birth to weaning, 56 d) developmental windows. Blood samples were collected to harvest serum (weekly, from d 1 to 49), to isolate of circulating leukocyte mRNA (at 1, 21 and 42 d of age) and characterize immune cell populations by flow cytometry (at 21 and 47 d of age). Calves exposed to chronic heat stress pre- and postnatally had lower red blood cell counts and lower circulating serotonin, immunoglobulin G, and B-lymphocytes compared to CL calves. Circulating blood leukocyte mRNA expression of serotonin receptors -1A, -1F, -4 and -5 was greater, while heat shock protein 70 and immune-related genes (i.e., TBX21, TLR4, and TGFβ) were lower in HS relative to CL calves. Peripheral blood leukocytes from all calves secreted serotonin and interleukin-6 after in-vitro lipopolysaccharide stimulation. However, the HS calves produced more serotonin and less interleukin-6 than CL calves when activated in-vitro. Together, our data suggest that providing heat stress abatement to dairy calves across prenatal and postnatal developmental windows might modulate the serotonin synthesis pathway in ways that may benefit humoral immunity against microbial pathogens.
2021Pyruvate Kinase M2 Contributes to TLR-Mediated Inflammation and Autoimmunity by Promoting Pyk2 Activation.Front ImmunolToll-like receptors (TLRs) play critical roles in regulating the abnormal activation of the immune cells resulting in the pathogenesis of inflammation and autoimmune diseases. Pyruvate kinase M2 (PKM2), which governs the last step of glycolysis, is involved in multiple cellular processes and pathological conditions. However, little is known about the involvement of PKM2 in regulating TLR-mediated inflammation and autoimmunity. Herein, we investigated the role of PKM2 in the activation of the TLR pathways and the pathogenesis of inflammation and autoimmune diseases. The activation of TLR4, TLR7 and TLR9 pathways was found to induce the up-regulation of PKM2 expression in macrophages, dendritic cells (DCs) and B cells. The over-expression of PKM2 promotes the activation of TLR4, TLR7 and TLR9 pathways while interference with the PKM2 expression or the addition of the PKM2 inhibitor (PKM-IN) markedly inhibited the activation of TLR4, TLR7 and TLR9 pathways. Mechanistically, PKM2 augmented the activation of TLR4, TLR7 and TLR9 pathways by promoting the activation of the proline-rich tyrosine kinase 2 (Pyk2). Intriguingly, the PKM2 inhibitor PKM2-IN significantly protected the mice from the endotoxic shock mediated by the TLR4-agonist LPS. Additionally, it alleviated the progression in the TLR7-agonist imiquimod-mediated lupus mice and spontaneous lupus MRL/ mice. Moreover, PKM2 expression was highly elevated in the monocytes, DCs and B cells from systemic lupus erythematous (SLE) patients compared with those from the healthy donors. Besides, the PKM2 expression level was positively correlated with the degree of activation of these immune cells. In summary, PKM2 contributed to TLR-mediated inflammation and autoimmunity and can be a valuable target to control inflammation and autoimmunity.
2021ATP Facilitates Staphylococcal Enterotoxin O Induced Neutrophil IL-1β Secretion NLRP3 Inflammasome Dependent Pathways.Front Immunol() is an important zoonotic food-borne pathogen causing severe invasive infections, such as sepsis, pneumonia, food poisoning, toxic shock syndrome and autoimmune diseases. Staphylococcal enterotoxin O (SEO) is a new type of enterotoxins of with superantigenic and emetic activity. However, it is still unclear about SEO-induced host inflammatory response. Therefore, the mechanism of SEO-induced interleukin-1β (IL-1β) secretion in mouse neutrophils was investigated in this study. Our results showed that recombinant SEO had superantigenic activity with high level of gamma interferon (IFN-γ) production in mouse spleen cells and induced inflammatory cytokines expression including IL-1α, IL-1β, IL-6 and TNF-α in neutrophils under the action of ATP. In addition, SEO-induced IL-1β secretion was dependent on activation of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways. However, SEO-induced IL-1β secretion was abolished in the neutrophils of NLRP3 mice compared with those of wild type mice, indicating that activation of NLRP3 inflammasome mediated IL-1β secretion during neutrophils stimulation with SEO under the action of ATP. Moreover, this process of SEO+ATP-induced IL-1β secretion was dependent on potassium (K) efflux. Taken together, our study suggests that activation of TLR4/JNK/NLRP3 inflammasome signaling pathway mediate maturation and secretion of IL-1β and provides a new insight on virulence factor-induced host immune response.
2021Toll-like Receptor 4 Signaling is Critical for the Adaptive Cellular Stress Response Effects Induced by Intermittent Fasting in the Mouse Brain.NeuroscienceAmong different kinds of dietary energy restriction, intermittent fasting (IF) has been considered a dietary regimen which causes a mild stress to the organism. IF can stimulate proteins and signaling pathways related to cell stress that can culminate in the increase of the body resistance to severe stress conditions. Energy intake reduction induced by IF can induce modulation of receptors, kinases, and phosphatases, which in turn can modulate the activation of transcription factors such as NF-E2-related factor 2 (NRF2) and cAMP response element-binding (CREB) which regulate the transcription of genes related to the translation of proteins such as growth factors: brain-derived neurotrophic factor (BDNF), chaperone proteins: heat shock proteins (HSP), and so on. It has been shown that toll-like receptors (TLRs) are important molecules in innate immune response which are present not only in the periphery but also in neurons and glial cells. In central nervous system, TLRs can exert functions related to set up responses to infection, as well as influence neural progenitor cell proliferation and differentiation, being involved in cognitive parameters such as learning and memory. Little is known about the involvement of TLR4 on the beneficial effects induced by IF protocol. The present work investigated the effects of IF on memory and on the signaling mechanisms associated with NRF2 and CREB in Tlr4 knockout mice. The results suggest that TLR4 participates in the modulatory effects of IF on oxidative stress levels, on the transcription factors CREB and NRF2, and on BDNF and HSP90 expressions in hippocampus.
2021DnaK Stimulates the Production of Pentraxin 3 via TLR4-Dependent NF-κB and ERK Signaling Pathways.Int J Mol SciMicrobe-derived factors trigger innate immune responses through the production of inflammatory mediators, including pentraxin 3 (PTX3). PTX3 is a soluble pattern recognition molecule that stimulates the clearance of clinically important bacterial pathogens such as . However, the factors responsible for the production of PTX3 have not been elucidated. In this study, we found that DnaK, a homolog of heat shock protein 70, induced PTX3 production. Induction was mediated by intracellular signals transmitted through the Toll-like receptor 4 (TLR4) signaling pathway. Following receptor engagement, the stimulatory signals were relayed initially through the nuclear factor kappa B (NF-κB) signaling pathway and subsequently by extracellular signal-regulated kinases (ERK), which are mitogen-activated protein kinases. However, ERK activation was negatively controlled by NF-κB, implying the existence of negative crosstalk between the NF-κB and the ERK pathways. These data suggest that DnaK acts as a pathogen-associated molecular pattern to trigger modulation of host defense responses via production of PTX3.
2021Increased Expression of Toll-Like Receptor 4 in Skin of Dogs with Discoid Lupus Erythematous (DLE).Animals (Basel)Discoid lupus erythematous (DLE) is a common autoimmune skin disorder of dogs where keratinocytes play a pivotal role both in the innate and adaptive immune responses. As for the innate response, pattern recognition receptors (PRR), including Toll-like receptors (TLRs), can activate macrophages and immune tissue cells allowing for transmission and transduction of signals through cytokine and chemokine release to improve host defenses. In particular, TLR4 can also recognize endogenous molecules such as heat shock proteins produced during reactions to tissue damage. The aim of this study was to evaluate the expression of TLR4, a bacterial lipopolysaccharide sensor, in the skin of dogs with DLE and in normal skin to evaluate a possible involvement of this receptor in the disease pathogenesis. Skin samples of affected dogs had a diffuse and intense expression of TLR4 in the epidermis. Also, the inflammatory infiltrates were immunolabelled. The expression was significantly higher in DLE skin compared to normal skin (**** < 0.0001). In conclusion, dogs with DLE showed an altered expression of TLR4, which might play an important pathogenic role in the ongoing immunopathologic process, thus being considered a valuable therapeutic potential target for DLE.
2021A multi-herb-combined remedy to overcome hyper-inflammatory response by reprogramming transcription factor profile and shaping monocyte subsets.Pharmacol ResTraditional Chinese multi-herb-combined prescriptions usually show better performance than a single agent since a group of effective compounds interfere multiple disease-relevant targets simultaneously. Huang-Lian-Jie-Du decoction is a remedy made of four herbs that are widely used to treat oral ulcers, gingivitis, and periodontitis. However, the active ingredients and underlying mechanisms are not clear. To address these questions, we prepared a water extract solution of Huang-Lian-Jie-Du decoction (HLJDD), called it as WEH (Water Extract Solution of HLJDD), and used it to treat LPS-induced systemic inflammation in mice. We observed that WEH attenuated inflammatory responses including reducing production of cytokines, chemokines and interferons (IFNs), further attenuating emergency myelopoiesis, and preventing mice septic lethality. Upon LPS stimulation, mice pretreated with WEH increased circulating Ly6C patrolling and splenic Ly6C inflammatory monocytes. The acute myelopoiesis related transcriptional factor profile was rearranged by WEH. Mechanistically we confirmed that WEH interrupted LPS/TLR4/CD14 signaling-mediated downstream signaling pathways through its nine principal ingredients, which blocked LPS stimulated divergent signaling cascades, such as activation of NF-κB, p38 MAPK, and ERK1/2. We conclude that the old remedy blunts LPS-induced "danger" signal recognition and transduction process at multiple sites. To translate our findings into clinical applications, we refined the crude extract into a pure multicomponent drug by directly mixing these nine chemical entities, which completely reproduced the effect of protecting mice from lethal septic shock. Finally, we reduced a large number of compounds within a multi-herb water extract to seven-chemical combination that exhibited superior therapeutic efficacy compared with WEH.
2021Apoptosis signal-regulating kinase 1 (ASK1) inhibition reduces endothelial cytokine production without improving permeability after toll-like receptor 4 (TLR4) challenge.Transl ResSepsis represents a life-threatening event often mediated by the host's response to pathogens such as gram-negative organisms, which release the proinflammatory lipopolysaccharide (LPS). Within the endothelium, the mitogen-activated protein kinase (MAPK) pathway is an important driver of endothelial injury during sepsis, of which oxidant-sensitive apoptosis signal-regulating kinase 1 (ASK1) is postulated to be a critical upstream regulator. We hypothesized that ASK1 would play a key role in endothelial inflammation during bacterial challenge. Utilizing RNA sequencing data from patients and cultured human microvascular endothelial cells (HMVECs), ASK1 expression was increased in sepsis and after LPS challenge. Two ASK1 inhibitors, GS444217 and MSC2023964A, reduced cytokine production in HMVECs following LPS stimulation, but had no effect on permeability as measured by transendothelial electrical resistance and intercellular space. MAPKs are known to interact with endothelial nitric oxide synthase (eNOS) and ASK1 expression levels correlated with eNOS expression in patients with septic shock. In addition, eNOS physically interacted with ASK1, though this interaction was not altered by ASK1 inhibition, nor did inhibition alter MAPK p38 activity. Instead, among MAPKs, ASK1 inhibition only impaired LPS-induced JNK phosphorylation. The reduction in JNK activation caused by ASK1 inhibition impaired JNK-mediated cytokine production without affecting permeability. Thus, LPS triggers JNK-dependent cytokine production that requires ASK1 activation, but both its effects on permeability and activation of p38 are ASK1-independent. These data demonstrate how distinct MAPK signaling pathways regulate endothelial inflammatory outputs during acute infectious challenge.
2021BRG1 Links TLR4 Trans-Activation to LPS-Induced SREBP1a Expression and Liver Injury.Front Cell Dev BiolMultiple organ failure is one of the most severe consequences in patients with septic shock. Liver injury is frequently observed during this pathophysiological process. In the present study we investigated the contribution of Brahma related gene 1 (BRG1), a chromatin remodeling protein, to septic shock induced liver injury. When wild type (WT) and liver conditional BRG1 knockout (LKO) mice were injected with lipopolysaccharide (LPS), liver injury was appreciably attenuated in the LKO mice compared to the WT mice as evidenced by plasma ALT/AST levels, hepatic inflammation and apoptosis. Of interest, there was a down-regulation of sterol response element binding protein 1a (SREBP1a), known to promote liver injury, in the LKO livers compared to the WT livers. BRG1 did not directly bind to the SREBP1a promoter. Instead, BRG1 was recruited to the toll-like receptor 4 (TLR4) promoter and activated TLR4 transcription. Ectopic TLR4 restored SREBP1a expression in BRG1-null hepatocytes. Congruently, adenovirus carrying TLR4 or SREBP1a expression vector normalized liver injury in BRG1 LKO mice injected with LPS. Finally, a positive correlation between BRG1 and TLR4 expression was detected in human liver biopsy specimens. In conclusion, our data demonstrate that a BRG1-TLR4-SREBP1a axis that mediates LPS-induced liver injury in mice.
2021Aerobic exercise ameliorates particulate matter-induced lung injury in aging rats.Environ PollutParticulate matter 2.5 (PM) is an inflammatory-inducing factor that is considered to be related to many adverse respiratory problems, especially in the elderly. This study aimed to examine whether pre-exercise training could prevent pulmonary injury induced by urban PM in aging rats and investigate its relationship with inflammatory pathways. Male Wistar rats (aged 16 months) were randomly divided into four groups: sedentary, exercise, sedentary + PM exposure, and exercise + PM exposure. All rats in exercise-related groups were treadmill-trained for 8 weeks (65%-75% VO for 30 min every other day). Sedentary groups' rats lived freely in cages without exercise intervention. Rats in the PM-related groups were exposed to ambient PM (4 h day) for 2 weeks after an 8-week exercise intervention or sedentary treatment. Finally, all rats' pulmonary function, lung morphology, degree of inflammation, and relevant protein and mRNA transcript expression levels were examined. The results indicated that PM exposure induced lung injury in the sedentary + PM exposure group, as evidenced by the deterioration of pulmonary function, histopathological characteristics, and inflammatory changes. Aerobic exercise alleviated PM-induced airway obstruction, deterioration of pulmonary function, bronchial mucosal exfoliation, and inflammatory responses in aging rats. These effects in exercise groups were associated with the increased expression of intracellular 70 kDa heat shock protein (iHSP70) and the suppression of nuclear transcription factor-κB (NF-κB) activation, as confirmed by increased expression of inhibitor of NF-κB (IκBα) and a reduction in phospho-IKBα (p-IκBα), which is regulated by inhibiting kappa B kinase beta (IKKβ). Taken together, aerobic pre-exercise had protective effects on lung injury and reduced vulnerability to inflammation induced by PM exposure, possibly through the toll-like receptor 4 (TLR4)/NF-κB signaling pathways mediated by the extracellular-to-intracellular HSP70 ratio. Pre-exercise training may be an effective way to protect against PM-induced lung toxicity in aging individuals.
2021The role of Toll-like receptors in neurobiology of alcoholism.Biosci TrendsAlcoholism is a global socially significant problem and still remains one of the leading causes of disability and premature death. One of the main signs of the disease is the loss of cognitive control over the amount of alcohol consumed. Among the mechanisms of the development of this pathology, changes in neuroimmune mechanisms occurring in the brain during prolonged alcohol consumption and its withdrawal have recently become the focus of numerous studies. Ethanol consumption leads to the activation of neuroimmune signaling in the central nervous system through many subtypes of Toll-like receptors (TLRs), as well as release of their endogenous agonists (high-mobility group protein B1 (HMGB1), S100 protein, heat shock proteins (HSPs), and extracellular matrix degradation proteins). TLR activation triggers intracellular molecular cascades of reactions leading to increased expression of genes of the innate immune system, particularly, proinflammatory cytokines, causing further development of a persistent neuroinflammatory process in the central nervous system. This leads to death of neurons and neuroglial cells in various brain structures, primarily in those associated with the development of a pathological craving for alcohol. In addition, there is evidence that some subtypes of TLRs (TLR3, TLR4) are able to form heterodimers with neuropeptide receptors, thereby possibly playing other roles in the central nervous system, in addition to participating in the activation of the innate immune system.
2021Toll-like receptor 4 antagonist FP7 alleviates lipopolysaccharide-induced septic shock via NF-kB signaling pathway.Chem Biol Drug DesSeptic shock is the most severe complication of sepsis occurs when body has an overwhelming response to infection, making it the most prevalent cause of deaths in surgical intensive-care units. Therefore, it is urgent to understand its pathogenesis and develop new therapeutic candidate drugs for septic shock. Here, we explored the effect of FP7, an antagonist of Toll-like receptor 4 (TLR4), in the septic shock. First, we injected mice with FP7 and found that FP7 had no effect on immune cells. Then, bone marrow-derived macrophages (BMDMs) isolated from mice were pretreated with FP7 followed by lipopolysaccharide (LPS) stimulation, and FP7 specifically suppressed LPS-induced inflammatory responses in BMDMs via Nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) signaling pathway, with no effect on other TLRs-mediated inflammations. Finally, we injected mice with LPS and D-galactosamine to induce septic shock, followed by the treatment of FP7, and FP7 significantly increased survival rate, improved lung necrosis, and inhibited the secretions of proinflammatory cytokines in the mice with septic shock. Therefore, our study suggested that FP7 had a protective role in septic shock and it might serve as a promising therapeutic candidate drug to treat septic shock.
2021Toxic Shock Syndrome Toxin 1 Induces Immune Response via the Activation of NLRP3 Inflammasome.Toxins (Basel)is a Gram-positive opportunistic pathogen which causes infections in a variety of vertebrates. Virulence factors are the main pathogenesis of as a pathogen, which induce the host's innate and adaptive immune responses. Toxic shock syndrome toxin 1 (TSST-1) is one of the most important virulence factors of . However, the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) in TSST-1-induced innate immune response is still unclear. Here, purified recombinant TSST-1 (rTSST-1) was prepared and used to stimulate mouse peritoneal macrophages. The results showed that under the action of adenosine-triphosphate (ATP), rTSST-1 significantly induced interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) production in mouse macrophages and the production was dose-dependent. In addition, rTSST-1+ATP-stimulated cytokine production in macrophage depends on the activation of toll like receptor 4 (TLR4), but not TLR2 on the cells. Furthermore, the macrophages of NLRP3 mice stimulated with rTSST-1+ATP showed significantly low levels of IL-1β production compared to that of wild-type mice. These results demonstrated that TSST-1 can induce the expression of inflammatory cytokines in macrophages via the activation of the TLR4 and NLRP3 signaling pathways. Our study provides new information about the mechanism of the TSST-1-inducing host's innate immune responses.
2021Relationships between metabolic profiles and gene expression in liver and leukocytes of dairy cows in early lactation.J Dairy SciHomeorhetic mechanisms assist dairy cows in the transition from pregnancy to lactation. Less successful cows develop severe negative energy balance (NEB), placing them at risk of metabolic and infectious diseases and reduced fertility. We have previously placed multiparous Holstein Friesian cows from 4 herds into metabolic clusters, using as biomarkers measurements of plasma nonesterified fatty acids, β-hydroxybutyrate, glucose and IGF-1 collected at 14 and 35 d in milk (DIM). This study characterized the global transcriptomic profiles of liver and circulating leukocytes from the same animals to determine underlying mechanisms associated with their metabolic and immune function. Liver biopsy and whole-blood samples were collected around 14 DIM for RNA sequencing. All cows with available RNA sequencing data were placed into balanced (BAL, n = 44), intermediate (n = 44), or imbalanced (IMBAL, n = 19) metabolic cluster groups. Differential gene expression was compared between the 3 groups using ANOVA, but only the comparison between BAL and IMBAL cows is reported. Pathway analysis was undertaken using DAVID Bioinformatic Resources (https://david.ncifcrf.gov/). Milk yields did not differ between BAL and IMBAL cows but dry matter intake was less in IMBAL cows and they were in greater energy deficit at 14 DIM (-4.48 v -11.70 MJ/d for BAL and IMBAL cows). Significantly differentially expressed pathways in hepatic tissue included AMPK signaling, glucagon signaling, adipocytokine signaling, and insulin resistance. Genes involved in lipid metabolism and cholesterol transport were more highly expressed in IMBAL cows but IGF1 and IGFALS were downregulated. Leukocytes from BAL cows had greater expression of histones and genes involved in nucleosomes and cell division. Leukocyte expression of heat shock proteins increased in IMBAL cows, suggesting an unfolded protein response, and several key genes involved in immune responses to pathogens were upregulated (e.g., DEFB13, HP, OAS1Z, PTX3, and TLR4). Differentially expressed genes upregulated in IMBAL cows in both tissues included CD36, CPT1, KFL11, and PDK4, all central regulators of energy metabolism. The IMBAL cows therefore had greater difficulty maintaining glucose homeostasis and had dysregulated hepatic lipid metabolism. Their energy deficit was associated with a reduced capacity for cell division and greater evidence of stress responses in the leukocyte population, likely contributing to an increased risk of infectious disease.
2021Potentiation of NETs release is novel characteristic of TREM-1 activation and the pharmacological inhibition of TREM-1 could prevent from the deleterious consequences of NETs release in sepsis.Cell Mol ImmunolDuring sepsis, neutrophil activation induces endothelial cell (EC) dysfunction partly through neutrophil extracellular trap (NET) release. The triggering receptor expressed on myeloid cell-1 (TREM-1) is an orphan immune receptor that amplifies the inflammatory response mediated by Toll-like receptor-4 (TLR4) engagement. Although the key role of TLR4 signaling in NETosis is known, the role of TREM-1 in this process has not yet been investigated. Here, we report that TREM-1 potentiates NET release by human and murine neutrophils and is a component of the NET structure. In contrast, pharmacologic inhibition or genetic ablation of TREM-1 decreased NETosis in vitro and during experimental septic shock in vivo. Moreover, isolated NETs were able to activate ECs and impair vascular reactivity, and these deleterious effects were dampened by TREM-1 inhibition. TREM-1 may, therefore, constitute a new therapeutic target to prevent NETosis and associated endothelial dysfunction.
2021Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen.PLoS OnePantoea agglomerans is a Gram-negative facultative anaerobic bacillus causing a wide range of opportunistic infections in humans including septicemia, pneumonia, septic arthritis, wound infections and meningitis. To date, the determinants of virulence, antibiotic resistance, metabolic features conferring survival and host-associated pathogenic potential of this bacterium remain largely underexplored. In this study, we sequenced and assembled the whole-genome of P. agglomerans KM1 isolated from kimchi in South Korea. The genome contained one circular chromosome of 4,039,945 bp, 3 mega plasmids, and 2 prophages. The phage-derived genes encoded integrase, lysozyme and terminase. Six CRISPR loci were identified within the bacterial chromosome. Further in-depth analysis showed that the genome contained 13 antibiotic resistance genes conferring resistance to clinically important antibiotics such as penicillin G, bacitracin, rifampicin, vancomycin, and fosfomycin. Genes involved in adaptations to environmental stress were also identified which included factors providing resistance to osmotic lysis, oxidative stress, as well as heat and cold shock. The genomic analysis of virulence factors led to identification of a type VI secretion system, hemolysin, filamentous hemagglutinin, and genes involved in iron uptake and sequestration. Finally, the data provided here show that, the KM1 isolate exerted strong immunostimulatory properties on RAW 264.7 macrophages in vitro. Stimulated cells produced Nitric Oxide (NO) and pro-inflammatory cytokines TNF-α, IL-6 and the anti-inflammatory cytokine IL-10. The upstream signaling for production of TNF-α, IL-6, IL-10, and NO depended on TLR4 and TLR1/2. While production of TNF-α, IL-6 and NO involved solely activation of the NF-κB, IL-10 secretion was largely dependent on NF-κB and to a lesser extent on MAPK Kinases. Taken together, the analysis of the whole-genome and immunostimulatory properties provided in-depth characterization of the P. agglomerans KM1 isolate shedding a new light on determinants of virulence that drive its interactions with the environment, other microorganisms and eukaryotic hosts.
2021Babao Dan improves neurocognitive function by inhibiting inflammation in clinical minimal hepatic encephalopathy.Biomed PharmacotherInflammation has been considered a precipitating event that contributes to neurocognitive dysfunction in minimal hepatic encephalopathy (MHE). Inhibition TLR-4 related inflammation can effectively improve neurocognitive dysfunction of MHE. Our previous study showed that Babao Dan (BBD) effectively inhibited inflammation and ameliorated neurocognitive function in rats with acute hepatic encephalopathy (HE) and chronic HE. The mechanism may lie in the regulation of TLR4 signaling pathway. Therefore, this study aimed to evaluate the role of BBD in the treatment of MHE patients with cirrhosis and to elucidate the underlying mechanism by which BBD regulated TLR4 pathway to alleviate inflammation.A randomized controlled trial (n = 62) was conducted to evaluate the clinical efficacy between BBD plus lactulose (n = 31) and lactulose alone (n = 31) in MHE patients by testing neurocognitive function (NCT-A and DST), blood ammonia, liver function (ALT, AST and TBIL) and blood inflammation (IL-1β, IL-6 and TNF-α). Afterward, we detected NO, inflammatory cytokines (IL-1β, IL-6 and TNF-α) and the phosphorylation of P65, JNK, ERK as well as P38 in LPS-activated rat primary bone marrow-derived macrophages (BMDMs), peritoneal macrophages (PMs), and mouse primary BMDMs/PMs/microglia/astrocytes, to investigate the underlying mechanism of BBD inhibiting inflammation through TLR4 pathway. Also, the survival rate of mice, liver function (ALT, AST), blood inflammation (IL-1β, IL-6 and TNF-α), inflammatory cytokines (IL-1β, IL-6 and TNF-α) and histopathological changes in the liver, brain and lung were measured to assess the anti-inflammatory effect of BBD on neurocognitive function in endotoxin shock/endotoxemia mice.BBD combined with lactulose significantly ameliorated neurocognitive function by decreasing NCT-A (p<0.001) and increasing DST (p<0.001); inhibited systemic inflammation by decreasing IL-1β (p<0.001), IL-6(p<0.001) and TNF-α (p<0.001); reduced ammonia level (p = 0.005), and improved liver function by decreasing ALT(p = 0.043), AST(p = 0.003) and TBIL (p = 0.026) in MHE patients. Furthermore, BBD inhibited gene and protein expression of IL-1β, IL-6 and TNF-α as well as NO in rat primary BMDMs/PMs, and mouse primary BMDMs/PMs/microglia/astrocytes in a dose-dependent manner. BBD inhibited the activation of mouse primary BMDMs/PMs/microglia/astrocytes by regulating TLR4 pathway involving the phosphorylation of P65, JNK, ERK and P38. Also, BBD reduced the mortality of mice with endotoxin shock/endotoxemia; serum levels of ALT, AST, IL-1β, IL-6 and TNF-α; gene expression of IL-1β, IL-6 and TNF-α in the liver, brain and lung, and tissue damage in the liver and lung.Our study provided for the first time clinical and experimental evidence supporting the use of BBD in MHE, and revealed that BBD could play a crucial role in targeting and regulating TLR4 inflammatory pathway to improve neurocognitive function in MHE patients.
2021Diacerein protects rats with liver ischemia/reperfusion damage: Down-regulation of TLR4/ NFκ-B signaling pathway.Biomed PharmacotherLiver ischemia-reperfusion (I/R) injury is an inescapable problem. Diacerein, a chondro-protective drug, has antioxidant and anti-inflammatory effects. Its effect on liver I/R injury has not yet been fully clarified. Therefore, the current study aimed to detect its hepatic protective effect with the explanation of possible underlying mechanisms.Adult male albino rats were assigned to 4 groups: sham group, diacerein pretreated sham group, I/R non-treated group, and I/R diacerein pretreated group. Serum liver enzymes, hepatic tissue oxidative stress parameters, inflammatory biomarkers mainly Toll-like receptors-4 (TLR4), and liver fatty acid binding protein (L-FABP) levels were determined. Histopathological examination of liver tissues and immunohistochemical studies of heat shock protein 70, nuclear factor-kappa B, and Cluster of Differentiation 68 were also done.Diacerein pretreatment has the ability to restore the hepatic I/R damaging effect, proved by the reduction of serum liver enzymes, the decrease of the oxidative stress and hepatic inflammation via down-regulation of TLR4/ NFκ-B signaling pathway together with the restoration of L-FABP level and improvement of the histopathological and immunohistochemical study findings in the hepatic tissue.These results suggested the hepatoprotective effect of diacerein relies on its antioxidant and anti-inflammatory effects reducing TLR4/ NFκ-B signaling pathway.
2021Heat Shock Protein 70 Is Associated With Cardioversion Outcome and Recurrence of Symptomatic Recent Onset Atrial Fibrillation in Hypertensive Patients.J Cardiovasc PharmacolAccumulating evidence indicates that heat shock proteins (HSPs) may represent a suitable biomarker to predict atrial fibrillation (AF). We investigated the relation of circulating serum HSP70 (sHSP70) with inflammatory cytokines and recurrence of symptomatic recent onset AF (ROAF). We enrolled 90 patients with ROAF (the duration from onset of symptoms ≤24 hours) and 30 controls. Patients received amiodarone for cardioversion and rhythm control. The association of serum HSP70, serum interleukin-2 (sIL-2), and serum interleukin-4 (sIL-4) with the presence of cardioversion and AF recurrence within a year was investigated. Toll-like receptor 4 (TLR4) signaling dependence for IL-2 and IL-4 induction in response to stimulation with HSP70 was tested in rat aortic vascular smooth muscle cell cultures. Patients had higher sHSP70 and sIL-2 and lower sIL-4 compared with controls. Serum HSP70 was independently associated with ROAF (P = 0.005) and correlated with sIL-2 (r = 0.494, P < 0.001) and sIL-4 (r = -0.550, P < 0.001). By 48 hours, 71 of the 90 patients were cardioverted, with noncardioverted patients having higher sHSP70 and sIL-2 and lower sIL-4, which were the only independent factors associated with cardioversion. AF recurred in 38 of the 71 cardioverted patients in 1 year. A cutoff value of sHSP70 ≥0.65 ng/mL and sIL-2 ≥0.21 pg/mL was the only independent factor associated with AF recurrence (hazard ratio: 3.311, 95% confidence interval: 1.503-7.293, P = 0.003 and hazard ratio: 3.144, 95% confidence interval: 1.341-7.374, P = 0.008, respectively). The exposure of smooth muscle cell to HSP70 in vitro increased the expression of IL-2 (5×) and IL-4 (1.5×) through TLR4-dependent and receptor-independent mechanisms. In conclusion, sHSP70 and sIL-2 might constitute a prognostic tool for determining the cardioversion and recurrence likelihood in ROAF.
2020HSP70-Homolog DnaK of Increases the Production of IL-27 through Expression of via TLR4-Dependent NF-κB and TLR4-Independent Akt Signaling.Int J Mol SciIL-27, a heterodimeric cytokine composed of the p28 subunit and Epstein-Barr virus-induced gene 3 (EBI3), acts as a potent immunosuppressant and thus limits pathogenic inflammatory responses. IL-27 is upregulated upon infection in septic mice, increasing susceptibility to the infection and decreasing clearance of the pathogen. However, it remains unclear which -derived molecules promote production of IL-27. In this study, we explored the mechanism by which DnaK, a heat shock protein 70-like protein, induces expression, thereby promoting production of IL-27. Upregulation of expression did not lead to an increase in IL-35, which consists of the p35 subunit and EBI3. The IL-27 production in response to DnaK was biologically active, as reflected by stimulation of IL-10 production. DnaK-mediated expression of was driven by two distinct signaling pathways, NF-κB and Akt. However, NF-κB is linked to TLR4-associated signaling pathways, whereas Akt is not. Taken together, our results reveal that DnaK potently upregulates expression, which in turn drives production of the prominent anti-inflammatory cytokine IL-27, as a consequence of TLR4-dependent activation of NF-κB and TLR4-independent activation of the Akt signaling pathway.
2021Immunomodulatory gene expression analysis in LPS-stimulated human polymorphonuclear leukocytes treated with antibiotics commonly used for multidrug-resistant strains.Mol ImmunolConventional antibiotics used for the treatment of severe infections such as sepsis and septic shock confer immunomodulatory benefits. However, the growing problem of multidrug resistant infections has led to an increase in the administration of non-conventional last-resort antibiotics, including quinolones, aminoglycosides, and polypeptides, and the effects of these drugs on immunomodulatory gene expression in activated human polymorphonuclear leukocytes (PMNs) have not been reported. In this study, lipopolysaccharide-stimulated PMNs were incubated with piperacillin, rifampicin, fosfomycin (FOM), levofloxacin (LVFX), minocycline (MINO), colistin, tigecycline, or amikacin, and the mRNA expression levels of pattern recognition receptors (TLR2, TLR4, and CD14), inflammatory cytokines (TNFα and IL6), and chemokine receptors (IL8Rs and ITGAM) in these cells were quantitated using real-time qPCR. Many of the tested antibiotics altered the expression of the investigated cytokines. Notably, FOM, LVFX, and MINO significantly downregulated the expression of IL6, which is associated with pro- and anti-inflammatory defense mechanisms. Treatment of FOM and LVFX reduced IL-6 production as well as observed for IL6 gene expression. These findings indicated transcription and translation cooperation under the used experimental conditions. Therefore, our findings suggest that administration of these antibiotics suppresses the host anti-inflammatory response.
2021The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target?J Cell PhysiolThe toll-like receptor (TLR) family consists of vital receptors responsible for pattern recognition in innate immunity, making them the core proteins involved in pathogen detection and eliciting immune responses. The most studied member of this family, TLR4, has been the center of attention regarding its contributory role in many inflammatory diseases including sepsis shock and asthma. Notably, mounting pieces of evidence have proved that this receptor is aberrantly expressed on the tumor cells and the tumor microenvironment in a wide range of cancer types and it is highly associated with the initiation of tumorigenesis as well as tumor progression and drug resistance. Cancer therapy using TLR4 inhibitors has recently drawn scientists' attention, and the promising results of such studies may pave the way for more investigation in the foreseeable future. This review will introduce the key proteins of the TLR4 pathway and how they interact with major growth factors in the tumor microenvironment. Moreover, we will discuss the many aspects of tumor progression affected by the activation of this receptor and provide an overview of the recent therapeutic approaches using various TLR4 antagonists.
2020[Research progress on Toll-like receptors pathways regulating function of regulatory T cells].Sheng Wu Gong Cheng Xue BaoToll like receptors (TLRs) are pattern recognition receptors and represent immune receptors in innate immunity. They are very conservative in evolution and extremely important for the survival of organisms. TLRs initiate signal transduction through binding of endogenous or exogenous ligands to activate a series of downstream important gene expression and activation. Studies have shown that regulatory T cells (Tregs) play a central role in maintaining peripheral immune tolerance and preventing transplant rejection. Tregs express certain TLRs, including TLR2, TLR4, TLR5, TLR7, TLR8, and TLR9. Activation of TLRs may directly or indirectly affect (mainly activate) Treg proliferation and immunosuppressive functions, and this regulation is closely related to the occurrence of infection, autoimmune disease and cancer. The heat shock proteins as TLRs ligand molecules play important roles in the regulation of Treg. Therefore, understanding regulatory mechanisms of TLR pathways on Tregs is of great significance for new drug development and targeted therapy. This review introduces how TLR-mediated pathways regulate Tregs' immune function.
2020Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis.Sci RepSepsis is a potentially fatal condition triggered by systemic inflammatory response to infection. Due to the heightened immune reactivity and multi-organ pathology, treatment options are limited and several clinical trials have not produced the desired outcome, hence the interest in the discovery of novel therapeutic strategies. The polyphenol resveratrol (RSV) has shown promise against several pathological states, including acute and chronic inflammation. In this study, we evaluated its therapeutic potential in a murine model of sepsis and in patients undergoing transrectal ultrasound biopsy. RSV was able to inhibit lipopolysaccharide (LPS) stimulated inflammatory responses through blocking Phospholipase D (PLD) and its downstream signaling molecules SphK1, ERK1/2 and NF-κB. In addition, RSV treatment resulted in the downregulation of MyD88, an adaptor molecule in the TLR4 signaling pathway, and this effect at least in part, involved RSV-induced autophagy. Notably, RSV protected mice against polymicrobial septic shock induced upon cecal ligation and puncture, and inhibited pro-inflammatory cytokine production by human monocytes from transrectal ultrasound (TRUS) biopsy patients. Together, these findings demonstrate the immune regulatory activity of RSV and highlight its therapeutic potential in the management of sepsis.
2020Association of Genetic Polymorphisms in , , , and with the Clinical Forms of Dengue in Patients from Veracruz, Mexico.VirusesDengue manifestations range from a mild form, dengue fever (DF), to more severe forms such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The ability of the host to present one of these clinical forms could be related to polymorphisms located in genes of the Toll-like receptors (TLRs) which activate the pro-inflammatory response. Therefore, the genotyping of single nucleotide genetic polymorphisms (SNPs) in (rs3775291 and rs6552950), (rs2737190, rs10759932, rs4986790, rs4986791, rs11536865, and rs10983755), (rs179008 and rs3853839), and (rs3764880, rs5741883, rs4830805, and rs1548731) was carried out in non-genetically related DHF patients, DF patients, and general population (GP) subjects. The SNPs were analyzed by real-time PCR by genotyping assays from Applied Biosystems. The codominance model showed that dengue patients had a lower probability of presenting the -rs2737190-G/G genotype (odds ratio (OR) (95% CI) = 0.34 (0.14-0.8), = 0.038). Dengue patients showed a lower probability of presenting -rs11536865-G/C genotype (OR (95% CI) = 0.19 (0.05-0.73), = 0.0092) and had a high probability of presenting the TACG haplotype, but lower probability of presenting the TGCG haplotype in the compared to GP individuals (OR (95% CI) = 0.55 (0.35-0.86), = 0.0084). In conclusion, the -rs2737190-G/G and -rs11536865-G/C genotypes and TGCG haplotype were associated with protection from dengue.
2020Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock.EMBO RepInflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.
2020Extracellular SQSTM1 as an inflammatory mediator.AutophagyExcessive inflammation may lead to irreparable injury and even death, but the key mediators and underlying mechanisms remain unclear. Our recent findings indicate that SQSTM1/p62 (sequestosome 1), a well-known macroautophagy/autophagy receptor, is a lethal inflammatory mediator of sepsis and septic shock. The release of SQSTM1 occurs during tissue damage or microbial invasion through two main ways: one is passive and the other is active. Passive release occurs in the context of GSDMD-mediated pyroptosis. Active SQSTM1 secretion requires two basic steps: the first step is the expression and phosphorylation of SQSTM1 mediated by STING1/STING/TMEM173, and then the unconventional secretion of SQSTM1 by secretory lysosomes. After release, the extracellular SQSTM1 binds to membrane receptor INSR to activate glycolysis, leading to subsequent production of pro-inflammatory cytokines in a transcription factor NFKB-dependent manner. Functionally, genetic deletion or pharmacological inhibition of the SQSTM1-INSR pathway limits tissue damage, systemic inflammation, organ failure, and death in experimental sepsis models in mice. Moreover, the activation of the SQSTM1-INSR pathway is related to the severity of sepsis in patients. These findings highlight a pathological role of extracellular SQSTM1 in infection, inflammation, and immunity.
2021CTRP4 acts as an anti-inflammatory factor in macrophages and protects against endotoxic shock.Eur J ImmunolDespite the availability of antibiotics, current therapies to treat sepsis are still ineffective and many clinical trials aimed at neutralizing specific inflammatory cytokines have failed, suggesting the urgent need for new treatments. Using two models of LPS-induced endotoxemia and cecal ligation and puncture (CLP)-induced sepsis, we investigated the effects of C1q/TNF-related protein 4(CTRP4) on septic lethality and sepsis-induced inflammation. The effects of CTRP4 on survival, inflammation, organ damage, and bacterial clearance were assessed. Here, we found that CTRP4 decreased the mortalities of mice and alleviated pathological lung injury in mice model. In vivo depletion and adoptive transfer studies showed CTRP4-expressing macrophages as the key cell type inhibiting LPS-induced septic shock. The mechanism associated with the CTRP4 deficiency involved promoting of TLR4 internalization and activation of downstream pathways that resulted in a lethal, prolonged proinflammatory cytokine storm. Treatment of macrophages with exogenous CTRP4 abrogated proinflammatory cytokine production. Our results showed CTRP4 regulates inflammatory response and could be a promising strategy to treat septic shock.
2020Priming of intestinal cytoprotective genes and antioxidant capacity by dietary phytogenic inclusion in broilers.Anim NutrThe potential of a phytogenic premix (PP) based on ginger, lemon balm, oregano and thyme to stimulate the expression of cytoprotective genes at the broiler gut level was evaluated in this study. In particular, the effects of PP inclusion levels on a selection of genes related to host protection against oxidation (catalase [], superoxide dismutase 1 [], glutathione peroxidase 2 [], heme oxygenase 1 [], NAD(P)H quinone dehydrogenase 1 [], nuclear factor (erythroid-derived 2)-like 2 [] and kelch like ECH associated protein 1 []), stress (heat shock 70 kDa protein 2 [] and heat shock protein 90 alpha family class A member 1 []) and inflammation (nuclear factor kappa B subunit 1 [], Toll-like receptor 2 family member B () and Toll-like receptor 4 []) were profiled along the broiler intestine. In addition, broiler intestinal segments were assayed for their total antioxidant capacity (TAC). Depending on PP inclusion level (i.e. 0, 750, 1,000 and 2,000 mg/kg diet) in the basal diets, 1-d-old Cobb broiler chickens ( = 500) were assigned into the following 4 treatments: CON, PP-750, PP-1000 and PP-2000. Each treatment had 5 replicates of 25 chickens with ad libitum access to feed and water. Data were analyzed by ANOVA and means compared using Tukey's honest significant difference (HSD) test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels. Inclusion of PP increased ( ≤ 0.05) the expression of cytoprotective genes against oxidation, except . In particular, the cytoprotective against oxidation genes were up-regulated primarily in the duodenum and the ceca and secondarily in the jejunum. Most of the genes were up-regulated in a quadratic manner with increasing PP inclusion level with the highest expression levels noted in treatments PP-750 and PP-1000 compared to CON. Similarly, intestinal TAC was higher in PP-1000 in the duodenum ( = 0.011) and the ceca ( = 0.050) compared to CON. Finally, increasing PP inclusion level resulted in linearly reduced ( ≤ 0.05) expression of , and the former in the duodenum and the latter 2 in the ceca. Overall, PP inclusion consistently up-regulated cytoprotective genes and down-regulated stress and inflammation related ones. The effect is dependent on PP inclusion level and the intestinal site. The potential of PP to beneficially prime bird cytoprotective responses merit further investigation under stress-challenge conditions.
2021TRAF6-mediated ubiquitination of MST1/STK4 attenuates the TLR4-NF-κB signaling pathway in macrophages.Cell Mol Life SciPattern-recognition receptors including Toll-like receptors (TLRs) recognize invading pathogens and trigger an immune response in mammals. Here we show that mammalian ste20-like kinase 1/serine/threonine kinase 4 (MST1/STK4) functions as a negative regulator of lipopolysaccharide (LPS)-induced activation of the TLR4-NF-κB signaling pathway associated with inflammation. Myeloid-specific genetic ablation of MST1/STK4 increased the susceptibility of mice to LPS-induced septic shock. Ablation of MST1/STK4 also enhanced NF-κB activation triggered by LPS in bone marrow-derived macrophages (BMDMs), leading to increased production of proinflammatory cytokines by these cells. Furthermore, MST1/STK4 inhibited TRAF6 autoubiquitination as well as TRAF6-mediated downstream signaling induced by LPS. In addition, we found that TRAF6 mediates the LPS-induced activation of MST1/STK4 by catalyzing its ubiquitination, resulting in negative feedback regulation by MST1/STK4 of the LPS-induced pathway leading to cytokine production in macrophages. Together, our findings suggest that MST1/STK4 functions as a negative modulator of the LPS-induced NF-κB signaling pathway during macrophage activation.
2020Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance.J Dairy SciMechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chol)-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 ± 5 d postpartum, 34.63 ± 2.73 kg/d of milk production; mean ± SD). The PMN were incubated for 2 h at thermal-neutral (37°C; TN) or heat stress (42°C; HS) temperatures with 3 levels of Chol (0, 400, or 800 μg/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1β, IL-6, and tumor necrosis factor-α were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42°C (HS) relative to 37°C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 μg of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 μg/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 μg of Chol/mL compared with PMN receiving 0 μg of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys:Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 μg/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.
The Pseudomonas aeruginosa HSP90-like protein HtpG regulates IL-8 expression through NF-κB/p38 MAPK and CYLD signaling triggered by TLR4 and CD91.Microbes InfectPulmonary infection activates acute inflammatory responses by recruiting neutrophils to the infection site; this recruitment is promoted by interleukin-8 (IL-8). However, IL-8 production in response to Pseudomonas aeruginosa HtpG (PA1596), a homolog of heat shock protein 90, has yet not been characterized in detail. htpG expression in P. aeruginosa strain was elevated upon infection of host cells, and HtpG was released into bacterial culture supernatant. Treatment of dTHP-1 macrophages with recombinant HtpG (rHtpG) increased production of IL-8 in a dose- and time-dependent manner, and this effect was abolished by inhibition of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) p38 signaling. By contrast, the rHtpG-mediated production of IL-8 was increased by suppression of cylindromatosis (CYLD), suggesting that CYLD is a negative regulator of this pathway. The upregulation of expression was coordinated by signals transmitting through toll-like receptor 4 (TLR4) with the aid of CD91. Together, these observations suggest that P. aeruginosa HtpG activates NF-κB, CYLD, and p38 MAPK in a TLR4-and CD91-dependent manner, leading to stimulation of IL-8 production in macrophages.
2020Heat shock protein 27 immune complex altered signaling and transport (ICAST): Novel mechanisms of attenuating inflammation.FASEB JBlood levels of heat shock protein (HSP27) and natural IgG auto-antibodies to HSP27 (AAbs) are higher in healthy controls compared to cardiovascular disease patients. Vaccination of mice with recombinant HSP25 (rHSP25, murine ortholog of human rHSP27) increased AAb levels, attenuated atherogenesis and reduced plaque inflammation and cholesterol content. We sought to determine if the HSP27 immune complex (IC) altered MΦ inflammation signaling (Toll Like Receptor 4; TLR4), and scavenger receptors involved in cholesterol uptake (SR-AI, CD-36). Combining a validated polyclonal IgG anti-HSP27 antibody (PAb) with rHSP27 enhanced binding to THP-1 MΦ cell membranes and activation of NF-κB signaling via TLR4, competing away LPS and effecting an anti-inflammatory cytokine profile. Similarly, adding the PAb with rHSP27 enhanced binding to SR-AI and CD-36, as well as lowered oxLDL binding in HEK293 cells separately transfected with SR-AI and CD-36, or THP-1 MΦ. Finally, the PAb enhanced the uptake and internalization of rHSP27 in THP-1 MΦ. Thus, the HSP27 IC potentiates HSP27 cell membrane signaling with receptors involved in modulating inflammation and cholesterol uptake, as well as HSP27 internalization. Going forward, we are focusing on the development of HSP27 Immune Complex Altered Signaling and Transport (ICAST) as a means of modulating inflammation.
2020Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis.Pharmacol ResUnderstanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
2020Toll-Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Typhimurium or Its Isogenic ∆ Mutants.Toxins (Basel)Typhimurium is a Gram-negative bacterium that causes enterocolitis in humans and pigs. Lipopolysaccharide (LPS) is a component of the outer leaflet of Gram-negative bacteria that provokes endotoxin shock. LPS can be synthesized completely or incompletely and creates S (smooth) or R (rough) chemotypes. Toll-like receptors (TLR) 2, 4, and 9 initiate an inflammatory reaction to combat bacterial infections. We associated/challenged one-week-old gnotobiotic piglets with wild-type Typhimurium with S chemotype or its isogenic ∆ mutants with R chemotype LPS. The wild-type Typhimurium induced TLR2 and TLR4 mRNA expression but not TLR9 mRNA expression in the ileum and colon of one-week-old gnotobiotic piglets 24 h after challenge. The TLR2 and TLR4 stimulatory effects of the Typhimurium ∆ mutants were related to the completeness of their LPS chain. The transcription of IL-12/23 p40, IFN-γ, and IL-6 in the intestine and the intestinal and plasmatic levels of IL-12/23 p40 and IL-6 but not IFN-γ were related to the activation of TLR2 and TLR4 signaling pathways. The avirulent . Typhimurium ∆ mutants are potentially useful for modulation of the TLR2 and TLR4 signaling pathways to protect the immunocompromised gnotobiotic piglets against subsequent infection with the virulent Typhimurium.
2020Chronic Resistance Exercise Improves Functioning and Reduces Toll-Like Receptor Signaling in Elderly Patients With Postoperative Deconditioning.J Manipulative Physiol TherElderly patients continue to experience low levels of mobility during and following postoperative hospitalization that lead to persistent physical decline. Therefore, here we compared chronic resistance (CR) exercise against chronic aerobic (CA) exercise in ameliorating postoperative functioning and reducing proinflammatory muscular Toll-like receptor (TLR)-associated signaling in elderly postoperative patients.We conducted a prospective, randomized trial comparing the effects of 3 exercise programs (CR, CA, and CR + CA) in 66 elderly patients recovering from recent hip, femur, or pelvic fracture repair surgery. The primary outcomes were changes in anatomic/physical performance parameters (ie, maximal oxygen intake, endurance, quadriceps cross-sectional area, and maximum knee-extensor force). The secondary outcomes were changes in TLR/nuclear factor kappa beta signaling pathway marker expression.Three of the 4 anatomic/physical performance parameters significantly improved for the CR and CR + CA cohorts. Muscular expression of myeloid differentiation primary response gene 88, transforming growth factor beta-activated kinase 1 (TLR signaling pathway markers), p50, p65, tumor necrosis factor α, and interleukin 6 (nuclear factor kappa beta signaling pathway markers) all showed significant reductions after CR and CR + CA. Serum expression of 2 key TLR4 ligands, heat shock protein 70 and serum amyloid A, also showed significant reductions after CR and CR + CA.Three months of CR or CR + CA improves maximal oxygen consumption, quadriceps cross-sectional area, and maximum knee-extensor force while lowering muscular proinflammatory signaling markers in elderly adults with postoperative deconditioning.
2020Role and Mechanism of Maresin-1 in Acute Lung Injury Induced by Trauma-Hemorrhagic Shock.Med Sci MonitBACKGROUND It is reported that trauma hemorrhagic shock (THS) could resulted in organ injury and is related to a high mortality rate. Maresin-1 (MaR1), a derived medium through biosynthesis, is involved in inflammatory responses. However, the mechanism of MaR1 against acute lung injury needs to be further understood. This report aimed to explore whether MaR1 had a protective effect on lung injury. MATERIAL AND METHODS We constructed a THS-induced acute lung damage rat model and then treated the rats with MaR1. We determined Evan's blue dye (EBD) lung permeability, lung permeability index, wet/dry (W/D) weight ratio, nitric oxide (NO) concentration and inducible nitric oxide synthase (iNOS) expression in lung tissue samples. The inflammation-related cytokines levels in the bronchoalveolar lavage fluid (BALF) and serum of rats were determined by enzyme-linked immunosorbent assay (ELISA). Finally, the TLR4/p38MAPK/NF-kappaB pathway was analyzed by quantitative real-time polymerase chain reaction and western blot assay. RESULTS The increased EBD ratio, lung permeability index and W/D weight ratio, NO concentration and iNOS levels were suppressed by MaR1 treatment. THS-induced over-production of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in BALF and serum was suppressed by MaR1. Besides, the TLR4/p38MAPK/NF-kappaB pathway activation in THS-induced rats were inhibited by MaR1 treatment. CONCLUSIONS Our study showed that MaR1 could effectively alleviated THS-induced lung injury via inhibiting the excitation of the TLR4/p38MAPK/NF-kappaB pathway in THS-induced rats, suggesting that MaR1 might be a novel agent for lung damage treatment.
2020Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress.Redox BiolEnvironmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene.
2021Classically activated mouse macrophages produce methylglyoxal that induces a TLR4- and RAGE-independent proinflammatory response.J Leukoc BiolThe highly reactive compound methylglyoxal (MG) can cause direct damage to cells and tissues by reacting with cellular macromolecules. MG has been identified as a biomarker associated with increased sepsis-induced mortality. Patients undergoing septic shock have significantly elevated circulating MG levels compared to postoperative patients and healthy controls. Furthermore, MG has been implicated in the development of type II diabetes mellitus and Alzheimer's disease. Because MG is generated during glycolysis, we hypothesized that MG may be produced by classically activated (M1) macrophages, possibly contributing to the inflammatory response. LPS and IFN-γ-treated macrophages acquired an M1 phenotype (as evidenced by M1 markers and enhanced glycolysis) and formed MG adducts, MG-H1, MG-H2, and MG-H3, which were detected using antibodies specific for MG-modified proteins (methylglyoxal 5-hydro-5-methylimidazolones). MG adducts were also increased in the lungs of LPS-treated mice. Macrophages treated with LPS and IFN-γ also exhibited decreased expression of glyoxalase 1 (Glo1), an enzyme that metabolizes MG. Concentrations of exogenous, purified MG > 0.5 mM were toxic to macrophages; however, a nontoxic dose of 0.3 mM induced TNF-α and IL-1β, albeit to a lesser extent than LPS stimulation. Despite prior evidence that MG adducts may signal through "receptor for advanced glycation endproducts" (RAGE), MG-mediated cell death and cytokine induction by exogenous MG was RAGE-independent in primary macrophages. Finally, RAGE-deficient mice did not exhibit a significant survival advantage following lethal LPS injection. Overall, our evidence suggests that MG may be produced by M1 macrophages during sepsis, following IFN-γ-dependent down-regulation of Glo1, contributing to over-exuberant inflammation.
2020Role of HSP90 in suppressing TLR4-mediated inflammation in ischemic postconditioning.Clin Hemorheol MicrocircMyocardial inflammation mediated by toll-like receptor 4 (TLR4) plays an active role in myocardial ischemia/reperfusion (I/R) injury. Studies show that heat shock protein 90 (HSP90) is involved in ischemic postconditioning (IPostC) cardioprotection. This study investigates the roles of TLR4 and HSP90 in IPostC.Rats were subjected to 30 min ischemia, then 2 h reperfusion. IPostC was applied by three cycles of 30 s reperfusion, then 30 s reocclusion at reperfusion onset. Sixty rats were randomly divided into four groups: sham, I/R, IPostC, and geldanamycin (GA, HSP90 inhibitor, 1 mg/kg) plus IPostC (IPostC + GA).IPostC significantly reduced I/R-induced infarct size (40.2±2.1% versus 28.4±2.4%; P < 0.05); the release of cardiac Troponin T, creatine kinase-MB, and lactate dehydrogenase (191.5±3.1 versus 140.6±3.3 pg/ml, 3394.6±132.7 versus 2880.7±125.5 pg/ml, 2686.2±98.6 versus 1848.8±90.1 pg/ml, respectively; P < 0.05); and cardiomyocyte apoptosis (40.3±2.2% versus 27.0±1.6%; P < 0.05). Further, local and circulating IL-1β, IL-6, TNF-α, and ICAM-1 levels decreased; TLR4 expression and nuclear factor-KB (NF-κB) signaling decreased; and cardiac HSP90 expression increased. Blocking HSP90 function with GA inhibited IPostC protection and anti-inflammation, suggesting that IPostC has a HSP90-dependent anti-inflammatory effect.HSP90 may play a role in IPostC-mediated cardioprotection by inhibiting TLR4 activation, local and systemic inflammation, and NF-kB signaling.
Ibudilast, a Phosphodiesterase Inhibitor and Toll-Like Receptor-4 Antagonist, Improves Hemorrhagic Shock and Reperfusion-Induced Left Ventricular Dysfunction by Reducing Myocardial Tumor Necrosis Factor α.Transplant ProcRapid loss of blood volume causes ischemic injury to myocardial cells and impairs cardiac function. Subsequent reperfusion, although necessary to revitalize stunned tissues, can induce production of reactive oxygen species and inflammation, causing further tissue damages and weakening cardiac function. Ibudilast, a Toll-like receptor-4 (TLR4) antagonist and an inhibitor of phosphodiesterase-4, possesses antioxidative and anti-inflammatory capacities. In this study, we aim to examine the protective efficacy of ibudilast against hemorrhagic shock and reperfusion (HSR)-induced myocardial injury and cardiac dysfunction.Studies were conducted on male Sprague-Dawley rats in 3 groups: sham-operated, HSR with, and HSR without pretreatment of ibudilast. Hemorrhagic shock was induced by withdrawing blood from the femoral artery until the mean aortic pressure dropped to around 40 mm Hg; reperfusion was conducted by replenishing blood after 120 minutes of hemorrhagic shock, and the observation continued for another 240 minutes. The left ventricular (LV) contractility, diastolic suction capacity, and ventricular stiffness were evaluated using simultaneous LV pressure, and volume was recorded during a temporary inferior vena cava constriction at the end of reperfusion. Ibudilast (10 mg/kg) was administered intraperitoneally 3 days and 20 minutes prior to HSR. Serum creatine kinase myocardial band (CK-MB) was examined at the end of both HSR, and serum CK-MB, myocardial TLR4 protein expression, and malondialdehyde (MDA) and tumor necrosis factor (TNF)-α levels at the end of reperfusion.HSR induced an increase in serum CK-MB. Subsequent reperfusion further increased serum CK-MB, upregulated myocardial TLR4 protein expression, and increased tissue levels MDA and TNF-α vs the sham (P < .05). HSR reduced LV contractility, prolonged LV relaxation time, and increased LV diastolic stiffness. Ibudilast pretreatment attenuated HSR-induced TLR4 protein expression, reduced myocardial MDA and TNF-α levels, and protected against cardiac dysfunction.Ibudilast pretreatment reduced myocardial TLR4 expression, decreased MDA and TNF-α levels, and protected against HSR-induced decrease in LV contractility, prolonged LV relaxation time, and increased diastolic stiffness.
2020Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS.Life SciIschemic stroke is the leading cause of severe disability and death worldwide. As the pathogenesis of stroke has not been clearly elucidated and the ability of current therapeutic drugs on crossing the blood-brain barrier (BBB) is extremely low, there is no effective strategy to treat stroke. We aim at investigating the specific advantages of using plasma exosomes (Pla-Exo) for targeting ischemic brain and exploring its underlying mechanism in neuroprotection.Pla-Exo was obtained by a gradient ultracentrifugation of fresh plasma. The quantification of penetrated Pla-Exo through BBB was investigated in vitro BBB model, furthermore, the effects of Pla-Exo and exosomal HSP70 on cerebral ischemia/reperfusion injury were evaluated.Pla-Exo enhanced BBB crossing by specific interaction between Pla-Exo inherited heat shock protein 70 (HSP70) and endothelial Toll-like receptor 4 (TLR4). As expected, Pla-Exo increased HSP70 expression in the ischemic region through the transfer of HSP70, and led to HSP70 mediated suppression of ROS, thus alleviating cerebral ischemia/reperfusion (I/R) injury by attenuating the deterioration of BBB and preventing mitochondria damage.These findings indicated that Pla-Exo can provide protection against ischemia-reperfusion injury via the regulation of HSP70 and it should be further studied as a potential candidate for protection against ischemic injury.
2020Anthocyanins isolated from Hibiscus syriacus L. attenuate lipopolysaccharide-induced inflammation and endotoxic shock by inhibiting the TLR4/MD2-mediated NF-κB signaling pathway.PhytomedicineHibiscus syriacus L. has been used as a medicinal plant in many Asian countries. However, anti-inflammatory activity of H. syriacus L. remains unknown.This study was aimed to investigating the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. variety Pulsae (PS) on the lipopolysaccharide (LPS)-induced inflammation and endotoxic shock.MTT assay and flow cytometry analysis were performed to determine cytotoxicity of PS. RT-PCR, western blotting, and ELISA were conducted to evaluate the expression of proinflammatory mediators and cytokines. Molecular docking study predicted the binding scores and sites of PS to TLR4/MD2 complex. Immunohistochemical assay was conducted to evaluate the binding capability of PS to TLR4/MD2 and nuclear translocation of NF-κB p65. A zebrafish endotoxic shock model was used to evaluate anti-inflammatory activity of PS in vivo.PS suppressed LPS-induced nitric oxide and prostaglandin E secretion concomitant with the downregulation of inducible nitric oxide synthase and cyclooxygenase-2 expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as TNF-α, IL-6, and IL-12 in LPS-stimulated RAW 264.7 macrophages. Additionally, molecular docking data showed that PS mostly fit into the hydrophobic pocket of MD2 and bound to TLR4. In particular, apigenin-7-O-glucoside powerfully bound to MD2 and TLR4 via hydrogen bonding. Additionally, immunohistochemistry assay revealed that PS inhibited LPS-induced TLR4 dimerization or expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation, resulting in the inhibition of NF-κB activity. PS also attenuated LPS-mediated mortality and abnormality in zebrafish larvae and diminished the recruitment of neutrophils and macrophages at the inflammatory site accompanied by the low levels of proinflammatory mediators and cytokines.PS might be a novel immunomodulator for the effective treatment of LPS-mediated inflammatory diseases.
202017-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines.Int J Mol SciMelanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAF and NRAS patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in , , , , , and , while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (, C-X-C motif chemokine ligand 8 (), and vascular endothelial growth factor (), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
2020Does the compromised sleep and circadian disruption of night and shiftworkers make them highly vulnerable to 2019 coronavirus disease (COVID-19)?Chronobiol IntRotating and permanent night shiftwork schedules typically result in acute and sometimes chronic sleep deprivation plus acute and sometimes chronic disruption of the circadian time structure. Immune system processes and functionalities are organized as circadian rhythms, and they are also strongly influenced by sleep status. Sleep is a vital behavioral state of living beings and a modulator of immune function and responsiveness. Shiftworkers show increased risk for developing viral infections due to possible compromise of both innate and acquired immunity responses. Short sleep and sleep loss, common consequences of shiftwork, are associated with altered integrity of the immune system. We discuss the possible excess risk for COVID-19 infection in the context of the common conditions among shiftworkers, including nurses, doctors, and first responders, among others of high exposure to the contagion, of sleep imbalance and circadian disruption.ACE2: Angiotensin-converting enzyme 2; APC: Antigen.-presenting .cells; CCL: Chemokine (C-C motif) ligand; CD: .Adhesion molecule expression; COVID-19: 2019 coronavirus disease; DCs: Dendritic cells; GH: Growth hormone; HPA: Hypothalamic-pituitary-adrenal; HSF: Heat shock factor; HSP70: Heat shock protein 70; HSP90: Heat shock protein 90; IL: Interleukin; INFγ: Interferon-gamma; LT/LB: T/B lymphocytes; MHC: Major histocompatibility complex; NK: Natural .killer; RAAS: renin-angiotensin-aldosterone system; SARS: .Severe acute respiratory syndrome; SCN: Suprachiasmatic nucleus;SD: Sleep deprivation; SNS: Sympathetic nervous system; Th1/Th2: T helper lymphocytes 1/2; TLR2/TLR4: Toll-like receptor 2/4; TNF-α: Tumor .necrosis .factor alpha; VEGF: Vascular endothelial growth factor.
2020Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome.Front PharmacolGut microbiome maintains local gut integrity and systemic host homeostasis, where optimal control of intestinal lipopolysaccharides (LPS) activity may play an important role. LPS mainly produced from gut microbiota are a group of lipid-polysaccharide chemical complexes existing in the outer membrane of Gram-negative bacteria. Traditionally, LPS mostly produced from Proteobacteria are well known for their ability in inducing strong inflammatory responses (proinflammatory LPS, abbreviated as P-LPS), leading to septic shock or even death in animals and humans. Although the basic structures and chemical properties of P-LPS derived from different bacterial species generally show similarity, subtle and differential immune activation activities are observed. On the other hand, frequently ignored, a group of LPS molecules mainly produced by certain microbiota bacteria such as Bacteroidetes show blunt or even antagonistic activity in initiating pro-inflammatory responses (anti-inflammatory LPS, abbreviated as A-LPS). In this review, besides the immune activation properties of P-LPS, we also focus on the description of anti-inflammatory effects of A-LPS, and their potential antagonistic mechanism. We address the possibility of using native or engineered A-LPS for immune modulation in prevention or even treatment of P-LPS induced chronic inflammation related diseases. Understanding the exquisite interactive relationship between structure-activity correlation of P- and A-LPS not only contributes to molecular understanding of immunomodulation and homeostasis, but also re-animates the development of novel LPS-based pharmacological strategy for prevention and therapy of chronic inflammation related diseases.
2020Switch Off "Parallel Circuit": Insight of New Strategy of Simultaneously Suppressing Canonical and Noncanonical Inflammation Activation in Endotoxemic Mice.Adv BiosystSepsis is a life-threatening inflammatory disease with a high mortality rate and huge implicative costs. Lipopolysaccharide (LPS) from gram-negative bacteria activates toll-like receptor 4 (TLR4) and may trigger septic shock. However, potent TLR4 inhibitors TAK-242 and Eritoran have been terminated in phase III clinical trials because of inadequate efficacy. Inspired by the recently discovered intracellular, noncanonical LPS receptors, it is considered that TLR4-mediated canonical and caspase-mediated noncanonical inflammation can be seen as a "parallel circuit" to induce sepsis and endotoxemia. Logically, it is proposed that the dual inhibition of caspase-4/5/11 and TLR4 can be a potential novel strategy to develop new therapeutics for sepsis. To verify the strategy, two potential compounds are found: Luteolin and Diacerein with substantial antiinflammatory activity in vitro and in vivo. The results show that the survival rate of endotoxemic mice treated by these compounds is increased remarkably. LPS-induced organ damage is also prevented. Moreover, these compounds result in physical and mental recovery for endotoxemic mice. Notably, Luteolin exhibits better antiinflammatory activity than TAK-242 at comparable TLR4-inhibitory levels. These findings indicate that simultaneous inhibition of TLR4 and caspase-4/5/11 can be an anticipative strategy defeating sepsis and endotoxemia, which can be translated into significant medical and economic benefits.
2021Heat Shock Proteins Regulating Toll-like Receptors and the Immune System could be a Novel Therapeutic Target for Melanoma.Curr Mol MedMelanoma is a serious type of skin cancer, which develops in melanocyte cells. Although it is less common than some other skin cancers, it can be far more dangerous if not treated at an early stage because of its ability to spread rapidly to other organs. Heat shock proteins (HSP) are intracellular molecular chaperones of naive proteins, which are induced in response to stressful conditions. HSP is released into the extracellular milieu and binds to Toll-like receptors (TLRs) to regulate immune responses, such as cytokine and chemokine release. HSPs can release and bind to tumor-specific antigens, with cross-presentation of major histocompatibility complex (MHC) class I antigens. TLRs are innate immune system receptors, involved in the melanoma growth pathway through HSP activation. Melanocytes express TLR4 and TLR9 to modulate immune responses. Many TLR ligands are considered as proper adjuvant candidates, as they can activate dendritic cells. Targeting some TLRs, such as TLR7 and TLR9, is an available option for treating melanoma. In this review, we aimed to determine the relationship between TLRs and HSP groups in melanoma.
2020Effects of thermal manipulation of eggs on the response of jejunal mucosae to posthatch chronic heat stress in broiler chickens.Poult SciIn this study, the aim was to investigate effects of chronic heat stress (CHS) on the mRNA levels of proinflammatory cytokines (interleukin [IL]-6, IL-8, IL-1β, and tumor necrosis factor alpha [TNF-α]), toll-like receptors (TLR2 and TLR4), heat shock proteins (Hsp70, heat shock transcription factor [HSF]-1, and HSF3) and antioxidant enzymes (catalase, glutathione peroxidase, NADPH oxidase, and superoxide-dismutase) in the jejunal mucosae of broiler chickens subjected to thermal manipulation (TM) during embryogenesis. TM was carried out at 39°C and 65% relative humidity (RH) for 18 h daily from embryonic days 10 to 18. Control group was incubated at 37.8°C and 56% RH. CHS was induced by raising the temperature to 35°C for 7 D throughout posthatch days 28 to 35. On post-hatch-day 28 (day zero of CHS) and after 1, 3, 5, and 7 D of CHS, the jejunal mucosae were collected from both groups to evaluate the mRNA levels by real-time reverse transcription-PCR analysis. On day zero of CHS, the mRNA levels of antioxidant enzymes, TLRs, HSF3, IL-1β, and TNF-α were not significantly different between TM and control groups, while the levels of IL-6, IL-8, and HSF1 were lower and the level of Hsp70 was higher in TM. However, during CHS, the mRNA levels of antioxidant enzymes, IL-1β, TNF-α, TLR4, and HSF1 were significantly lower in TM than in controls, while the levels of TLR2 and IL-8 were significantly higher in TM than in controls. In addition, TM led to significant increase of mRNA levels of IL-6 and HSF3 after 1 D and Hsp70 after 3 D of CHS and to significant decrease of mRNA levels of IL-6 after 3 and 5 D, HSF3 after 7 D, and Hsp70 after 5 D of CHS. Results of this study suggest that TM led to altered posthatch antioxidant, immunological, and Hsp response to CHS in the jejunal mucosae of broiler chickens, probably indicating that TM may mitigate the adverse effects of CHS.
2020TAOK1 positively regulates TLR4-induced inflammatory responses by promoting ERK1/2 activation in macrophages.Mol ImmunolThousand and one amino acid kinase 1 (TAOK1) is a member of Ste20-like kinases, but its function in regulating inflammatory responses remains largely unknown. In this study, we identify TAOK1 as a positive regulator of TLR4-triggered inflammatory responses in macrophages. TAOK1 increases LPS-induced production of pro-inflammatory cytokine such as IL-6, TNF-α and IL12p40 in macrophages. TAOK1 deficient mice showed decreased susceptibility to endotoxin shock, with less pro-inflammatory cytokine production than control mice. TAOK1 promotes LPS-induced activation of ERK1/2 by constitutively interacting with TRAF6 and TPL2. These finding unravel the important role of TAOK1 as a positive regulator of TLR4-induced inflammatory responses.
2020Exosome-mediated protection of auditory hair cells from ototoxic insults.J Clin InvestHearing loss caused by the death of sensory hair cells of the inner ear is an unfortunate side effect for many patients treated with aminoglycoside antibiotics or platinum-containing chemotherapy agents. In animal models, induction of heat shock confers substantial otoprotection against aminoglycoside- and cisplatin-induced hair cell death. In this issue of the JCI, Breglio et al. demonstrate that inner ear tissue released exosomes carrying heat shock protein 70 (HSP70) in response to heat stress. HSP70 acted by a paracrine mechanism that engaged the Toll-like receptor 4 (TLR4) on hair cells to protect them from death. Exosomes and the HSP70/TLR4 pathway could thus provide treatment targets for the protection of hair cells from chemically induced death or from other insults, such as noise.
2020Heat Shock Protein 22 Attenuates Doxorubicin-Induced Cardiotoxicity Regulating Inflammation and Apoptosis.Front PharmacolThe antitumor effect of doxorubicin (DOX) is limited by its acute and chronic toxicity to the heart, which causes heart injury. Heat shock protein 22 (Hsp22) is a protein proved to exert anti-apoptosis and anti-inflammatory effects in other diseases and physical conditions. In this study, we aim to explore whether Hsp22 could exert a protective role during cardiac injury in response to DOX.The overexpression of Hsp22 was mediated adenovirus vector to clarify the role of Hsp22 in the cardiac injury caused by DOX. DOX-induced acute heart injury mouse model was established by single intraperitoneal injection of DOX (15 mg/kg). Subsequently, cardiac staining and molecular biological analysis were performed to analyze the morphological and biochemical effects of Hsp22 on cardiac injury. H9c2 cells were used for validation .An increase in the expression level of Hsp22 was observed in DOX-treated heart tissue. Furthermore, cardiac-specific overexpression of Hsp22 showed reduced cardiac dysfunction, decrease in inflammatory response, and reduction in cell apoptosis in injury heart and cardiomyocytes induced by DOX and . Moreover, the suppression of Toll-like receptor (TLR)4/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) was associated with the protective effect of Hsp22. Finally, the protective effect of Hsp22 cardiac function was almost abolished by overexpression of NLRP3 in DOX-treated mice.In summary, Hsp22 overexpression in the heart could suppress cardiac injury in response to DOX treatment through blocking TLR4/NLRP3 activation. Hsp22 may become a new therapeutic method for treating cardiac injury induced by DOX in cancer patients.
2020Involvement of the Hsp70/TLR4/IL-6 and TNF-α pathways in delayed-onset muscle soreness.J NeurochemDelayed-onset muscle soreness (DOMS) is a very common condition in athletes and individuals not accustomed to physical activity that occurs after moderate/high-intensity exercise sessions. The activation of microglial Toll-like receptor 4 (TLR4) in the spinal cord has been described to be important for the induction and maintenance of persistent pain. Based on that, we hypothesize that 70 kilodalton heat-shock protein (Hsp70), a mediator released by exercise, could activate microglial TLR4 in the spinal cord, releasing proinflammatory cytokines and contributing to the start of DOMS. In fact, we found that the knockout of TLR4, myeloid differentiation primary response 88 (MyD88), interleukin-6 (IL-6), or both tumor necrosis factor-α (TNF-α) receptor 1 and TNF-α receptor 2 in mice prevented the development of DOMS following acute aerobic exercise in contrast to the findings in male C57BL/6 wild-type mice. Furthermore, DOMS in exercised wild-type mice was also prevented after pre-treatment with microglia inhibitor, TLR4 antagonist, and anti-Hsp70 antibody. During exercise-induced DOMS, Hsp70 mRNA, TLR4 mRNA, and protein levels, as well as Iba-1 (a microglial marker), IL-6, and TNF-α protein levels, were increased in the muscle and/or spinal cord. Together, these findings suggest that Hsp70 released during exercise-induced DOMS activates the microglial TLR4/IL-6/TNF-α pathway in the spinal cord. Thus, the blockade of TLR4 activation may be a new strategy to prevent the development of DOMS before intense exercise.
2020Toddalolactone Protects Lipopolysaccharide-Induced Sepsis and Attenuates Lipopolysaccharide-Induced Inflammatory Response by Modulating HMGB1-NF-κB Translocation.Front PharmacolToddalolactone (TA-8) is a main compound isolated from (L.) Lam., and its anti-inflammatory activity and anti-inflammatory mechanism are less studied. In the present study, we investigated the anti-inflammatory effects of TA-8. Our experimental results showed that TA-8 inhibited the production of pro-inflammatory cytokines by both lipopolysaccharide (LPS)-activated RAW 264.7 cells and septic mice. Moreover, TA-8 suppressed the NF-κB transcriptional activity, reduced the nuclear translocation and phosphorylation of NF-κB, blocked the translocation of HMGB1 from the nucleus to cytosol, and decreased LPS-induced up-regulation of TLR4 and IKBKB expression, and decreased IκBα phosphorylation. In addition, the administration of TA-8 decreased LPS-induced liver damage markers (AST and ALT), attenuated infiltration of inflammatory cells and tissue damage of lung, liver, and kidney, and improved survival in septic mice. Taken together, these results suggested that toddalolactone protects LPS-induced sepsis and attenuates LPS-induced inflammatory response by modulating HMGB1-NF-κB translocation. TA-8 could potentially be a novel anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock.
2020Regulatory B cells in infection, inflammation, and autoimmunity.Cell ImmunolRegulatory B (Breg) cells are characterized by differential expression of CD5 and CD1d in mouse and CD24 and CD38 in human immune systems. The Breg family also includes LAG-3CD138 plasma cells, CD1d CD5 CD21 CD23 cells, Tim1, PD-L1, PD-L2, CD200- expressing B cells, and CD39Ki67 cells originating from the transitional, marginal zone or germinal centre of the spleen. Breg cells produce IL10 and IL35 and to cause immunosuppression. These cells respond to TLR2, TLR4, and TLR9 agonists, CD40 ligands, IL12p35 and heat shock proteins. Emerging evidence suggests that TLR signalling component Myd88 impacts the modulation of Breg cell responses and the host's susceptibility to infection. Breg cells are found to reduce relapsing-remitting experimental autoimmune encephalomyelitis. However, the Breg-mediated mechanism used to control T cell-mediated immune responses is still unclear. Here, we review the existing literature to find gaps in the current knowledge and to build a pathway to further research.
2020Left ventricular hypertrophy is associated with overexpression of HSP60, TLR2, and TLR4 in the myocardium.Scand J Clin Lab InvestLeft ventricular hypertrophy is a common adaptive response to increased cardiac workload. Cardiomyocytes growth and increase in contractile force are conditioned by sufficient energy production, which implies appropriate mitochondrial function. The 60 kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis, but when translocates from mitochondria, it can also act as a potent inflammatory mediator binding to toll-like receptors (TLRs). In this study, we aimed to compare the expression pattern of HSP60, TLR2, and TLR4 in hypertrophic vs non-hypertrophic, normal human myocardium. We further examined whether HSP60 binds to TLRs in hypertrophic myocardial tissue. In addition, expression of activated downstream targets of TLR 2/4 pathways was also evaluated.For this purpose, immunohistochemical expression analyses were performed on myocardial tissue samples obtained during the autopsy of human subjects in which left ventricular hypertrophy was the only cardiopathological finding and had died from sudden cardiac death, as well as from the subjects without any cardiac pathology, that died by unnatural death (accident or suicide). Double immunofluorescence was used to examine HSP60 translocation, while proximity ligation assay (PLA) was performed to assess HSP60 and TLRs interactions.Hypertrophic myocardium showed significantly higher expression of HSP60, TLR2, and TLR4 compared to normal myocardium. Furthermore, in hypertrophic cardiomyocytes, we found membrane translocation of HSP60 and signs of HSP60/TLR interactions. The obtained data point to an important supportive role of HSP60 in adaptive cardiomyocytes growth, while concomitant induction of TLR2 and TLR4 candidates HSP60-TLRs interactions as an early events during pathogenesis of secondary complications consequently to the left ventricular hypertrophy.
2020Toll-like Receptor 4-Independent Effects of Lipopolysaccharide Identified Using Longitudinal Serum Proteomics.J Proteome ResSepsis remains one of the most lethal and costly conditions treated in U.S. hospitals, with approximately 50% of cases caused by Gram-negative bacterial infections. Septic shock is induced when lipopolysaccharide (LPS), the main component of Gram-negative outer bacterial membrane, signals through the Toll-like receptor 4 (TLR4) complex. Lethal endotoxemia, a model for septic shock, was induced in WT C57BL6 and TLR4 mice by administration of LPS. WT LPS treated mice showed high morbidity, while PBS treated LPS and treated TLR4 mice did not. ANOVA analysis of label-free quantification of longitudinal serum proteome revealed 182 out of 324 proteins in LPS injected WT mice that were significantly changed across four time points (0, 6, 12, and 18 h). No significant changes were identified in the two control groups. From the 182 identified proteins, examples of known sepsis biomarkers were validated by ELISA, which showed similar trends as MS proteomics data. Longitudinal analysis within individual mice produced 3-fold more significantly changed proteins than pair-wise comparison. A subsequent global analysis of WT and TLR4 mice identified pathways activated independent of TLR4. These pathways represent possible compensatory mechanisms that allow for control of Gram-negative bacterial infection regardless of host immune status.
2020TLR5 agonist entolimod reduces the adverse toxicity of TNF while preserving its antitumor effects.PLoS OneTumor necrosis factor alpha (TNF) is capable of inducing regression of solid tumors. However, TNF released in response to Toll-like receptor 4 (TLR4) activation by bacterial lipopolysaccharide (LPS) is the key mediator of cytokine storm and septic shock that can cause severe tissue damage limiting anticancer applications of this cytokine. In our previous studies, we demonstrated that activation of another Toll-like receptor, TLR5, could protect from tissue damage caused by a variety of stresses including radiation, chemotherapy, Fas-activating antibody and ischemia-reperfusion. In this study, we tested whether entolimod could counteract TNF-induced toxicity in mouse models. We found that entolimod pretreatment effectively protects livers and lungs from LPS- and TNF-induced toxicity and prevents mortality caused by combining either of these agents with the sensitizer, D-galactosamine. While LPS and TNF induced significant activation of apoptotic caspase 3/7, lipid tissue peroxidation and serum ALT accumulation in mice without entolimod treatment, these indicators of toxicity were reduced by entolimod pretreatment to the levels of untreated control mice. Entolimod was effective when injected 0.5-48 hours prior to, but not when injected simultaneously or after LPS or TNF. Using chimeric mice with hematopoiesis differing in its TLR5 status from the rest of tissues, we showed that this protective activity was dependent on TLR5 expression by non-hematopoietic cells. Gene expression analysis identified multiple genes upregulated by entolimod in the liver and cultured hepatocytes as possible mediators of its protective activity. Entolimod did not interfere with the antitumor activity of TNF in mouse hepatocellular and colorectal tumor models. These results support further development of TLR5 agonists to increase tissue resistance to cytotoxic cytokines, reduce the risk of septic shock and enable safe systemic application of TNF as an anticancer therapy.
2020Exosomes mediate sensory hair cell protection in the inner ear.J Clin InvestHair cells, the mechanosensory receptors of the inner ear, are responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular heat shock 70-kDa protein (HSP70). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, whereas inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair cell-specific expression of the known HSP70 receptor TLR4 was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate nonautonomous hair cell survival. Exosomes may hold potential as nanocarriers for delivery of therapeutics against hearing loss.
2019Immunological Outcomes Mediated Upon Binding of Heat Shock Proteins to Scavenger Receptors SCARF1 and LOX-1, and Endocytosis by Mononuclear Phagocytes.Front ImmunolHeat shock proteins (HSP) are a highly abundant class of molecular chaperones that can be released into the extracellular milieu and influence the immune response. HSP release can occur when cells undergo necrosis and exude their contents. However, HSPs are also secreted from intact cells, either in free form or in lipid vesicles including exosomes to react with receptors on adjacent cells. Target cells are able recognize extracellular HSPs through cell surface receptors. These include scavenger receptors (SR) such as class E member oxidized low-density lipoprotein receptor-1 (LOX-1, aka OLR1, Clec8A, and SR-E1) and scavenger receptor class F member 1 (SCARF1, aka SREC1). Both receptors are expressed by dendritic cells (DC) and macrophages. These receptors can bind HSPs coupled to client binding proteins and deliver the chaperone substrate to the pathways of antigen processing in cells. SR are able to facilitate the delivery of client proteins to the proteasome, leading to antigen processing and presentation, and stimulation of adaptive immunity. HSPs may also may be involved in innate immunity through activation of inflammatory signaling pathways in a mechanism dependent on SR and toll-like receptor 4 (TLR4) on DC and macrophages. We will discuss the pathways by which HSPs can facilitate uptake of protein antigens and the receptors that regulate the ensuing immune response.
2020Molecular alterations of the TLR4-signaling cascade in canine epilepsy.BMC Vet ResCumulating evidence from rodent models points to a pathophysiological role of inflammatory signaling in the epileptic brain with Toll-like receptor-4 signaling acting as one key factor. However, there is an apparent lack of information about expression alterations affecting this pathway in canine patients with epilepsy. Therefore, we have analyzed the expression pattern of Toll-like receptor 4 and its ligands in brain tissue of canine patients with structural or idiopathic epilepsy in comparison with tissue from laboratory dogs or from owner-kept dogs without neurological diseases.The analysis revealed an overexpression of Toll-like receptor-4 in the CA3 region of dogs with structural epilepsy. Further analysis provided evidence for an upregulation of Toll-like receptor-4 ligands with high mobility group box-1 exhibiting increased expression levels in the CA1 region of dogs with idiopathic and structural epilepsy, and heat shock protein 70 exhibiting increased expression levels in the piriform lobe of dogs with idiopathic epilepsy. In further brain regions, receptor and ligand expression rates proved to be either in the control range or reduced below control levels.Our study reveals complex molecular alterations affecting the Toll-like receptor signaling cascade, which differ between epilepsy types and between brain regions. Taken together, the data indicate that multi-targeting approaches modulating Toll-like receptor-4 signaling might be of interest for management of canine epilepsy. Further studies are recommended to explore respective molecular alterations in more detail in dogs with different etiologies and to confirm the role of the pro-inflammatory signaling cascade as a putative target.
2020HMGB1 was negatively regulated by HSF1 and mediated the TLR4/MyD88/NF-κB signal pathway in asthma.Life SciThe present study explored the function and regulatory mechanism of High mobility group box 1 (HMGB1) in asthma.OVA (ovalbumin)-induced asthmatic mice model and LPS-treated cellular model were established in this study. Airway inflammation was measured through detecting the expression of IL-4, IL-5, IL-13 and Interferon-γ (IFN-γ) in serum and BALF (bronchoalveolar lavage fluid) by ELISA kits. Bioinformatics predictive analysis, ChIP assays, Luciferase reporter assay and Western blotting were used to explore the relation between HMGB1 and HSF1 (Heat shock factor 1).HMGB1 expression was increased in OVA-induced asthmatic mice. Silencing HMGB1 attenuated the increasing of IgE, inflammatory factors (IL-4, IL-5 and IL-13), and airway hyperresponsiveness that induced by OVA. In addition, our study found that HSF1 directly bind with the HMGB1 promoter and negatively regulation of HMGB1. HSF-1 were upregulated in OVA-induced asthmatic mice, and knockdown of HSF1 aggravated the OVA-induced airway inflammation and airway hyperreactivity in mice may through promoting the expression of HMGB1 and the activation of the Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signal pathway.The expression of HMGB1 could be negatively regulated by HSF1, and the TLR4/MyD88/NF-κB signal pathway was involved in HSF1/HMGB1-mediated regulation of asthma.
2019Adenine Nucleotide Translocase 1 Expression is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes.CellsThe cardiac-specific overexpression of the adenine nucleotide translocase 1 (ANT1) has cardioprotective effects in various experimental heart disease models. Here, we analyzed the link between ANT1 expression and heat shock protein 27 (HSP27)-mediated toll-like receptor 4 (TLR4) signaling, which represents a novel communication pathway between mitochondria and the extracellular environment. The interaction between ANT1 and HSP27 was identified by co-immunoprecipitation from neonatal rat cardiomyocytes. ANT1 transgenic (ANT1-TG) cardiomyocytes demonstrated elevated HSP27 expression levels. Increased levels of HSP27 were released from the ANT1-TG cardiomyocytes under both normoxic and hypoxic conditions. Extracellular HSP27 stimulated TLR4 signaling via protein kinase B (AKT). The HSP27-mediated activation of the TLR4 pathway was more pronounced in ANT1-TG cardiomyocytes than in wild-type (WT) cardiomyocytes. HSP27-specific antibodies inhibited TLR4 activation and the expression of HSP27. Inhibition of the HSP27-mediated TLR4 signaling pathway with the TLR4 inhibitor oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) reduced the mitochondrial membrane potential (∆ψ) and increased caspase 3/7 activity, which are both markers for cell stress. Conversely, treating cardiomyocytes with recombinant HSP27 protein stimulated TLR4 signaling, induced HSP27 and ANT1 expression, and stabilized the mitochondrial membrane potential. The activation of HSP27 signaling was verified in ischemic ANT1-TG heart tissue, where it correlated with ANT1 expression and the tightness of the inner mitochondrial membrane. Our study shows a new mechanism by which ANT1 is part of the cardioprotective HSP27-mediated TLR4 signaling.
2019Resveratrol Protects the Myocardium in Sepsis by Activating the Phosphatidylinositol 3-Kinases (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway and Inhibiting the Nuclear Factor-κB (NF-κB) Signaling Pathway.Med Sci MonitBACKGROUND Sepsis combined with myocardial injury is an important cause of septic shock and multiple organ failure. However, the molecular mechanism of sepsis-induced myocardial dysfunction has not yet been thoroughly studied. Resveratrol has been an important research topic due its organ-protection function, but the specific mechanism is unclear. The purpose of this study was to explore the mechanism of organ injury in sepsis and to investigate the molecular mechanism of resveratrol in myocardial protection in sepsis. MATERIAL AND METHODS A classical Sprague-Dawley rat model of sepsis peritonitis was constructed for further experiments. The PI3K inhibitor LY294002 and resveratrol were used to intervene in a rat model of cardiomyopathy. HE staining was used to observe pathological changes. Cardiomyocyte apoptosis was detected by TUNEL assay. Western blot analysis was used to detect the level of maker proteins. RESULTS The PI3K inhibitors could promote cardiac abnormalities and apoptosis, but resveratrol showed the opposite effect. The upregulation function of the PI3K inhibitor on the expression of NF-kappaB, IL-6, IL-1ß, and TLR4 in LPS rats was not obvious, but the expression of TNF-a in LPS+LY294002 rats was increased by 22.85% compared with that in LPS rats (P<0.05). Compared with the LPS group, the expression of NF-kappaB, TNF-alpha, IL-6, IL-1ß, and TLR4 in the LPS+resveratrol group was decreased. The expression of p-PI3K, p-AKT, and p-mTOR in LPS+LY294002 was reduced. The expression p-PI3K, p-AKT, and p-mTOR in the myocardium of the LPS+resveratrol group was increased. CONCLUSIONS Resveratrol can protect the myocardium in sepsis by activating the PI3K/AKT/mTOR signaling pathway and inhibiting the NF-kappaB signaling pathway and related inflammatory factors.
2019[Mechanism of ulinastatin in reducing lung inflammatory injury in rats with hemorrhagic shock].Nan Fang Yi Ke Da Xue Xue BaoTo investigate the effect of ulinastatin on the inflammatory mediators and their signaling pathways miR-146a/TLR4/NF-κB in rats with hemorrhagic shock.Seventy-two SD rats were randomly assigned into shock without resuscitation group (SR group, =24), acetated Ringer's solution resuscitation group (AR group, =24) and ulinastatin treatment group (=24). In all the 3 groups hemorrhagic shock models were established by femoral artery bleeding (with the mean arterial pressure maintained at 30-40 mmHg) without resuscitation (in SR group) or with resuscitation (in AR and ulinastatin groups) using acetated Ringer's solution for 30 min at 60 min after the onset of shock. At 1, 4, and 6 h after the shock onset or immediately after shock if the rats died, the lung tissues were taken for measurement of mRNA expressions of miR-146a, tumor necrosis factor- (TNF-), interleukin-1 (IL-1), IL-4, IL-6 and IL-10 using real-time quantitative PCR and the protein expressions of TLR4, MyD88, IκB-, p-IκB-, NF-κB p65, IRAK4, p-IRAK4 (Thr345, Ser346), p-IRAK4 (Thr342) and TRAF6 using Western blotting. The lung histopathology of the rats was examined under optical microscope with HE staining.Compared with the SR group, the rats in the AR group showed slightly alleviated inflammatory infiltration in the lung tissues with significantly increased mRNA levels of miR-146a, IL-4 and IL-10 ( < 0.05) and protein expressions of IκB-, p-IRAK4 (Thr342) and p-IRAK4 (Thr345, ser346) ( < 0.05), and decreased mRNA levels of TNF-, IL-1 and IL-6 ( < 0.05) and protein expressions of TLR4, MyD88, NF-κB p65, p-IκB-, IRAK-4 and TRAF6 ( < 0.05). Compared with those in AR group, the rats in ulinastatin group showed further alleviation of inflammatory lung tissue injury, with increased mRNA levels of miR-146a, IL-4 and IL-10 ( < 0.01) and protein expressions of IκB-, p-IRAK4 and p-IRAK4 ( < 0.01) and decreased mRNA levels of TNF-, IL-1 and IL-6 ( < 0.01) and protein expressions of TLR4, MyD88, NF-κB p65, p-IκB-, IRAK-4 and TRAF6 ( < 0.01).Ulinastatin combined with acetated Ringer's solution resuscitation alleviates lung inflammations in rats with hemorrhagic shock possibly by enhancing miR-146a expression to regulate TLR4/NF-κB signaling pathway through a negative feedback mechanism and thus modulate the balance of pro-inflammatory and anti-inflammatory factors.
2019Anti-Inflammatory Effects of Shenfu Injection against Acute Lung Injury through Inhibiting HMGB1-NF-B Pathway in a Rat Model of Endotoxin Shock.Evid Based Complement Alternat MedShenfu injection (SFI), a Chinese herbal medicine with substances extracted from and , is widely used as an anti-inflammatory reagent to treat endotoxin shock in China. However, the mechanism of SFI in endotoxin shock remains to be illuminated. High mobility group box 1 (HMGB1), a vital inflammatory factor in the late stage of endotoxin shock, may stimulate multiple signalling cascades, including B (NF-B), a nuclear transcription factor, as well as tumour necrosis factor (TNF)- and interleukin (IL)-1, among others in the overexpression of downstream proinflammatory cytokines. An investigation into the effects of SFI on the inhibition of the HMGB1-NF-B pathway revealed the contribution of SFI to acute lung injury (ALI) in a rat model of endotoxin shock. To assess the anti-inflammatory activity of SFI, 5 ml/kg, 10 ml/kg, or 15 ml/kg of SFI was administered to different groups of rats following an injection of LPS, and the mean arterial pressure (MAP) at 5 h and the survival rate at 72 h were measured. 24 h after LPS injection, we observed pathological changes in the lung tissue and measured the mRNA expression, production, translocation, and secretion of HMGB1, as well as the expression of the NF-B signal pathway-related proteins inhibitor of NF-B (IB)-, P50, and P65. We also evaluated the regulation of SFI on the secretion of inflammatory factors including interleukin-1 beta (IL-1) and TNF-. SFI effectively prevented the drop in MAP, relieved lung tissue damage, and increased the survival rate in the endotoxin shock model in dose-dependent manner. SFI inhibited the transcription, expression, translocation, and secretion of HMGB1, increased the expression of toll-like receptor (TLR4), increased the production of IB-, and decreased the levels of P65, P50, and TNF- in the lung tissue of endotoxin shock rats in a dose-dependent manner. Furthermore, SFI decreased the secretion of proinflammatory cytokines TNF- and IL-1. In summary, SFI improves the survival rate of endotoxin shock, perhaps through inhibiting the HMGB1-NF-B pathway and thus preventing cytokine storm.
2019Toll-like receptor 4-mediated respiratory syncytial virus disease and lung transcriptomics in differentially susceptible inbred mouse strains.Physiol GenomicsRespiratory syncytial virus (RSV) causes severe lower respiratory tract disease in infants, young children, and susceptible adults. The pathogenesis of RSV disease is not fully understood, although toll-like receptor 4 (TLR4)-related innate immune response is known to play a role. The present study was designed to determine TLR4-mediated disease phenotypes and lung transcriptomics and to elucidate transcriptional mechanisms underlying differential RSV susceptibility in inbred strains of mice. Dominant negative mutant (C3H/HeJ, HeJ, ) and its wild-type (C3H/HeOuJ, OuJ, ) mice and five genetically diverse, differentially responsive strains bearing the wild-type allele were infected with RSV. Bronchoalveolar lavage, histopathology, and genome-wide transcriptomics were used to characterize the pulmonary response to RSV. RSV-induced lung neutrophilia [1 day postinfection (pi)], epithelial proliferation (1 day pi), and lymphocytic infiltration (5 days pi) were significantly lower in HeJ compared with OuJ mice. Pulmonary RSV expression was also significantly suppressed in HeJ than in OuJ. Upregulation of immune/inflammatory (, ) and heat shock protein (, ) genes was characteristic of OuJ mice, while cell cycle and cell death/survival genes were modulated in HeJ mice following RSV infection. Strain-specific transcriptomics suggested virus-responsive (, , ) and epidermal differentiation complex (, ) genes may contribute to TLR4-independent defense against RSV in resistant strains including C57BL/6J. The data indicate that TLR4 contributes to pulmonary RSV pathogenesis and activation of cellular immunity, the inflammasome complex, and vascular damage underlies it. Distinct transcriptomics in differentially responsive -wild-type strains provide new insights into the mechanism of RSV disease and potential therapeutic targets.
2021CUL4B negatively regulates Toll-like receptor-triggered proinflammatory responses by repressing Pten transcription.Cell Mol ImmunolToll-like receptors (TLRs) play critical roles in innate immunity and inflammation. The molecular mechanisms by which TLR signaling is fine-tuned remain to be completely elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING E3 ligase complex (CRL4B), has been shown to regulate diverse developmental and physiological processes by catalyzing monoubiquitination for histone modification or polyubiquitination for proteasomal degradation. Here, we identified the role of CUL4B as an intrinsic negative regulator of the TLR-triggered inflammatory response. Deletion of CUL4B in macrophages increased the production of proinflammatory cytokines and decreased anti-inflammatory cytokine IL-10 production in response to pathogens that activate TLR3, TLR4, or TLR2. Myeloid cell-specific Cul4b knockout mice were more susceptible to septic shock when challenged with lipopolysaccharide, polyinosinic-polycytidylic acid or Salmonella typhimurium infection. We further demonstrated that enhanced TLR-induced inflammatory responses in the absence of CUL4B were mediated by increased GSK3β activity. Suppression of GSK3β activity efficiently blocked the TLR-triggered increase in proinflammatory cytokine production and attenuated TLR-triggered death in Cul4b mutant mice. Mechanistically, CUL4B was found to negatively regulate TLR-triggered signaling by epigenetically repressing the transcription of Pten, thus maintaining the anti-inflammatory PI3K-AKT-GSK3β pathway. The upregulation of PTEN caused by CUL4B deletion led to uncontrolled GSK3β activity and excessive inflammatory immune responses. Thus, our findings indicate that CUL4B functions to restrict TLR-triggered inflammatory responses through regulating the AKT-GSK3β pathway.
2019The Pseudomonas aeruginosa HSP70-like protein DnaK induces IL-1β expression via TLR4-dependent activation of the NF-κB and JNK signaling pathways.Comp Immunol Microbiol Infect DisIL-1β expression is increased in response to P. aeruginosa infection, but the responsible proteins have not been clearly elucidated. Here, we demonstrate for the first time that IL-1β expression is induced in response to the heat shock protein 70-like protein DnaK. Treatment with recombinant DnaK (rDnaK) increased IL-1β expression in a dose- and time-dependent manner, and the release of mature IL-1β in response to rDnaK was detected to an extent similar to that stimulated by the well-known agonists, lipopolysaccharide and nigericin. rDnaK-mediated IL-1β expression was driven by the NF-κB signaling pathway. In addition, expression was controlled by the JNK signaling pathway, although these two signaling cascades act independently upon rDnaK stimulation. Finally, rDnaK-induced IL-1β expression was initiated via the action of TLR4. Taken together, the data reveal that P. aeruginosa-derived DnaK induces expression of IL-1β via TLR4-dependent activation of the NF-κB and JNK signaling pathways.
2019Immunobiology and application of toll-like receptor 4 agonists to augment host resistance to infection.Pharmacol ResInfectious diseases remain a threat to critically ill patients, particularly with the rise of antibiotic-resistant bacteria. Septic shock carries a mortality of up to ∼40% with no compelling evidence of promising therapy to reduce morbidity or mortality. Septic shock survivors are also prone to nosocomial infections. Treatment with toll-like receptor 4 (TLR4) agonists have demonstrated significant protection against common nosocomial pathogens in various clinically relevant models of infection and septic shock. TLR4 agonists are derived from a bacteria cell wall or synthesized de novo, and more recently novel small molecule TLR4 agonists have also been developed. TLR4 agonists augment innate immune functions including expansion and recruitment of innate leukocytes to the site of infection. Recent studies demonstrate TLR4-induced leukocyte metabolic reprogramming of cellular metabolism to improve antimicrobial function. Metabolic changes include sustained augmentation of macrophage glycolysis, mitochondrial function, and tricarboxylic acid cycle flux. These findings set the stage for the use of TLR4 agonists as standalone therapeutic agents or antimicrobial adjuncts in patient populations vulnerable to nosocomial infections.
Sepsis inhibits tumor growth in mice with cancer through Toll-like receptor 4-associated enhanced Natural Killer cell activity.OncoimmunologySepsis-induced immune dysfunctions are likely to impact on malignant tumor growth. Sequential sepsis-then-cancer models of tumor transplantation in mice recovering from sepsis have shown that the post-septic immunosuppressive environment was able to promote tumor growth. We herein addressed the impact of sepsis on pre-established malignancy in a reverse cancer-then sepsis experimental model. Mice previously inoculated with MCA205 fibrosarcoma cells were subjected to septic challenges by polymicrobial peritonitis induced by cecal ligation and puncture or endotoxinic shock. The anti-tumoral immune response was assessed through the distribution of tumor-infiltrating immune cells, as well as the functions of cytotoxic cells. As compared to sham surgery, polymicrobial sepsis dampened malignant tumor growth in wild-type (WT) mice, but neither in ( nor in mice. Similar tumor growth inhibition was observed following a LPS challenge in WT mice, suggesting a regulatory role of Tlr4 in this setting. The low expression of MHC class 1 onto MCA205 cells suggested the involvement of Natural Killer (NK) cells in sepsis-induced tumor inhibition. Septic insults applied to mice with cancer promoted the main anti-tumoral NK functions of IFNγ production and degranulation. The anti-tumoral properties of NK cells obtained from septic mice were exacerbated when cultured with MHC1 MCA205 or YAC-1 cells. These results suggest that sepsis may harbor dual effects on tumor growth depending on the sequential experimental model. When applied in mice with cancer, sepsis prevents tumor growth in a Tlr4-dependent manner by enhancing the anti-tumoral functions of NK cells.
2019Key residues in TLR4-MD2 tetramer formation identified by free energy simulations.PLoS Comput BiolToll-like receptors (TLRs) play a central role in both the innate and adaptive immune systems by recognizing pathogen-associated molecular patterns and inducing the release of the effector molecules of the immune system. The dysregulation of the TLR system may cause various autoimmune diseases and septic shock. A series of molecular dynamics simulations and free energy calculations were performed to investigate the ligand-free, lipopolysaccharide (LPS)-bound, and neoseptin3-bound (TLR4-MD2)2 tetramers. Compared to earlier simulations done by others, our simulations showed that TLR4 structure was well maintained with stable interfaces. Free energy decomposition by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method suggests critical roles that two hydrophobic clusters I85-L87-P88 and I124-L125-P127 of MD2, together with LPS and neoseptin3, may play in TLR4 activation. We propose that 1) direct contacts between TLR4 convex surface and LPS and neoseptin3 at the region around L442 significantly increase the binding and 2) binding of LPS and neoseptin3 in the central hydrophobic cavity of MD2 triggers burial of F126 and exposure of I85-L87-P88 that facilitate formation of (TLR4-MD2)2 tetramer and activation of TLR4 system.
2019Liquiritigenin and liquiritin alleviated monocrotaline-induced hepatic sinusoidal obstruction syndrome via inhibiting HSP60-induced inflammatory injury.ToxicologyHepatic sinusoidal obstruction syndrome (HSOS) is a life-threatening liver disease caused by the damage to liver sinusoidal endothelial cells (LSECs). Liquiritigenin and liquiritin are two main compounds in Glycyrrhizae Radix et Rhizoma (Gan-cao). Our previous study has shown that both liquiritigenin and liquiritin alleviated monocrotaline (MCT)-induced HSOS in rats via inducing the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signaling pathway. This study aims to further investigate whether inhibiting liver inflammatory injury also contributed to the liquiritigenin and liquiritin-provided alleviation on MCT-induced HSOS. The results of serum alanine/aspartate aminotransferases (ALT/AST) activities and total bilirubin (TBil) amount, liver histological evaluation, scanning electron microscope observation and hepatic metalloproteinase-9 (MMP9) expression showed that liquiritigenin and liquiritin both alleviated MCT-induced HSOS in rats. Liquiritigenin and liquiritin reduced the increased liver myeloperoxidase (MPO) activity, mRNA expression of pro-inflammatory factors, hepatic infiltration of immune cells, hepatic toll-like receptor 4 (TLR4) expression and nuclear factor κB (NFκB) nuclear accumulation induced by MCT in rats. Furthermore, liquiritigenin and liquiritin attenuated MCT-induced liver mitochondrial injury, increased the decreased Lon protein expression and reduced the release of heat shock protein 60 (HSP60). Moreover, liquiritigenin and liquiritin also reduced NFκB nuclear accumulation and decreased the elevated cellular mRNA expression of NFκB-downstream pro-inflammatory cytokines induced by HSP60 in macrophage RAW264.7 cells. In conclusion, our study revealed that both liquiritigenin and liquiritin alleviated MCT-induced HSOS by inhibiting hepatic inflammatory responses triggered by HSP60.
2019Liver Inflammatory Injury Initiated by DAMPs-TLR4-MyD88/TRIF-NFκB Signaling Pathway Is Involved in Monocrotaline-Induced HSOS.Toxicol SciHepatic sinusoidal obstruction syndrome (HSOS) causes considerable morbidity and mortality in clinic. Up to now, the molecular mechanisms involved in the development of HSOS still remain unclear. Here, we report that hepatic inflammation initiated by damage-associated molecular patterns (DAMPs) plays a critical role in the development of HSOS. Monocrotaline (MCT) belongs to pyrrolizidine alkaloids. Monocrotaline-induced HSOS in mice and rats was evidenced by the increased serum alanine/aspartate aminotransferase (ALT/AST) activities, the elevated hepatic metalloproteinase 9 (MMP9) expression, and results from liver histological evaluation and scanning electron microscope observation. However, MCT-induced HSOS was markedly attenuated in myeloid differentiation primary response gene 88 (MyD88), TIR-domain-containing adapter-inducing interferon-β (TRIF) and toll like receptor 4 (TLR4) knock-out mice. Monocrotaline increased liver myeloperoxidase activity, serum contents of proinflammatory cytokines, hepatic aggregation of immune cells, and nuclear accumulation of nuclear factor κB (NFκB). However, these inflammatory responses induced by MCT were all diminished in MyD88, TRIF, and TLR4 knock-out mice. Monocrotaline elevated serum contents of DAMPs including high mobility group box 1 (HMGB1) and heat shock protein 60 (HSP60) both in mice and in rats. HSOS was markedly exacerbated and serum contents of HMGB1 and HSP60 were elevated in nuclear factor erythroid 2-related factor 2 (Nrf2) knock-out mice treated with MCT. Our findings indicate that hepatic inflammatory injury mediated by DAMPs-initiated TLR4-MyD88/TRIF-NFκB inflammatory signal pathway plays an important role in HSOS development.
2019Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins-An Emerging Mechanism of Cancer-Induced Cachexia.Cancers (Basel)Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin-proteasome and the autophagy-lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
2019ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection.Nat MicrobiolThe special organelle-located MAVS, STING and TLR3 are important for clearing viral infections. Although TLR4 triggers NF-κB activation to produce pro-inflammatory cytokines for bacterial clearance, effectors with special organelle localization have not been identified. Here, we screened more than 280 E3 ubiquitin ligases and discovered that the endoplasmic reticulum-located Hrd1 regulates TLR4-induced inflammation during bacterial infection. Hrd1 interacts directly with the deubiquitinating enzyme Usp15. Unlike the classical function of Hrd1 in endoplasmic reticulum-associated degradation, Usp15 is not degraded but loses its deubiquitinating activity for IκBα deubiquitination, resulting in excessive NF-κB activation. Importantly, Hrd1 deficiency in macrophages protects mice against lipopolysaccharide-induced septic shock, and knockdown of Usp15 in Hrd1-knockout macrophages restores the reduced IL-6 production. This study proposes that there is crosstalk between Hrd1 and TLR4, thereby linking the endoplasmic reticulum-plasma membrane function during bacterial infection.
2020The metabolic regulator Lamtor5 suppresses inflammatory signaling via regulating mTOR-mediated TLR4 degradation.Cell Mol ImmunolComprehensive immune responses are essential for eliminating pathogens but must be tightly controlled to avoid sustained immune activation and potential tissue damage. The engagement of TLR4, a canonical pattern recognition receptor, has been proposed to trigger inflammatory responses with different magnitudes and durations depending on TLR4 cellular compartmentalization. In the present study, we identify an unexpected role of Lamtor5, a newly identified component of the amino acid-sensing machinery, in modulating TLR4 signaling and controlling inflammation. Specifically, Lamtor5 associated with TLR4 via their LZ/TIR domains and facilitated their colocalization at autolysosomes, preventing lysosomal tethering and the activation of mTORC1 upon LPS stimulation and thereby derepressing TFEB to promote autophagic degradation of TLR4. The loss of Lamtor5 was unable to trigger the TFEB-driven autolysosomal pathway and delay degradation of TLR4, leading to sustained inflammation and hence increased mortality among Lamtor5 haploinsufficient mice during endotoxic shock. Intriguingly, nutrient deprivation, particularly leucine deprivation, blunted inflammatory signaling and conferred protection to endotoxic mice. This effect, however, was largely abrogated upon Lamtor5 deletion. We thus propose a homeostatic function of Lamtor5 that couples pathogenic insults and nutrient availability to optimize the inflammatory response; this function may have implications for TLR4-associated inflammatory and metabolic disorders.
2019Overexpression of protein phosphatase 5 in the mouse heart: Reduced contractility but increased stress tolerance - Two sides of the same coin?PLoS OneThe pathophysiological mechanisms of sepsis-induced cardiac dysfunction are largely unknown. The Toll-like receptor 4 (TLR4) is expressed in cardiac myocytes and is involved in bacterial endotoxin-mediated inflammatory disorders. TLR4 signaling leads to activation of the nuclear factor kappa B followed by increased expression of cytokines. Several protein phosphatases including PP2Cβ, PP2A or PP1 are known to act as regulators of this signaling pathway. Here, we examined the role of PP5 for the inflammatory response to the bacterial endotoxin lipopolysaccharide in the heart using a transgenic mouse model with cardiac myocyte directed overexpression of PP5. In these transgenic mice, basal cardiac contractility was reduced, in vivo as well as in vitro, but LPS-induced cardiac dysfunction was less pronounced compared to wild type mice. Quantitative RT-PCR suggested an attenuated NF-κB signaling in the heart and cardiac expression of heat shock protein 25 (HSP25) was increased in PP5 transgenic mice. From our data we assume that PP5 increases stress tolerance of cardiac myocytes by downregulation of NF-κB signaling and upregulation of HSP25 expression.
2019Nutraceutical targeting of TLR4 signaling has potential for prevention of cancer cachexia.Med HypothesesThe mechanisms underlying cancer cachexia - the proximate cause of at least 20% of cancer-related deaths - have until recently remained rather obscure. New research, however, clarifies that cancers evoking cachexia release microvesicles rich in heat shock proteins 70 and 90, and that these extracellular heat shock proteins induce cachexia by serving as agonists for toll-like receptor 4 (TLR4) in skeletal muscle, macrophages, and adipocytes. Hence, safe nutraceutical measures which can down-regulate TLR4 signaling can be expected to aid prevention and control of cancer cachexia. There is reason to suspect that phycocyanobilin, ferulic acid, glycine, long-chain omega-3s, green tea catechins, β-hydroxy-β-methylbutyrate, carnitine, and high-dose biotin may have some utility in this regard.
2019Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers.Poult SciThe aim of this study was to investigate the effect of dietary resveratrol supplementation on innate immunity and inflammatory responses in the spleen of yellow-feather broilers under heat stress. A total of 288 yellow-feather broilers of 28-day-old were randomly assigned to 3 treatment groups with 6 replicates. A thermo-neutral group (TN) (24 ± 2°C) received a basal diet and another 2 heat-stressed groups (37 ± 2°C for 8 h/D and 24 ± 2°C for the remaining time) were fed the basal diet (HT) or basal diet with 500 mg/kg resveratrol (HT+Res) for 14 consecutive days. The results showed that heat stress decreased (P < 0.05) the growth index of thymus, spleen, and bursa of Fabricius, reduced (P < 0.05) the levels of complement C3 and C4 in serum. Heat stress also caused activation of inflammatory immune responses evidenced by increased (P < 0.05) the mRNA abundance of HSP (heat shock protein) 70, toll-like receptor (TLR)1, TLR4, TLR5, myeloid differentiation factor-88 (MyD88), nucleotide-binding oligomerization domain 1 (NOD1), Dectin-1, transforming growth factor-β-activated kinase 1 (TAK1), interleukin (IL)-1, IL-4, IL-6, and tumor necrosis factor (TNF)-α, but decreased the mRNA abundance of interferon (IFN)-γ, activated nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3 kinases-protein kinase B (PI3K/AKT) signaling pathways. Dietary supplementation with resveratrol improved (P < 0.05) the growth index of thymus, spleen and bursa Fabricius, and increased (P < 0.05) the serum level of complement C3 under heat stress. In addition, resveratrol reduced (P < 0.05) the mRNA abundance of HSP70, TLR4, TLR5, NOD1, Dectin-1, and TAK1, and inhibited the NF-κB, MAPK and PI3K/AKT signaling pathway via down-regulated the phosphorylation of p65, extracellular signal-regulated kinases 1/2, c-Jun N-terminal protein kinase and AKT, as well as decreased the inflammatory cytokines expression, including IL-1, IL-4, IL-6, and TNF-α in the spleen under heat stress. Collectively, dietary resveratrol could have beneficial effects to regulate innate immunity and inflammatory response, via inhibiting the activation of NF-κB, MAPK, and PI3K/AKT signaling pathways induced by heat stress in the spleen.
2019Effects of a feed additive blend on broilers challenged with heat stress.Avian PatholWe evaluated a blend of medium-chain fatty acids (MCFA), organic acids, and a polyphenol antioxidant on gut integrity. Eighty Ross Broilers were exposed to 20-22°C (control - normothermic) or to 35-39.5°C (heat stress) for eight hours a day for a period of 1 or 5 days. Birds were fed a standard diet, or a diet supplemented with the test blend. Thereafter, birds were euthanized, and intestinal sections were excised for morphological, morphometric and gene expression analyses. Blood samples were collected for glucose-6-phosphate dehydrogenase (G6PD), glutathione peroxidase (GSH-Px) activity and trolox equivalent antioxidant capacity (TEAC) determination. Heart and liver tissues were used to quantify the expression of heat shock proteins 60 and 70 (HSP60 and HSP70, respectively) and inhibitor of kappa light chain gene enhancer in B cells alpha (IKBA). The jejunum was the most sensitive intestinal section, where heat stress modulated the expression of HSP70, of the inflammatory markers IKBA, interleukin 8 (IL-8), interferon gamma (IFNγ), and toll-like receptor 4 (TLR4). Moreover, expression of tight junctions (CLDN1, ZO1 and ZO2) and nutrient transporters (PEPT1 and EAAT3) was modulated especially in the jejunum. In conclusion, the feed additive blend protected intestines during heat stress from the decrease in villus height and crypt depth, and from the increase in villus width. Especially in the jejunum, heat stress played an important role by modulating oxidative stress and inflammation, impairing gut integrity and nutrient transport, and such deleterious effects were alleviated by the feed additive blend. Jejunum is the most sensitive intestinal segment during heat stress. Heat stress affects the expression of tight junctions and nutrient transporters. Feed management helps to alleviate the disturbances caused by heat stress. A blend of MCFA, organic acids and a polyphenol protects broilers under heat stress.
2019Inhibition of transmembrane TNF-α shedding by a specific antibody protects against septic shock.Cell Death DisTransmembrane TNF-α (tmTNF-α) and secretory TNF-α (sTNF-α) display opposite effects in septic shock. Reducing tmTNF-α shedding can offset the detrimental effects of sTNF-α and increase the beneficial effect of tmTNF-α. We previously developed a monoclonal antibody that is specific for tmTNF-α and does not cross-react with sTNF-α. In this study, we show that this antibody can specifically suppress tmTNF-α shedding by competing with a TNF-α converting enzyme that cleaves the tmTNF-α ectodomain to release sTNF-α. This tmTNF-α antibody significantly inhibited LPS-induced secretion of interleukin (IL)-1β, IL-6, interferon-β, and nitric oxide by monocytes/macrophages, and protected mice from septic shock induced by lipopolysaccharide (LPS) or cecal ligation and puncture, while reducing the bacterial load. The mechanism associated with the protective effect of this tmTNF-α antibody involved promotion of LPS-induced toll-like receptor 4 (TLR4) internalization and degradation by recruiting Triad3A to TLR4. Moreover, the tmTNF-α antibody inhibited LPS-induced activation of nuclear factor-κB and interferon regulatory factor 3 pathways by upregulating expression of A20 and monocyte chemotactic protein-induced protein 1. Similarly, treatment of macrophages with exogenous tmTNF-α suppressed LPS/TLR4 signaling and release of proinflammatory cytokines, indicating that increased levels of tmTNF-α promoted by the antibody contributed to its inhibitory effect. Thus, use of this tmTNF-α antibody for specific suppression of tmTNF-α shedding may be a promising strategy to treat septic shock.
2019Extracorporeal shock wave therapy decreases COX-2 by inhibiting TLR4-NFκB pathway in a prostatitis rat model.ProstateThis study aims to evaluate the effect of extracorporeal shock wave therapy (ESWT) on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and to explore the mechanism.RWPE-2 cells were randomly divided into three groups: (a) RWPE-2 group (normal control), (b) LPS groups (lipopolysaccharide inducing inflammation) and (c) ESWT groups (LPS induced RWPE-2 treated by ESWT). After ESWT was administered, cells and supernatant were collected for enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. In vivo, Sprague-Dawley rats (n = 30) were randomly divided into three groups: (a) normal control group, (b) prostatitis groups, and (c) ESWT groups. Prostatitis rats were induced by 17 β-estradiol and dihydrotestosterone for 4 weeks. After ESWT, prostates of each group were collected for immunohistochemistry, Western blot analysis, and ELISA.ESWT improved prostatitis by attenuating inflammation (P < .01). ESWT downregulated the expression of cyclooxygenase 2 (COX-2) through inhibiting TLR4-NFκB pathway compared with the LPS group in vitro or prostatitis group in vivo (P < .05). TRAF2 mediates ERK1/2-COX2 pathway. ESWT promotes prostate tissue recovery by stimulating vascular endothelial growth factor expression (P < .01). ESWT could suppress apoptosis in the prostate.ESWT improved CP/CPPS and reduced inflammation by degrading COX-2 in microenvironment through TLR4-NFκB-inhibiting pathway. TRAF2 regulator in ERK1/2-COX-2 inhibition significantly reduced inflammation, thus suggesting ESWT may be a potential and promising treatment for CP/CPPS.
2019Melanoma Extracellular Vesicles Generate Immunosuppressive Myeloid Cells by Upregulating PD-L1 via TLR4 Signaling.Cancer ResTumor cell-derived extracellular vesicles (EV) convert normal myeloid cells into myeloid-derived suppressor cells (MDSC), inhibiting antitumor immune responses. Here, we show that EV from Ret mouse melanoma cells upregulate the expression of programmed cell death ligand 1 (PD-L1) on mouse immature myeloid cells (IMC), leading to suppression of T-cell activation. PD-L1 expression and the immunosuppressive potential of EV-generated MDSC were dependent on the expression of Toll-like receptors (TLR). IMC from Tlr4 mice failed to increase T-cell PD-L1 expression and immunosuppression with Ret-EV treatment, and this effect was dependent on heat-shock protein 86 (HSP86) as HSP86-deficient Ret cells could not stimulate PD-L1 expression on normal IMC; IMC from Tlr2 and Tlr7 mice demonstrated similar results, although to a lesser extent. HSP86-deficient Ret cells slowed tumor progression associated with decreased frequency of tumor-infiltrating PD-L1CD11bGr1 MDSC. EV from human melanoma cells upregulated PD-L1 and immunosuppression of normal monocytes dependent on HSP86. These findings highlight a novel EV-mediated mechanism of MDSC generation from normal myeloid cells, suggesting the importance of EV targeting for tumor therapy. SIGNIFICANCE: These findings validate the importance of TLR4 signaling in reprogramming normal myeloid cells into functional myeloid-derived suppressor cells.
2020Inhibition of Lipopolysaccharide-Induced Inflammation of Chicken Liver Tissue by Selenomethionine via TLR4-NF-κB-NLRP3 Signaling Pathway.Biol Trace Elem ResSelenium (Se) is important in many physiological processes, such as antioxidant processes and inflammation. The aim of our experiments was to investigate the molecular mechanism that selenomethionine could reduce the lipopolysaccharide (LPS)-induced inflammation by inhibiting the TLR4-NF-κB-NLRP3 signaling pathway. Eighty broilers were randomly and evenly divided into two groups, giving normal Se content diets (Con group, 0.2 mg Se/kg diet) and Se-rich basal diets (Se group, 0.5 mg selenomethionine/kg diet) for 90 days. Se-rich basal diets were based on 0.2 mg/kg sodium selenite contained. Five hours before euthanized, 20 broilers were randomly selected from each group and given lipopolysaccharide (200 μg/kg BW) by intraperitoneal injection, Con+LPS group and Se+LPS group, respectively. The Con group and Se group were given equal saline by intraperitoneal injection. We observed the microscopic pathological changes of liver tissue detected oxidative stress by kit and detected the expression of inflammatory factors, heat shock protein (HSP), and nod-like receptor protein 3 (NLRP3)-related genes by qRT-PCR and Western blot. With the microscope, we found the Con+LPS group had obvious inflammatory lesions such as sinusoidal congestion, but the damage was significantly alleviated in the Se+LPS group. In the Con+LPS group, the activity of GSH-Px and the content of GSH were significantly decreased compared with those in the Con group; however, they are increased in the Se group and in the Se + LPS group. Inflammatory factors (MyD88, NF-κB, TNF-α, IL-1β, IL-6, IL-12, IL-18, iNOS, and COX-2), heat shock proteins (HSP27, HSP60, HSP70, and HSP90), and the expression of NLRP3 and caspase-1 increased in the Con+LPS group compared with those in the Con group, while they were lower in the Se+LPS group than in the Con+LPS group. We concluded that selenomethionine inhibits the LPS-induced inflammation of liver tissue via suppressing the TLR4-NF-κB-NLRP3 signaling pathway.
2019Chaperones may cause the focus of diabetes autoimmunity on distinct (pro)insulin peptides.J AutoimmunIt is still an enigma why T cell autoreactivity in type 1 diabetes targets few beta cell antigens only. Among these, one primary autoantigen is pro(insulin). Autoimmune T cells preferentially recognise three epitopes on the proinsulin molecule, of which the peptide region B:11-23 is the dominant one. Interestingly, the three regions superimpose with binding sites of the chaperone hsp70, the region B:11-23 being the strongest binding one. Absence of an intact core region B:15-17 prevents autoimmune diabetes in NOD as well as binding of hsp70. A role of hsp70 in selecting autoimmune epitopes is supported by the ability of this and other chaperones to deliver bound peptides to MHC class I and II molecules for efficient antigen presentation. Binding of hsp70 to receptors on antigen presenting cells such as TLR4 results in costimulatory signals for T cell activation. Strongest effects are seen for the mixture of hsp70 with the peptide B:11-23. Thus, hsp70 may assist in proinsulin epitope selection and efficient presentation to autoreactive T cells. The concept of chaperone guided immune reactivity may also apply to other autoimmune diseases.
2019Epileptogenesis-Associated Alterations of Heat Shock Protein 70 in a Rat Post-Status Epilepticus Model.NeuroscienceTemporal lobe epilepsy is triggered by an initial insult, such as status epilepticus, that initiates the process of epilepsy development. Heat shock protein 70 (Hsp70) is a ubiquitously expressed molecular chaperone, involved in the inflammatory response that is upregulated after status epilepticus. Hsp70 has been described as an endogenous intracellular ligand of Toll-like receptor 4. It is released from damaged or necrotic tissue and by activated immune cells after an inflammatory event. So far, the time course and the pattern of epileptogenesis-associated alterations in Hsp70 expression have not been described in detail. Thus, we investigated immunohistochemical expression of Hsp70 in hippocampus, parahippocampal cortex, parietal cortex, amygdala, and thalamus following status epilepticus in a rat model of temporal lobe epilepsy. The impact of status epilepticus on Hsp70 expression varied during different phases of epileptogenesis, displaying a stronger effect in the early post-insult phase, a milder and more localized effect in the latency phase and no relevant effect in the chronic phase. Cellular-level characterization revealed that Hsp70 colocalized with the neuronal marker NeuN and with Toll-like receptor 4. No colocalization with the astrocytic marker GFAP or the microglia marker Iba1 was found. The intense neuronal Hsp70 upregulation during the early post-insult phase might contribute to the onset of excessive inflammation triggering molecular and cellular reorganization and generation of a hyperexcitable epileptic network. Therefore, development of multi-targeting strategies aiming at prevention of epileptogenesis should consider Hsp70 modulation in the early days following an epileptogenic insult.
2020Acute Colchicine Poisoning Causes Endotoxemia via the Destruction of Intestinal Barrier Function: The Curative Effect of Endotoxin Prevention in a Murine Model.Dig Dis SciColchicine binds to intracellular tubulin and prevents mitosis. Colchicine is also used as an anti-inflammatory drug. Meanwhile, excess administration of medication or accidental ingestion of colchicine-containing plants can cause acute colchicine poisoning, which initially results in gastrointestinal effects that may be followed by multiorgan dysfunction. However, the mechanism of colchicine poisoning remains unclear, and there are no standard therapeutic strategies.We focused on intestinal barrier function and attempted to reveal the underlying mechanism of colchicine poisoning using an animal model.Colchicine was orally administered to C57Bl/6 mice. Then, we performed histopathological analysis, serum endotoxin assays, and intestinal permeability testing. Additionally, the LPS-TLR4 signaling inhibitor TAK-242 was intraperitoneally injected after colchicine administration to analyze the therapeutic effect.We observed villus height reduction and increased numbers of apoptotic cells in the gastrointestinal epithelium of colchicine-treated mice. Both intestinal permeability and serum endotoxin levels were higher in colchicine-treated mice than in control mice. Although colchicine-poisoned mice died within 25 h, those that also received TAK-242 treatment survived for more than 48 h.Colchicine disrupted intestinal barrier function and caused endotoxin shock. Therapeutic inhibition of LPS-TLR4 signaling might be beneficial for treating acute colchicine poisoning.
2019Unveiling the Interplay between the TLR4/MD2 Complex and HSP70 in the Human Cardiovascular System: A Computational Approach.Int J Mol SciWhile precise mechanisms underlying cardiovascular diseases (CVDs) are still not fully understood, previous studies suggest that the innate immune system, through Toll-like receptor 4 (TLR4), plays a crucial part in the pathways leading to these diseases, mainly because of its interplay with endogenous molecules. The Heat-shock protein 70 family (HSP70-70kDa) is of particular interest in cardiovascular tissues as it may have dual effects when interacting with TLR4 pathways. Although the hypothesis of the HSP70 family members acting as TLR4 ligands is becoming widely accepted, to date no co-crystal structure of this complex is available and it is still unknown whether this process requires the co-adaptor MD2. In this study, we aimed at investigating the interplay between the TLR4/MD2 complex and HSP70 family members in the human cardiovascular system through transcriptomic data analysis and at proposing a putative interaction model between these proteins. We report compelling evidence of correlated expression levels between TLR4 and MD2 with HSP70 cognate family members, especially in heart tissue. In our molecular docking simulations, we found that HSP70 in the ATP-bound state presents a better docking score towards the TLR4/MD2 complex compared to the ADP-bound state (-22.60 vs. -10.29 kcal/mol, respectively). Additionally, we show via a proximity ligation assay for HSP70 and TLR4, that cells stimulated with ATP have higher formation of fluorescent spots and that MD2 might be required for the complexation of these proteins. The insights provided by our computational approach are potential scaffolds for future in vivo studies investigating the interplay between the TLR4/MD2 complex and HSP70 family members in the cardiovascular system.
2019Complement System Inhibition Modulates the Pro-Inflammatory Effects of a Snake Venom Metalloproteinase.Front ImmunolEnvenomation by snakes causes prominent local effects, including pain, oedema, local bleeding, blistering and necrosis, and systemic manifestations, such as hemorrhage, hypotension, shock and acute renal failure. These snake venoms are able to activate the complement system and induce the generation of anaphylatoxins, whose mechanisms include the direct cleavage of complement components by snake venom metalloproteinases and serine proteinases present in the venoms. A metalloproteinase able to activate the three complement pathways and generate active anaphylatoxins, named C-SVMP, was purified from the venom of . Considering the inflammatory nature of venoms and the complement-activation property of C-SVMP, in the present work, we investigated the inflammatory effects of C-SVMP in a human whole blood model. The role of the complement system in the inflammatory process and its modulation by the use of compstatin were also investigated. C-SVMP was able to activate the complement system in the whole blood model, generating C3a/C3a desArg, C5a/C5a desArg and SC5b-9. This protein was able to promote an increase in the expression of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in leukocytes. Inhibition of component C3 by compstatin significantly reduced the production of anaphylatoxins and the Terminal Complement Complex (TCC) in blood plasma treated with the toxin, as well as the expression of CD11b, C3aR, and C5aR on leukocytes. C-SVMP was able to induce increased production of the cytokines IL-1β and IL-6 and the chemokines CXCL8/IL-8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood model. The addition of compstatin to the reactions caused a significant reduction in the production of IL-1β, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with C-SVMP. We therefore conclude that C-SVMP is able to activate the complement system, which leads to an increase in the inflammatory process. The data obtained with the use of compstatin indicate that complement inhibition may significantly control the inflammatory process initiated by snake venom toxins.
2019Phosphorylated Heat Shock Protein 27 Inhibits Lipopolysaccharide-Induced Inflammation in Thp1 Cells by Promoting TLR4 Endocytosis, Ubiquitination, and Degradation.InflammationThe aims of this study were to investigate the effect of Hsp27 on LPS-induced inflammation and identify the precise mechanisms about how Hsp27 regulates LPS-induced TLR4 signaling in Thp1 cells. Thp1 cells were transfected with Flag-Hsp27 or pcDNA3.1, and then treated with LPS for indicated time. TNF-α, IL-1β, and IL-6 were determined by ELISA. The protein levels of Hsp27, p-Hsp27 (Ser15, Ser78, and Ser82), and TLR4 were measured by Western blotting. In vitro study showed that over-expression of Hsp27 downregulated the release of TNF-α, IL-1β, and IL-6 and suppressed the activation of TLR4 signals after stimulated by LPS. The location of TLR4 and RAB5 was detected by confocal microscopy. Immunoprecipitation was used to determine the ubiquitination and degradation of TLR4 and interaction between Hsp27 and TLR4. Results showed that Hsp27 could promote TLR4 endocytosis and ubiquitination and degradation. Further research revealed that Hsp27 was phosphorylated after LPS, only phosphorylated Hsp27 can interact with TLR4 and inhibit the activation of TLR4 signaling, which was demonstrated by inhibition of Hsp27 phosphorylation with inhibitors or transfection of Hsp27 mutants into Thp1 cells. Phosphorylated Hsp27 reduced the release of TNF-α, IL-1β, and IL-6, and suppressed the activation of TLR4 signaling by promoting TLR4 endocytosis, ubiquitination, and degradation.
2019The cAMP Pathway Amplifies Early MyD88-Dependent and Type I Interferon-Independent LPS-Induced Interleukin-10 Expression in Mouse Macrophages.Mediators InflammInterleukin-10 (IL-10) is a key anti-inflammatory cytokine, secreted by macrophages and other immune cells to attenuate inflammation. Autocrine type I interferons (IFNs) largely mediate the delayed expression of IL-10 by LPS-stimulated macrophages. We have previously shown that IL-10 is synergistically expressed in macrophages following a costimulus of a TLR agonist and cAMP. We now show that the cAMP pathway directly upregulates IL-10 transcription and plays an important permissive and synergistic role in early, but not late, LPS-stimulated IL-10 mRNA and protein expression in mouse macrophages and in a mouse septic shock model. Our results suggest that the loss of synergism is not due to desensitization of the cAMP inducing signal, and it is not mediated by a positive crosstalk between the cAMP and type I IFN pathways. First, cAMP elevation in LPS-treated cells decreased the secretion of type I IFN. Second, autocrine/paracrine type I IFNs induce IL-10 promoter reporter activity only additively, but not synergistically, with the cAMP pathway. IL-10 promoter reporter activity was synergistically induced by cAMP elevation in macrophages stimulated by an agonist of either TLR4, TLR2/6, or TLR7, receptors which signal via MyD88, but not by an agonist of TLR3 which signals independently of MyD88. Moreover, MyD88 knockout largely reduced the synergistic IL-10 expression, indicating that MyD88 is required for the synergism displayed by LPS with cAMP. This report delineates the temporal regulation of early cAMP-accelerated vs. late type I IFN-dependent IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.
2019The involvement of DAMPs-mediated inflammation in cyclophosphamide-induced liver injury and the protection of liquiritigenin and liquiritin.Eur J PharmacolCyclophosphamide (CPA) is a chemotherapeutic drug widely used in the treatment of breast cancer or leukemia in clinic. However, CPA was reported to have hepatotoxicity. This study aims to observe the engaged mechanism of CPA-induced liver injury in mice and the protection of liquiritin (LQ) and liquiritigenin (LG). Liver sinusoidal endothelial injury induced by CPA (20, 40 mg/kg) in mice was evidenced by the elevated hepatic metalloproteinase-9 (MMP-9) expression, and the results from liver histological evaluation and scanning electron microscope observation. CPA increased hepatic infiltration of neutrophils, liver myeloperoxidase (MPO) activity, serum interleukin-6 (IL-6) content, hepatic IL-6 mRNA expression, toll-like receptor-4 (TLR4) expression and nuclear factor κB (NFκB) activation in mice. Elevated serum contents of damage associated molecular patterns (DAMPs) including high mobility group box 1 (HMGB1), heat shock protein 60 (HSP60) and glucose-regulated protein 94 (Grp94) were found in mice treated with CPA. Liver sinusoidal endothelial injury and inflammation induced by CPA were diminished in TLR4 knock-out mice. LG and LQ (40, 80 mg/kg) both ameliorated liver sinusoidal endothelial injury, and reduced the increased hepatic infiltration of neutrophils, MPO activity, hepatic IL-6 mRNA expression and NFκB activation induced by CPA. In summary, these results indicate that TLR4-NFκB-mediated inflammatory injury initiated by DAMPs was critically involved in CPA-induced hepatotoxicity. LG and LQ alleviated CPA-induced liver sinusoidal endothelial injury and inflammatory injury in mice.
2019β-Caryophyllene as a Potential Protective Agent Against Myocardial Injury: The Role of Toll-Like Receptors.MoleculesMyocardial infarction (MI) remains one of the major causes of mortality around the world. A possible mechanism involved in myocardial infarction is the engagement of Toll-like receptors (TLRs). This study was intended to discover the prospective cardioprotective actions of β-caryophyllene, a natural sesquiterpene, to ameliorate isoproterenol (ISO)-induced myocardial infarction through HSP-60/TLR/MyD88/NFκB pathway. β-Caryophyllene (100 or 200 mg/kg/day orally) was administered for 21 days then MI was induced via ISO (85 mg/kg, subcutaneous) on 20th and 21st days. The results indicated that ISO induced a significant infarcted area associated with several alterations in the electrocardiogram (ECG) and blood pressure (BP) indices and caused an increase in numerous cardiac indicators such as creatine phosphokinase (CPK), creatine kinase-myocardial bound (CK-MB), lactate dehydrogenase (LDH), and cardiac tropinine T (cTnT). In addition, ISO significantly amplified heat shock protein 60 (HSP-60) and other inflammatory markers, such as TNF-α, IL-Iβ, and NFκB, and affected TLR2 and TLR4 expression and their adaptor proteins; Myeloid differentiation primary response 88 (MYD88), and TIR-domain-containing adapter-inducing interferon-β (TRIF). On the other hand, consumption of β-caryophyllene significantly reversed the infarcted size, ECG and BP alterations, ameliorated the ISO elevation in cardiac indicators; it also notably diminished HSP-60, and subsequently TLR2, TLR4, MYD88, and TRIF expression, with a substantial reduction in inflammatory mediator levels. This study revealed the cardioprotective effect of β-caryophyllene against MI through inhibiting HSP-60/TLR/MyD88/NFκB signaling pathways.
2019Role of mechanical and thermal damage in pericapsular inflammatory response to injectable silicone in a rabbit model.PLoS OneSilicone is used widely for tissue augmentation in humans. However, late complications, such as delayed inflammation and capsular contracture, remain uncharacterized, despite their importance. In the present study, we aimed to determine whether mechanical and thermal damage induce capsular inflammation around a foreign body, and elucidate the biological mechanism underlying this phenomenon. We injected silicone into the subcutaneous layer of the skin of New Zealand white rabbits. The rabbits were divided into two groups: the control group received no treatment; in the experimental group, external force was applied near the injection silicone using high-intensity focused ultrasound (HIFU). Tissues near the injected silicone were harvested from both groups on Days 4, 7, and 30 after HIFU treatment for comparative analysis. Visual and histological examinations showed clearly increased inflammation in the experimental group compared with that in the control group. Furthermore, capsular tissue from the experimental group displayed markedly increased collagen production. Immunofluorescence revealed marked activation of macrophages in the early stages of inflammation (Days 4 and 7 after HIFU treatment), which decreased on Day 30. Assessment of cytokine activation showed significantly increased expression of heat shock protein (HSP)27, HSP60, HSP70, toll-like receptor (TLR)2, TLR4, and interleukin-8 in the experimental group. The expression of transforming growth factor-β1 did not increase significantly in the experimental group. In conclusion, damage to tissues around the injected silicone induced capsular inflammation. Macrophages and damage-associated molecular pattern molecules were involved in the early stages of inflammation. HSP release activated TLRs, which subsequently activated innate immunity and induced the inflammatory response.
2019Effect of melatonin on torsion and reperfusion induced pathogenesis of rat uterus.Biotech HistochemWe investigated the use of melatonin to improve fertility and reduce uterine damage caused by torsion of the uterus in pregnant rats. We used 35 pregnant rats at gestational age 18 days. The animals were randomized into five groups. Group 1 was anesthetized only. Group 2 was subjected to experimental uterine torsion of 360° and the torsion was corrected after 6 h. Group 3 was subjected to uterine torsion of 360°, the torsion was corrected after 6 h and melatonin was administered at the time of correction. Group 4 rats were subjected to 360º uterine torsion and melatonin was administered 6 h later at the time of correction. Group 5 was administered melatonin followed by uterine torsion of 360 degrees followed by correction of torsion 6 h later. Samples were obtained from the uterine horns on the day 1 postpartum. We used Bax, Bcl-2 and caspase 3 staining to measure apoptosis in the uterine tissues. The mRNA levels of Rho-associated, coiled-coil containing protein kinases 1 (ROCK1), homeobox D10 (Hox4 HoxD10), TLR4, NFκB1, caveolin 1 (Cav1) heat shock protein 90 alpha (cytosolic), class B member 1 (Hsp90ab1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were determined using quantitative real-time polymerase chain reaction analysis (qRT-PCR). Bax, Bcl-2 and caspase 3 were detected using immunohistochemistry. No difference was observed among groups with respect to abortion, neonatal mortality or congenital abnormalities. Compared to the control group, the mRNA levels of Rock1, Hox4, TLR4, NFκB1, Cav1 and Hsp90 genes were decreased significantly in the study groups; the decrease was greater in groups 3 and 4, which were treated with melatonin. The greatest amount of Bax staining was found in group 1 and the least amount of Bcl-2 staining was found in groups 4 and 5; the greatest amount of caspase 3 staining was found in group 2. Our findings indicate that melatonin reduced uterine torsion related tissue damage and that its application during torsion was more effective than application following removal of torsion.
2019Suppressive effects of sunitinib on a TLR activation-induced cytokine storm.Eur J PharmacolThe cytokine storm includes a clinically heterogeneous set of life-threatening conditions that are manifested by extremely elevated serum cytokine levels and related symptoms (e.g., septic shock) and is devilishly mediated by Toll-like receptor (TLR) agonists in most situations. A tyrosine kinase inhibitor (TKIs), sunitinib, was screened in our group previously and showed antagonistic activity for cytokine release in a TLR7 stimulation model. In this paper, we further studied its mechanisms on interesting phenomena. In vitro, nearly all of the eleven TKIs decreased the TNF-α levels induced by the TLR7 agonist, especially sunitinib. Furthermore, sunitinib displayed potent inhibition of the cytokine levels triggered by several types of TLR ligands, including TLR3, TLR4, TLR7/8 and TLR9, in mouse spleen lymphocytes, mouse BMDCs and human PBMCs. The in vivo results showed that sunitinib efficiently depressed the LPS-induced cytokine storm, i.e., rapid and intense production of TNF-α and IL-6. Sunitinib further increased the survival time and decreased damage to mice. As for the immunosuppressive mechanisms of sunitinib, at least the PDGFR-activated ERK and p38 pathways were critical, although we could not rule out the possibility of other pathways being involved. In conclusion, our study demonstrated the inhibitory actions of TKIs on the cytokine storm induced by TLR ligands, primarily through PDGFR pathways, which could be potentially used to reduce cytokine storms in septic shock.
2019Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage.PLoS PathogDengue virus (DENV) infection, the most common mosquito-transmitted viral infection, can cause a range of diseases from self-limiting dengue fever to life-threatening dengue hemorrhagic fever and shock syndrome. Thrombocytopenia is a major characteristic observed in both mild and severe dengue disease and is significantly correlated with the progression of dengue severity. Previous studies have shown that DENV nonstructural protein 1 (NS1), which can be secreted into patients' blood, can stimulate immune cells via Toll-like receptor 4 (TLR4) and can cause endothelial leakage. However, it is unclear whether DENV NS1 can directly induce platelet activation or cause thrombocytopenia during DENV infection. In this study, we first demonstrated that DENV but not Zika virus cell culture supernatant could induce P-selectin expression and phosphatidylserine (PS) exposure in human platelets, both of which were abolished when NS1 was depleted from the DENV supernatant. Similar results were found using recombinant NS1 from all four serotypes of DENV, and those effects were blocked in the presence of anti-NS1 F(ab')2, anti-TLR4 antibody, a TLR4 antagonist (Rhodobacter sphaeroides lipopolysaccharide, LPS-Rs) and a TLR4 signaling inhibitor (TAK242), but not polymyxin B (an LPS inhibitor). Moreover, the activation of platelets by DENV NS1 promoted subthreshold concentrations of adenosine diphosphate (ADP)-induced platelet aggregation and enhanced platelet adhesion to endothelial cells and phagocytosis by macrophages. Finally, we demonstrated that DENV-induced thrombocytopenia and hemorrhage were attenuated in TLR4 knockout and wild-type mice when NS1 was depleted from DENV supernatant. Taken together, these results suggest that the binding of DENV NS1 to TLR4 on platelets can trigger its activation, which may contribute to thrombocytopenia and hemorrhage during dengue infection.
2019Differential role of MyD88 signaling in Streptococcus suis serotype 2-induced systemic and central nervous system diseases.Int ImmunolStreptococcus suis serotype 2 is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the systemic and central nervous system (CNS) infections. However, S. suis serotype 2 strains are genetically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies. Yet, most studies have used 'classical' virulent Eurasian ST1 or ST7 strains, even though ST25 and ST28 strains account for most isolates in North America. While recognition of S. suis by innate immune cells has been associated with the myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptor (TLR) pathway in vitro, particularly surface-associated TLR2, little information is available regarding its role in vivo. This study demonstrates for the first time a differential role of MyD88 signaling in S. suis-induced systemic and CNS diseases, regardless of strain background diversity. The MyD88-dependent pathway is critical for the development of systemic disease via its role in inflammation, which subsequently controls bacterial burden. However, and differently from what has been described in vitro, TLR2 and TLR4 individually do not contribute to systemic disease, suggesting possible compensation in their absence and/or a collaborative role with other MyD88-dependent TLRs. On the other hand, CNS disease does not necessarily require MyD88 signaling and, consequently, neither TLR2 nor TLR4, suggesting a partial implication of other pathways. Finally, regardless of its notable heterogeneity, recognition of S. suis serotype 2 appears to be similar, indicating that recognized components are conserved motifs.
2019Interplay between heat shock proteins, inflammation and cancer: a potential cancer therapeutic target.Am J Cancer ResThe historical relationship between cancer and inflammation has long been evaluated, and dates back to the early work of Virchow (1863), where he hypothesised that chronic inflammation as a direct cause of tissue injury and infection, could actually promote tissue proliferation. At that period in time however, the exact mechanisms that mediated this relationship were little understood. Subsequent studies have since then demonstrated that chronic inflammation plays significant roles in microenvironments, mostly in the progression of tumours, probably, through over-secretion of proinflammatory cytokines and other immune-killing apparatus such as reactive oxygen species (ROS) which cause damage to normal cells leading to DNA damage and increased cellular mutation rates. Recently, the identification of DNA lesion 5-chlorocytosine (5-CIC) created by hypochlorous acid (HOCl) secreted to nullify or kill infectious agents and toll-like receptor 4 (TLR4)-mediated chronic inflammation in the human gut, has become the latest evidence linking inflammation directly to cancer. The key to cellular survival and adaptation under unfavourable or pathological conditions is the expression of heat shock proteins (HSPs) also called molecular chaperones. These proteins play essential roles in DNA repair processes by maintaining membrane integrity, orderliness and stability of client proteins that play prominent roles in DNA repair mechanisms. More so, HSPs have also been shown to modulate the effects of pro-inflammatory/apoptotic cytokines through the inhibition of cascades leading to the generation of ROS-mediated DNA damage, while promoting the DNA repair mechanism, thus playing prominent roles in various stages of DNA repair and cancer progression. Hence, studies targeting HSPs and their inhibitors in inflammation, DNA damage, and repair, could improve current cancer therapeutic efficiency. Here the focus will be on the relationship between HSPs, inflammation and cancer, as well as roles of HSPs in DNA damage response (DDR).
2019Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock.Cell Chem BiolCysteine persulfide and cysteine polysulfides are cysteine derivatives having sulfane sulfur atoms bound to cysteine thiol. Accumulating evidence has suggested that cysteine persulfides/polysulfides are abundant in prokaryotes and eukaryotes and play important roles in diverse biological processes such as antioxidant host defense and redox-dependent signal transduction. Here, we show that enhancement of cellular polysulfides by using polysulfide donors developed in this study resulted in marked inhibition of lipopolysaccharide (LPS)-initiated macrophage activation. Polysulfide donor treatment strongly suppressed LPS-induced pro-inflammatory responses in macrophages by inhibiting Toll-like receptor 4 (TLR4) signaling. Other TLR signaling stimulants-including zymosan A-TLR2 and poly(I:C)-TLR3-were also significantly suppressed by polysulfur donor treatment. Administration of polysulfide donors protected mice from lethal endotoxin shock. These data indicate that cellular polysulfides negatively regulate TLR4-mediated pro-inflammatory signaling and hence constitute a potential target for inflammatory disorders.
2019Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure.StressAt low temperatures, the liver increases glucose utilization and expresses RNA-binding motif 3 (RBM3) to cope with cold exposure. In this study, the expression of heat shock protein 70 (HSP70), Toll-like receptor 4 (TLR4), bone marrow differentiation factor 88 (MYD88), and phosphorylated nuclear factor-κB (NF-κB) was consistent with fluctuations in insulin in fasted cold-exposed mice. We also found up-regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in acute cold exposure with a decrease in core body temperature. RBM3 transcription and translation were activated 2 h after cold exposure. The anti-apoptotic factor Bcl-2/Bax ratio also increased, while expression of apoptosis factors: cleaved caspase-3, cleaved poly(ADP-ribose)polymerase 1 (PARP-1) and cytochrome-c (Cyt-c) was unchanged. Liver glycogen was depleted after 2 h of cold exposure, and blood glucose decreased after 4 h. Glycogen synthase kinase 3β (GSK3β) phosphorylation continued to increase to promote hepatic glycogen synthesis. We found a high level of protein kinase B (AKT) phosphorylation after 6 h of cold exposure. In addition, we demonstrated that after cold exposure for 2 h, in the liver, continued phosphorylation of fructose-2,6-diphosphate (PFKFB2) and decreased accumulation of glycogen intermediates fructose-1,6-diphosphate (FDP) and pyruvic acid (PA). In summary, the liver responds to cold exposure through a number of different pathways, including activation of HSP70/TLR4 signaling pathways, up-regulation of RBM3 expression, and increased glycolysis and glycogen synthesis. We propose a possible signaling pathway in which regulation of RBM3 expression by the liver affects the AKT metabolic signaling pathway. Lay summary In response to changes in ambient temperature, mice regulate global metabolism and gene expression through hormones. This study focused on the effects of environmental hypothermia on molecular pathways of glucose metabolism in the liver, which is the important metabolic organ in mice. This provides a basis for further study of mice against cold exposure damage.
2019A novel TLR4 binding protein, 40S ribosomal protein S3, has potential utility as an adjuvant in a dendritic cell-based vaccine.J Immunother CancerDendritic cells (DCs) are professional antigen presenting cells (APCs), which can activate antigen-specific CD8+ T cell immunity, resulting in tumor clearance. Immature DCs are usually stimulated by various adjuvants through their immune receptors. Among them, Toll-like receptor 4 (TLR4) has an important role in activating DCs to cause their maturation. In fact, TLR4 is well-known to induce innate and adaptive immune responses against various external microbial or internal damage associated molecular patterns (DAMP). LPS is widely regarded as a strong stimulator of TLR4 signaling. However, LPS is inappropriate for use in humans since it is an endotoxin. Unfortunately, other TLR4 ligands such as HMGB1 or heat shock proteins have weak adjuvant effects. Therefore, there is a need to identify novel, biocompatible, strong, TLR4 ligands.40S ribosomal protein S3 (RPS3) was screened through pull-down assay using TLR4. BMDCs from wild type (WT) and TLR4 knock-out mice were treated by RPS3 to identify the activation and maturation of DCs. T cell generation including memory T cells, tumor prevention, and treatment experiments were performed with BMDCs based vaccination. Also, human DCs originated from patients were treated by RPS3 to confirm the activation and maturation of DCs.In this study, we identified 40S ribosomal protein S3 (RPS3) through a pull-down assay using a variety of human cancer cell-derived proteins that could bind to TLR4. RPS3 was released from tumor cells following treatment with an anticancer drug, and it was shown that the released RPS3 binds to TLR4. Recombinant RPS3 induced maturation and activation of DCs, and following pulsing with tumor specific antigens, these DCs could be used as a vaccine to significantly increase tumor specific CD8IFN-γ T cells, and provide both tumor prevention and tumor treatment effects. The effect of RPS3 on DC maturation and its utility as a vaccine were shown to be dependent on TLR4 using TLR4 knockout mice.This study therefore proved that human cancer cell-derived RPS3, a novel TLR4 ligand, has great potential as an adjuvant in tumor-specific antigen DC-based vaccines.
2019Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction.Front ImmunolDysregulation of macrophage has been demonstrated to contribute to aberrant immune responses and inflammatory diseases. CD11b, expressed on macrophages, plays a critical role in regulating pathogen recognition, phagocytosis, and cell survival. In the present study, we explored the effect of leukadherin-1 (LA1), an agonist of CD11b, on regulating LPS-induced pro-inflammatory response in macrophages and endotoxic shock. Intriguingly, we found that LA1 could significantly reduce mortalities of mice and alleviated pathological injury of liver and lung in endotoxic shock. studies showed that LA1-induced activation of CD11b significantly inhibited the LPS-induced pro-inflammatory response in macrophages of mice. Moreover, LA1-induced activation of CD11b significantly inhibited LPS/IFN-γ-induced pro-inflammatory response in macrophages by inhibiting MAPKs and NF-κB signaling pathways . Furthermore, the mice injected with LA1-treated BMDMs showed fewer pathological lesions than those injected with vehicle-treated BMDMs in endotoxic shock. In addition, we found that activation of TLR4 by LPS could endocytose CD11b and activation of CD11b by LA1 could endocytose TLR4 and , subsequently blocking the binding of LPS with TLR4. Based on these findings, we concluded that LA1-induced activation of CD11b negatively regulates LPS-induced pro-inflammatory response in macrophages and subsequently protects mice from endotoxin shock by partially blocking LPS-TLR4 interaction. Our study provides a new insight into the role of CD11b in the pathogenesis of inflammatory diseases.
2019Inhibition of Cyclin-dependent Kinase 2 Signaling Prevents Liver Ischemia and Reperfusion Injury.TransplantationLiver ischemia and reperfusion injury (IRI) is a major complication of liver transplant, hepatectomy, and hemorrhagic shock. The cyclin-dependent kinase 2 (CDK2) acts as a pivotal regulator of cell cycle and proliferation.This study evaluated the modulation and therapeutic potential of CDK2 inhibition in a mouse model of partial liver warm IRI.Liver IR-triggered intrinsic CDK2 expression, peaking by 0.5 hour of reperfusion and maintaining a high-level throughout 1 to 24 hours. Roscovitine, a specific CDK2 inhibitor, prevented liver IR-mediated damage with abolished serum alanine aminotransferase levels and reserved liver pathology. CDK2 inhibition-mediated liver protection was accompanied by decreased macrophage/neutrophil infiltration, diminished hepatocyte apoptosis, abolished toll like receptor 4 signaling and downstream gene inductions (C-X-C motif ligand-10, Tumor necrosis factor-α, interleukin-1β, and interleukin-6), yet augmented interleukin-10 expression. In vitro, CDK2 inhibition by Roscovitine suppressed macrophage TLR4 activation and further depressed downstream inflammatory signaling (myeloid differentiation factor 88, interferon regulatory transcription factor 3, p38, c-Jun N-terminal kinase, and extracellular-regulated kinase).Our novel findings revealed the critical role of CDK2 in hepatic cytoprotection and homeostasis against liver IRI. As CDK2 inhibition regulated local immune response and prevented hepatocyte death, this study provided the evidence for new treatment approaches to combat IRI in liver transplant.
2019The Single Nucleotide Polymorphism Mal-D96N Mice Provide New Insights into Functionality of Mal in TLR Immune Responses.J ImmunolMyD88 adaptor-like (Mal) protein is the most polymorphic of the four key adaptor proteins involved in TLR signaling. TLRs play a critical role in the recognition and immune response to pathogens through activation of the prototypic inflammatory transcription factor NF-κB. The study of single nucleotide polymorphisms in TLRs, adaptors, and signaling mediators has provided key insights into the function of the corresponding genes but also into the susceptibility to infectious diseases in humans. In this study, we have analyzed the immune response of mice carrying the human Mal-D96N genetic variation that has previously been proposed to confer protection against septic shock. We have found that Mal-D96N macrophages display reduced cytokine expression in response to TLR4 and TLR2 ligand challenge. Mal-D96N macrophages also display reduced MAPK activation, NF-κB transactivation, and delayed NF-κB nuclear translocation, presumably via delayed kinetics of Mal interaction with MyD88 following LPS stimulation. Importantly, Mal-D96N genetic variation confers a physiological protective phenotype to in vivo models of LPS-, -, and influenza A virus-induced hyperinflammatory disease in a gene dosage-dependent manner. Together, these results highlight the critical role Mal plays in regulating optimal TLR-induced inflammatory signaling pathways and suggest the potential therapeutic advantages of targeting the Mal D96 signaling nexus.
2019The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock.ImmunitySepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-β (IFN-β)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.
2019α-toxin impairs granulocyte colony-stimulating factor receptor-mediated granulocyte production while triggering septic shock.Commun BiolDuring bacterial infection, granulocyte colony-stimulating factor (G-CSF) is produced and accelerates neutrophil production from their progenitors. This process, termed granulopoiesis, strengthens host defense, but α-toxin impairs granulopoiesis via an unknown mechanism. Here, we tested whether G-CSF accounts for the α-toxin-mediated impairment of granulopoiesis. We find that α-toxin dramatically accelerates G-CSF production from endothelial cells in response to Toll-like receptor 2 (TLR2) agonists through activation of the c-Jun N-terminal kinase (JNK) signaling pathway. Meanwhile, α-toxin inhibits G-CSF-mediated cell proliferation of Ly-6G neutrophils by inducing degradation of G-CSF receptor (G-CSFR). During sepsis, administration of α-toxin promotes lethality and tissue injury accompanied by accelerated production of inflammatory cytokines in a TLR4-dependent manner. Together, our results illustrate that α-toxin disturbs G-CSF-mediated granulopoiesis by reducing the expression of G-CSFR on neutrophils while augmenting septic shock due to excess inflammatory cytokine release, which provides a new mechanism to explain how pathogenic bacteria modulate the host immune system.
2019Extracellular CIRP (eCIRP) and inflammation.J Leukoc BiolCold-inducible RNA-binding protein (CIRP) was discovered 2 decades ago while studying the mechanism of cold stress adaptation in mammals. Since then, the role of intracellular CIRP (iCIRP) as a stress-response protein has been extensively studied. Recently, extracellular CIRP (eCIRP) was discovered to also have an important role, acting as a damage-associated molecular pattern, raising critical implications for the pathobiology of inflammatory diseases. During hemorrhagic shock and sepsis, inflammation triggers the translocation of CIRP from the nucleus to the cytosol and its release to the extracellular space. eCIRP then induces inflammatory responses in macrophages, neutrophils, lymphocytes, and dendritic cells. eCIRP also induces endoplasmic reticulum stress and pyroptosis in endothelial cells by activating the NF-κB and inflammasome pathways, and necroptosis in macrophages via mitochondrial DNA damage. eCIRP works through the TLR4-MD2 receptors. Studies with CIRP mice reveal protection against inflammation, implicating eCIRP to be a novel drug target. Anti-CIRP Ab or CIRP-derived small peptide may have effective therapeutic potentials in sepsis, acute lung injury, and organ ischemia/reperfusion injuries. The current review focuses on the pathobiology of eCIRP by emphasizing on signal transduction machineries, leading to discovering novel therapeutic interventions targeting eCIRP in various inflammatory diseases.
2019Effects of Methionine-Cysteine Injection on Embryonic Development, Antioxidant Status, IGF-I and TLR4 Gene Expression, and Jejunum Histomorphometry in Newly Hatched Broiler Chicks Exposed to Heat Stress during Incubation.Animals (Basel)Sulfur amino acids are typically the first-limiting amino acids (AA) used in protein metabolism in poultry. Therefore, we hypothesized that their utilization in the pre-hatch period would affect embryonic development, IGF-I and TLR4 gene expression, antioxidant status, serum biochemical profile, and jejunum histomorphometry of newly hatched Ross broiler chicks incubated under heat stress conditions. A total of 150 fertile broiler eggs were subjected to heat stress (39.6 °C for 6 h/d) from d10 until d18 and injected at d 17.5 of incubation with methionine and cysteine (Met-Cys) at a dose of 5.90 mg l-methionine plus 3.40 mg l-cysteine. The effects of Met-Cys administration were examined and compared with the control (Non-injected group) and 0.75% NaCl injected group. The results showed that no significant differences among all groups in serum protein profiles (total protein, albumin, globulin, and albumin/globulin ratio) and creatine kinase were observed. The level of heat shock protein-90 was decreased with Met-Cys injection. The injection of Met-Cys also improved the values of total antioxidants capacity and glutathione in examined tissues. At the same time, an increase in fold change mRNA abundance of IGF-I and TLR4 was observed after Met-Cys injection in tested tissues. Finally, an increase of 29% in villus area was found after Met-Cys injection compared to the control group. In conclusion, the injection of Met-Cys resulted in improved embryonic development, IGF-I and TLR4 gene expression, antioxidant status and jejunum histomorphometry of newly hatched broiler chicks exposed to heat stress during incubation.
2019Inhibiting expression of HSP60 and TLR4 attenuates paraquat-induced microglial inflammation.Chem Biol InteractAccumulating evidences suggest that heat shock protein 60 (HSP60) and toll-like receptor 4 (TLR4) are involved in triggering inflammatory response in microglia. Paraquat (PQ) evokes microglial inflammation by up-regulating expression of HSP60-TLR4-myeloid differentiation factor 88 (Myd88)-nuclear factor-kappa B (NF-κB) in vitro. The aim of this study is to investigate the potential modulatory roles of HSP60 and TLR4 in PQ-induced inflammation. Before treated with PQ, microglia BV cells were pretreated using siRNA to knockdown HSP60 or with specific inhibitor to inhibit TLR4 expression. Expression of TLR4 and MyD88, and nuclear translocation of NF-κB subunit p65 were studied with immunoblotting and immunofluorescence, respectively. Expression of pro-inflammatory factors was assessed with quantitative real-time PCR. Knockdown of HSP60 or inhibition of TLR4 significantly reduced the expression of TLR4 and MyD88 and decreased the accumulation of NF-κB p65 in the nucleus. Gene expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) were also significantly decreased in response to PQ. These results suggest that HSP60 and TLR4 can modulate intracellular signaling of PQ-induced inflammation. Inhibiting HSP60 or TLR4 reduces significantly the intensity of inflammation in PQ-activated microglia.
2019The pituitary gland prevents shock-associated death by controlling multiple inflammatory mediators.Biochem Biophys Res CommunBacterial infections cause a major burden of disease worldwide. Sepsis and septic shock are life-threatening complications of infections. The hypothalamic-pituitary-adrenal (HPA) axis initiates the release of endogenous glucocorticoids that modulate the host stress response and acute inflammation during septic shock. It is an ongoing controversial debate, if therapeutic manipulations of the HPA axis could benefit the clinical situation in the context of shock. Here, we have studied Long Evans rats with hypophysectomy followed by endotoxic shock. The shock-associated lethality was substantially higher in hypophysectomized rats as compared to control mice after cranial sham surgery (7-day survival rates: 27% vs. 89%). Fluorimetric bead-based assays were used to quantify the release of >20 cytokines and chemokines. The surgical removal of the pituitary gland resulted in greatly increased plasma concentrations of mediators such as IL-1α/IL-1β (10-12-fold), TNFα (19-fold), IL-6 (111-fold), IL-10 (10-fold) as well as the Th1 cytokines, Interferon-γ (8-fold), IL-12 (4-fold) and IL-18 (9-fold) after intra-peritoneal lipopolysaccharide (LPS) injections. In contrast, MIP-1α and Leptin were negatively associated with hypophysectomy. The Th2 cytokines, IL-4 and IL-13, as well as G-CSF, VEGF, IP-10 and RANTES were not significantly affected. The gene expression of the IL-6/IL-12 family cytokine, IL-27p28 was profoundly increased after pituitary gland removal followed by endotoxic shock. A dose-dependent reduction of LPS/TLR4-induced IL-27p28 release by glucococorticoids was observed in cultured rodent macrophages (C57BL/6J) as well as in vivo. This study reveals that the neuroendocrine influences of the HPA axis on the shock-associated inflammatory response are more selective and complex than previously known. These findings will be helpful to predict some of the consequences of therapeutic manipulations of the HPA in the context of sepsis and septic shock.
2018Fh15 Blocks the Lipopolysaccharide-Induced Cytokine Storm While Modulating Peritoneal Macrophage Migration and CD38 Expression within Spleen Macrophages in a Mouse Model of Septic Shock.mSphereSepsis caused by Gram-negative bacteria is the consequence of an unrestrained infection that continuously releases lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to multiorgan failure and death. After scrutinizing the immune modulation exerted by a recombinant fatty acid binding protein termed Fh15, our group demonstrated that addition of Fh15 to murine macrophages 1 h prior to LPS stimulation significantly suppresses the expression of proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL1-β). The present study aimed to demonstrate that Fh15 could exert a similar anti-inflammatory effect using a mouse model of septic shock. Among the novel findings reported in this article, (i) Fh15 suppressed numerous serum proinflammatory cytokines/chemokines when injected intraperitoneally 1 h after exposure of animals to lethal doses of LPS, (ii) concurrently, Fh15 increased the population of large peritoneal macrophages (LPMs) in the peritoneal cavity (PerC) of LPS-injected animals, and (iii) Fh15 downregulated the expression on spleen macrophages of CD38, a cell surface ectoenzyme with a critical role during inflammation. These findings present the first evidence that the recombinant parasitic antigen Fh15 is an excellent modulator of the PerC cell content and macrophage activation, endorsing Fh15's potential as a drug candidate against sepsis-related inflammatory response. Sepsis is a potentially life-threatening complication of an infection. Sepsis is mostly the consequence of systemic bacterial infections leading to exacerbated activation of immune cells by bacterial products, resulting in enhanced release of inflammatory mediators. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a critical factor in the pathogenesis of sepsis, which is sensed by Toll-like receptor 4 (TLR4). The scientific community highly pursues the development of antagonists capable of blocking the cytokine storm by blocking TLR4. We report here that a recombinant molecule of 14.5 kDa belonging to the fatty acid binding protein (Fh15) is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock when administered by the intraperitoneal route 1 h after a lethal LPS injection. These results suggest that Fh15 is an excellent candidate for drug development against endotoxemia.
2018Conjugate of Enkephalin and Temporin Peptides as a Novel Therapeutic Agent for Sepsis.Bioconjug ChemAntimicrobial peptides (AMPs) exhibit a wide spectrum of actions, ranging from a direct bactericidal effect to multifunctional activities as immune effector molecules. The aim of this study was to examine the anti-inflammatory properties of a DAL-PEG-DK5 conjugate composed of a lysine-rich derivative of amphibian temporin-1CEb (DK5) and dalargin (DAL), the synthetic Leu-enkephalin analogue. Detailed study of the endotoxin-neutralizing activity of the peptide revealed that DAL-PEG-DK5 interacts with LPS and the LPS binding protein (LBP). Moreover, DAL-PEG-DK5 prevented dimerization of TLR4 at the macrophage surface upon LPS stimulation. This inhibited activation of the NF-κB signaling pathway and markedly reduced pro-inflammatory cytokine production. Finally, we showed that aggregation of DAL-PEG-DK5 into amyloid-like structures induced by LPS neutralized the endotoxin proinflammatory activity. Consequently, DAL-PEG-DK5 reduced morbidity and mortality in vivo, in a mouse model of endotoxin-induced septic shock. Collectively, the data suggest that DAL-PEG-DK5 is a promising therapeutic compound for sepsis.
2018Medium-Chain Triglycerides Attenuate Liver Injury in Lipopolysaccharide-Challenged Pigs by Inhibiting Necroptotic and Inflammatory Signaling Pathways.Int J Mol SciThis study was conducted to investigate whether medium-chain triglycerides (MCTs) attenuated lipopolysaccharide (LPS)-induced liver injury by down-regulating necroptotic and inflammatory signaling pathways. A total of 24 pigs were randomly allotted to four treatments in a 2 × 2 factorial design including diet (0 and 4% MCTs) and immunological challenge (saline and LPS). After three weeks of feeding with or without 4% MCTs, pigs were challenged with saline or LPS. MCTs led to a significant increase in eicosapentaenoic acid, docosahexaenoic acid and total (n-3) polyunsaturated fatty acid concentrations. MCTs attenuated LPS-induced liver injury as indicated by an improvement in liver histomorphology and ultrastructural morphology of hepatocytes, a reduction in serum alanine aminotransferase and alkaline phosphatase activities as well as an increase in claudin-1 protein expression. In addition, MCTs also reduced serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 concentrations, liver TNF-α and IL-1β mRNA expression and protein concentrations and enhanced liver heat shock protein 70 protein expression in LPS-challenged pigs. Moreover, MCTs decreased mRNA expression of receptor-interacting serine/threonine-protein kinase () 3, mixed-lineage kinase domain-like protein () and phosphoglycerate mutase 5 and inhibited MLKL phosphorylation in the liver. Finally, MCTs decreased liver mRNA expression of toll-like receptor () 4, nucleotide-binding oligomerization domain protein () 1 and multiple downstream signaling molecules. MCTs also suppressed LPS-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and increased extracellular signal-related kinase 1/2 phosphorylation in the liver. These results indicated that MCTs are capable of attenuating LPS-induced liver damage by suppressing hepatic necroptotic (RIP1/RIP3/MLKL) and inflammatory (TLR4/NOD1/p38 MAPK) signaling pathways.
2019Aging leads to dysfunctional innate immune responses to TLR2 and TLR4 agonists.Aging Clin Exp ResSepsis is more common in the elderly. TNF⍺ is recognized as an important mediator in sepsis and Toll-like receptors (TLRs) play an important role in initiating signaling cascades to produce TNF⍺. Little is known about how innate immunity is altered in healthy human aging that predisposes to sepsis.We tested the hypothesis that aging dysregulates the innate immune response to TLR 2 and 4 ligands. We performed whole blood assays on 554 healthy subjects aged 40-80 years. TNFα production was measured at baseline and after stimulation with the TLR2 agonists: peptidoglycan, lipoteichoic acid, Pam3CysK, Zymosan A and the TLR4 agonist lipopolysaccharide (LPS). In a subset of subjects (n = 250), we measured Toll-like receptor (TLR) 2, 4 and MyD88 expression using real-time PCR.We measured a 2.5% increase per year in basal secretion of TNFα with aging (n = 554 p = 0.02). Likewise, TNFα secretion was increased with aging after stimulation with peptidoglycan (1.3% increase/year; p = 0.0005) and zymosan A (1.1% increase/year p = 0.03). We also examined the difference between baseline and stimulated TNFα for each individual. We found that the increase was driven by the elevated baseline levels. In fact, there was a diminished stimulated response to LPS (1.9% decrease/year; p = 0.05), lipoteichoic acid (2.1% decrease/year p = 0.03), and Pam3CysK (2.6% decrease/year p = 0.0007). There were no differences in TLR or MyD88 mRNA expression with aging, however, there was an inverse relationship between TLR expression and stimulated TNFα production.With aging, circulating leukocytes produce high levels of TNFα at baseline and have inadequate responses to TLR2 and TLR4 agonists. These defects likely contribute to the increased susceptibility to sepsis in older adults.
2018Extracellular Hsp70 modulates the inflammatory response of cigarette smoke extract in NCI-H292 cells.Exp PhysiolWhat is the central question of this study? Does extracellular heat shock protein 70 (eHsp70) alter cigarette smoke extract (CSE)-induced inflammatory responses in NCI-H292 bronchial epithelial cells? What is the main finding and its importance? eHsp70 modulates inflammatory responses and TLR2, TLR4 and Hsp70 gene expression, and protects NCI-H292 cells against CSE-induced cytotoxicity. eHsp70 might be implicated in development of inflammatory diseases affected by cigarette smoke, such as COPD.One of the major risk factors for development of chronic obstructive pulmonary disease (COPD) is cigarette smoke. Extracellular Hsp70 (eHsp70) is increased in sera of COPD patients, and can act as damage-associated molecular pattern (DAMP). In this study, we explored inflammatory parameters (cytokine concentrations, Toll-like receptor (TLR) 2 and 4 and Hsp70 expression, mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) activation, and cytotoxicity) after exposure of bronchial-epithelial NCI-H292 cells to cigarette smoke extract (CSE) alone (2.5 and 15%) and in combinations with recombinant human (rh) Hsp70 (0.3, 1 and 3 μg ml ). We applied specific MAPKs, NF-κB and Hsp70 inhibitors to elucidate rhHsp70 inflammation-associated responses. CSE alone and combinations of 15% CSE with rhHsp70 stimulated IL-1α, IL-6 and IL-8 release. However, rhHsp70 applied with 2.5% CSE decreased secretion of cytokines indicating antagonistic effects. Individual and combined treatments with 2.5% CSE suppressed TLR2 expression. CSE at 15% induced TLR2 and TLR4 gene expression, whereas rhHsp70 abolished that effect. rhHsp70 and 15% CSE alone reduced, while their combination increased, intracellular Hsp70 mRNA level. CSE alone and in combination with rhHsp70 activated extracellular signal-regulated kinase and p38 MAPKs, while inhibition of MAPKs, NF-κB and Hsp70 attenuated IL-6 and IL-8 secretion. CSE at 15% reduced cell viability and induced apoptosis, as shown by MTS and caspases-3/7 assays. CSE at 2.5% alone stimulated lactate dehydrogenase release, but cellular membrane integrity remained intact in co-treatments with rhHsp70. rhHsp70 might modulate the inflammatory response of CSE and could also protect NCI-H292 cells against CSE cytotoxicity. Those effects are implemented via MAPK and NF-κB signalling pathways.
2018Dietary curcumin supplementation does not alter peripheral blood mononuclear cell responses to exertional heat stress.Eur J Appl PhysiolCurcumin reduces gut barrier damage and plasma cytokine responses to exertional heat stress. However, the role of peripheral blood mononuclear cell (PBMC) in this response remains unclear.This work investigated the effect of 3 days of 500 mg/day dietary curcumin supplementation on PBMC responses to exertional heat stress in non-heat acclimated humans.Eight participants ran (65% VO) for 60 min in an environmental chamber (37 °C/25% RH) two times (curcumin/placebo). Blood samples were collected pre, post, 1 h post, and 4 h post-exercise. PBMC were isolated from blood samples and the protein content of markers along the TLR4 signaling pathway (TLR4, MyD88, pNF-κB, NF-κB), indicators of cellular energy status (SIRT1 and p-AMPK), and mediators of cellular heat shock response (pHSF-1 and HSP70) were examined with Western blot. Data were analyzed with two-way (condition × time) RM-ANOVAs with Newman-Keuls post hocs.As compared to placebo, curcumin did not alter protein expression in PBMC (p > 0.05). However, in both study conditions at 1 h post-reductions were noted in TLR 4 (- 21.5%; p = 0.03), HSP70 (- 11.0%; p = 0.04), pAMPK (- 48.5%; p < 0.01), and SIRT1 (- 47.8%; p < 0.01). Remarkably, the ratio of pNF-κB to NF-κB was elevated in both conditions at this same timepoint (+ 75.4%; p = 0.02).Inflammatory protein expression in PBMC did not differ between curcumin and placebo conditions. Downregulation of pAMPK/SIRT1 and release of HSP70 to the bloodstream may compensate for reduced TLR4, allowing PBMC to maintain inflammatory capacity and preventing an "open window" during the hours following hyperthermic exercise.
2019Recent advances in endotoxin tolerance.J Cell BiochemEndotoxin tolerance is defined as a reduced capacity of a cell to respond endotoxin (lipopolysaccharide, LPS) challenge after an initial encounter with endotoxin in advance. The body becomes tolerant to subsequent challenge with a lethal dose of endotoxin and cytokines release and cell/tissue damage induced by inflammatory reaction are significantly reduced in the state of endotoxin tolerance. The main characteristics of endotoxin tolerance are downregulation of inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and C-X-C motif chemokine 10 (CXCL10) and upregulation of anti-inflammatory cytokines such as IL-10 and transforming growth factor β (TGF-β). Therefore, endotoxin tolerance is often regarded as the regulatory mechanism of the host against excessive inflammation. Endotoxin tolerance is a complex pathophysiological process and involved in multiple cellular signal pathways, receptor alterations, and biological molecules. However, the exact mechanism remains elusive up to date. To better understand the underlying cellular and molecular mechanisms of endotoxin tolerance, it is crucial to investigate the comprehensive cellular signal pathways, signaling proteins, cell surface molecules, proinflammatory and anti-inflammatory cytokines, and other mediators. Endotoxin tolerance plays an important role in reducing the mortality of sepsis, endotoxin shock, and other endotoxin-related diseases. Recent reports indicated that endotoxin tolerance is also related to other diseases such as cystic fibrosis, acute coronary syndrome, liver ischemia-reperfusion injury, and cancer. The aim of this review is to discuss the recent advances in endotoxin tolerance mainly based on the cellular and molecular mechanisms by outline the current state of the knowledge of the involvement of the toll-like receptor 4 (TLR4) signaling pathways, negative regulate factor, microRNAs, apoptosis, chromatin modification, and gene reprogramming of immune cells in endotoxin tolerance. We hope to provide a new idea and scientific basis for the rational treatment of endotoxin-related diseases such as endotoxemia, sepsis, and endotoxin shock clinically.
2018Small interfering RNA based knock down of acute heat shock and or GGA inducible bovine heat shock protein 70 may interfere invitro expression pattern of TLR2/4 and NOD1/2.J Therm BiolHeat shock protein 70 (Hsp70) is a widely known mammalian stress-inducible protein critical for cytoprotection against different stressors. Despite the chaperone based cytoprotective functions, intracellular Hsp70 also participates in diverse immune modulatory activities. To investigate the immune modulatory effect of inducible bovine Hsp70, we examined the expression profile of four major pattern recognition receptors (PRRs) viz. TLR2/4 and NOD1/2 using two different invitro cell cultured models. We observed that, invitro acute heat stress and Geranylgeranylacetone (GGA) induction increased the level of Hsp70 which upregulated the expression of all the four PRRs in both the cell cultured models. However, the expression level of TLR4 was found to be highest followed by NOD2, TLR2 and NOD1. Conversely, specific siRNA based knockdown of Hsp70 showed a decreased expression level of all the four PRRs. This study may add some references pertaining to the innate immune modulatory effects of bovine heat shock protein 70.
2018The Role of p38 and CK2 Protein Kinases in the Response of RAW 264.7 Macrophages to Lipopolysaccharide.Biochemistry (Mosc)The role of protein kinases p38 and CK2 (casein kinase II) in the response of RAW 264.7 macrophages to the lipopolysaccharide (LPS) from gram-negative bacteria was studied. Using specific p38 and CK2 inhibitors (p38 MAP kinase Inhibitor XI and casein kinase II Inhibitor III, respectively), we investigated the effects of these protein kinases on (i) LPS-induced activation of signaling pathways involving nuclear factor κB (NF-κB), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and interferon regulatory factor 3 (IRF3); (ii) expression of Toll-like receptor 4 (TLR4) and inducible heat-shock proteins HSP72 and HSP90; and (iii) production of interleukins IL-1α, IL-1β, IL-6, tumor necrosis factor α, and IL-10. Activation of the proapoptotic signaling in the macrophages was evaluated from the ratio between the active and inactive caspase-3 forms and p53 phosphorylation. Six hours after LPS addition (2.5 μg/ml) to RAW 264.7 cells, activation of the TLR4 signaling pathways was observed that was accompanied by a significant increase in phosphorylation of IκB kinase α/β, NF-κB (at both Ser536 and Ser276), p38, JNK, and IRF3. Other effects of macrophage incubation with LPS were an increase in the contents of TLR4, inducible heat-shock proteins (HSPs), and pro- and anti-inflammatory cytokines, as well as slight activation of the pro-apoptotic signaling in the cells. Using inhibitor analysis, we found that during the early response of macrophages to the LPS, both CK2 and p38 modulate activation of MAP kinase and NF-κB signaling pathways and p65 phosphorylation at Ser276/Ser536 and cause accumulation of HSP72, HSP90 and the LPS-recognizing receptor TLR4. Suppression of the p38 MAP kinase and CK2 activities by specific inhibitors (Inhibitor XI and Inhibitor III, respectively) resulted in the impairment of the macrophage effector function manifested as a decrease in the production of the early-response proinflammatory cytokines and disbalance between the pro- and anti-apoptotic signaling pathways leading presumably to apoptosis development. Taken together, our data indicate the inefficiency of therapeutic application of p38 and CK2 inhibitors during the early stages of inflammatory response.
2019Endothelial Stanniocalcin 1 Maintains Mitochondrial Bioenergetics and Prevents Oxidant-Induced Lung Injury via Toll-Like Receptor 4.Antioxid Redox SignalOxidant-induced endothelial injury plays a critical role in the pathogenesis of acute lung injury (ALI) and subsequent respiratory failure. Our previous studies revealed an endogenous antioxidant and protective pathway in lung endothelium mediated by heat shock protein 70 (Hsp70)-toll-like receptor 4 (TLR4) signaling. However, the downstream effector mechanisms remained unclear. Stanniocalcin 1 (STC1) has been reported to mediate antioxidant responses in tissues such as the lungs. However, regulators of STC1 expression as well as its physiological function in the lungs were unknown. We sought to elucidate the relationship between TLR4 and STC1 in hyperoxia-induced lung injury in vitro and in vivo and to define the functional role of STC1 expression in lung endothelium.We identified significantly decreased STC1 expression in TLR4 knockout mouse lungs and primary lung endothelium isolated from TLR4 knockout mice. Overexpression of STC1 was associated with endothelial cytoprotection, whereas decreased or insufficient expression was associated with increased oxidant-induced injury and death. An Hsp70-TLR4-nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signal mediates STC1 induction in the lungs and endothelial cells. We also demonstrated a previously unrecognized role for mitochondrial-associated STC1, via TLR4, in maintaining normal glycolysis, mitochondrial bioenergetics, and mitochondrial calcium levels.To date, a physiological role for STC1 in oxidant-induced ALI has not been identified. In addition, our studies show that STC1 is regulated by TLR4 and exerts lung and endothelial protection in response to sterile oxidant-induced lung injury.Our studies reveal a novel TLR4-STC1-mediated mitochondrial pathway that has homeostatic as well as oxidant-induced cytoprotective functions in lung endothelium.
2018Identification of key genes and pathways using bioinformatics analysis in septic shock children.Infect Drug ResistSepsis is still one of the reasons for serious infectious diseases in pediatric intensive care unit patients despite the use of anti-infective therapy and organ support therapy. As it is well-known, the effect of single gene or pathway does not play a role in sepsis. We want to explore the interaction of two more genes or pathways in sepsis patients for future works. We hypothesize that the discovery from the available gene expression data of pediatric sepsis patients could know the process or improve the situation.The gene expression profile dataset GSE26440 of 98 septic shock samples and 32 normal samples using whole blood-derived RNA samples were generated. A total of 1,108 upregulated and 142 downregulated differentially expressed genes (DEGs) were identified in septic shock children using R software packages. The Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed using DAVID software; Gene Set Enrichment Analysis method was also used for enrichment analysis of the DEGs. The protein-protein interaction (PPI) network and the top 10 hub genes construction of the DEGs were constructed via plug-in Molecular Complex Detection and cytoHubba of Cytoscape software. From the PPI network, the top 10 hub genes, which are all upregulated DEGs in the septic shock children, were identified as , and Some of them were involved in one or more significant inflammatory pathways, such as the enrichment of tumor necrosis factor (TNF) pathway in the activation of mitogen-activated protein kinase activity, toll-like receptor signaling pathway, nuclear factor-κB signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway. These findings support future studies on pediatric septic shock.
2019Toll-Like Receptor 4 and Heat-Shock Protein 70: Is it a New Target Pathway for Diabetic Vasculopathies?Curr Drug TargetsDiabetes is one of the most concerning diseases in modern times. Despite considerable advances in therapeutic management, the prevalence of diabetes and its contribution to death and disability continue to be a major health problem. Diabetic vasculopathies are the leading cause of mortality and morbidity in diabetic patients. Its pathophysiology includes oxidative stress, advanced glycation end products, and a low-grade inflammatory state. Lately, actions of the innate immune system via Toll-like receptors (TLRs) have been suggested as a new insight in this field. TLRs are pattern recognition receptors activated by highly conserved structural motifs of exogenous or endogenous ligands. Heat-shock proteins (HSPs), normally known for their ability to protect cells during stressful conditions, when released from injured cells bind to TLR4 and trigger the release of pro-inflammatory cytokines in a MyD88-dependent pathway. This pathway had been investigated in pancreatic beta cells and skeletal muscle, but it has not yet been explored in the vascular system and deserves investigation. In this work, the interplay between TLR4 and HSP70 in the vasculature during diabetes is reviewed and discussed. The current literature and preliminary results from our laboratory led us to hypothesize that hyperglycemia-associated HSP70 plays an important role in the pathophysiology of diabetic vasculopathies via the TLR4 pathway and might be a new target for therapeutic intervention.
2018Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5.Front ImmunolThe most potent cell wall-derived inflammatory toxins ("pathogenicity factors") of Gram-negative and -positive bacteria are lipopolysaccharides (LPS) (endotoxins) and lipoproteins (LP), respectively. Despite the fact that the former signals toll-like receptor 4 (TLR4) and the latter TLR2, the physico-chemistry of these compounds exhibits considerable similarity, an amphiphilic molecule with a polar and charged backbone and a lipid moiety. While the exterior portion of the LPS (i.e., the O-chain) represents the serologically relevant structure, the inner part, the lipid A, is responsible for one of the strongest inflammatory activities known. In the last years, we have demonstrated that antimicrobial peptides from the Pep19-2.5 family, which were designed to bind to LPS and LP, act as anti-inflammatory agents against sepsis and endotoxic shock caused by severe bacterial infections. We also showed that this anti-inflammatory activity requires specific interactions of the peptides with LPS and LP leading to exothermic reactions with saturation characteristics in calorimetry assays. Parallel to this, peptide-mediated neutralization of LPS and LP involves changes in various physical parameters, including both the gel to liquid crystalline phase transition of the acyl chains and the three-dimensional aggregate structures of the toxins. Furthermore, the effectivity of neutralization of pathogenicity factors by peptides was demonstrated in several models together with the finding that a peptide-based therapy sensitizes bacteria (also antimicrobial resistant) to antibiotics. Finally, a significant step in the understanding of the broad anti-inflammatory function of Pep19-2.5 was the demonstration that this compound is able to block the intracellular endotoxin signaling cascade.
2018Paeoniflorin protects against liver ischemia/reperfusion injury in mice via inhibiting HMGB1-TLR4 signaling pathway.Phytother ResHepatic ischemia/reperfusion (I/R) injury is a major cause of high morbidity and mortality after liver resection, transplantation, and hemorrhagic shock. Paeoniflorin (PF), the main substance of glucosides in Radix Paeoniae Alba, has been widely used to treat various hepatic inflammatory diseases including I/R injury. However, the underlying mechanisms of PF on hepatic I/R injury remain further investigated. In this study, the liver I/R model was performed by clamping the portal vein and hepatic artery with an atraumatic clamp for 90 min followed by 6 hr reperfusion. PF (100 mg/kg) was given three times a day by gavage before I/R. The blood and hepatic samples were collected to evaluate liver injury and molecular indexes. The results showed that PF pretreatment significantly inhibited I/R-induced serum ALT and AST activities (40.3% and 53.8% those of I/R group, respectively), hepatic pathological damages and hepatic apoptosis (P < 0.01), and infiltration of neutrophils into liver. In addition, PF suppressed the production of pro-inflammatory cytokines (P < 0.01), decreased the expression of high mobility group box-1 (HMGB1), and down-regulated toll-like receptors 4 (TLR4) and phosphorylated ERK1/2, JNK1/2, p38, and NF-κB signal molecules expression in the I/R-operated mice. These findings indicated that PF played a protective role in liver I/R injury, and this protection was associated with inhibition of I/R-activated HMGB1-TLR4 signaling pathway to attenuate hepatic inflammation responses.
2018Sini Decoction Improves Adrenal Function and the Short-Term Outcome of Septic Rats through Downregulation of Adrenal Toll-Like Receptor 4 Expression.Evid Based Complement Alternat MedSini Decoction (SND) is composed of Debeaux, Roscoe, and Fisch, having been used in China for centuries for collapsing phrase of disease. Studies reported that SND could alleviate inflammatory response, ameliorate microcirculatory disturbances, and improve shock reversal and adrenal gland glucocorticoid stress response during sepsis shock, yet the underlying mechanism is still elusive. Toll-like receptor (TLR) 4 is demonstrated to be crucially correlated with the corticosterone secretion and the impaired adrenal glucocorticoid responses in sepsis.SND at dose of 10 g/kg (in low-dose SND group, LD-SND) and 20 g/kg (in high-dose SND group, HD-SND) was administered to CLP rats. Four days later, overall survival rates of rats were calculated; rat serum and adrenal glands were collected. Basic serum corticosterone levels were determined, and the increase of corticosterone after 0.8 ug/kg ACTH injection was checked to detect the adrenocortical sensitivity to ACTH. The protein and mRNA expression of TLR4 in adrenal glands were measured to study the impact of SND on TLR4 expression. mRNA levels of IL-10 and TNF-a in adrenal glands and IL-10 and TNF-a levels in serum were also determined to study the cytokines profile.SND improved the cumulative survival rate of CLP rats up to 4 days (P < 0.05 with HD-SND) and adrenocortical sensitivity to 0.8 ug/kg ACTH stimulation ( < 0.05 at 60 mins, 31.02 ± 19.23 ng/ml in LD-SND group and 32.18 ± 14.88 ng/ml in HD-SND group versus 5.03 ± 13.34 ng/ml in CLP group), with a significant decrease of protein (P < 0.05, 29.6% in LD-SND group and 27.8% in HD-SND group), mRNA expression of TLR4 (P < 0.05, 32.9% in LD-SND group and 36.1% in HD-SND group), mRNA expression of IL-10 (P < 0.05, 32.0% in LD-SND group and 29.6% in HD-SND group), TNF-a in adrenal glands (P < 0.05, 26.0% in LD-SND group and 25.3% in HD-SND group), and TNF-a level in serum (P < 0.05, 100.20 ± 19.41 pg/ml in LD-SND group and 92.40 ± 11.66 pg/ml in HD-SND group versus 134.40 ± 27.87 pg/ml in CLP group).SND increased overall survival rate within 4 days and attenuated adrenal insufficiency in septic rats by downregulating TLR4 mRNA and protein expression in adrenal tissue, inhibiting adrenal production of TNF- and IL-10, and improving adrenal responsiveness. Our results suggest that SND is able to ameliorate adrenal stress responses in a local immune-adrenal crosstalk way involving downregulated expression of TLR4 in adrenal tissue. SND might be a promising treatment for adrenal insufficiency prevention in prolonged sepsis.
2019Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction.Cardiovasc ResInadequate healing after myocardial infarction (MI) leads to heart failure and fatal ventricular rupture, while optimal healing requires timely induction and resolution of inflammation. This study tested the hypothesis that heat shock protein B1 (HSPB1), which limits myocardial inflammation during endotoxemia, modulates wound healing after MI.To test this hypothesis, cardiomyocyte-specific HSPB1 knockout (Hspb1-/-) mice were generated using the Cre-LoxP recombination system. MI was induced by ligation of the left anterior descending coronary artery in Hspb1-/- and wild-type (WT) littermates. HSPB1 was up-regulated in cardiomyocytes of WT animals in response to MI, and deficiency of cardiomyocyte HSPB1 increased MI-induced cardiac rupture and mortality within 21 days after MI. Serial echocardiography showed more aggravated remodelling and cardiac dysfunction in Hspb1-/- mice than in WT mice at 1, 3, and 7 days after MI. Decreased collagen deposition and angiogenesis, as well as increased MMP2 and MMP9 activity, were also observed in Hspb1-/- mice compared with WT controls after MI, using immunofluorescence, polarized light microscopy, and zymographic analyses. Notably, Hspb1-/- hearts exhibited enhanced and prolonged leucocyte infiltration, enhanced expression of inflammatory cytokines, and enhanced TLR4/MyD88/NFκB activation compared with WT controls after MI. In-depth molecular analyses in both mice and primary cardiomyocytes demonstrated that cardiomyocyte-specific knockout of HSPB1 increased nuclear factor-κB (NFκB) activation, which promoted the expression of proinflammatory mediators. This led to increased leucocyte recruitment, thereby to excessive inflammation, ultimately resulting in adverse remodelling, cardiac dysfunction, and cardiac rupture following MI.These data suggest that HSPB1 acts as a negative regulator of NFκB-mediated leucocyte recruitment and the subsequent inflammation in cardiomyocytes. Cardiomyocyte HSPB1 is required for wound healing after MI and could be a target for myocardial repair in MI patients.
2019Monocytes of patients with unstable angina express high levels of chemokine and pattern-recognition receptors.CytokineMacrophages derived from monocytes play an important role in atherosclerosis progression. Subpopulations of circulating classical, intermediate, and non-classical monocytes possess distinct functions and phenotypes, and participate in the pathogenesis of disease. The aim of this study was to compare the quantity and phenotypes of circulating monocyte subpopulations in patients with established atherosclerosis and healthy control individuals. Additionally, the study aimed to provide insight into the functional activity of monocytes against a heat shock protein (HSP60).Chemokine and pattern recognition receptors in monocyte subsets obtained from peripheral blood of acute and chronic coronary artery disease patients and controls were quantified by flow cytometry. Furthermore, monocytes from healthy controls were stimulated in vitro with HSP60, and the cytokines produced by them were evaluated by flow cytometry.Eighteen controls (C), 34 individuals with risk factors for cardiovascular disease (RF), 32 patients with stable angina (SA), and 16 patients with unstable angina (UA) were enrolled in the study. The absolute count of intermediate monocytes was found to be increased in patients of the UA group; high frequencies of the chemokine receptors CCR2, CCR5, and CX3CR1 were also observed in this subpopulation. Moreover, the pattern recognition receptors TLR2 and TLR4 were more frequent in intermediate monocytes from the UA group. Furthermore, the intermediate monocytes from healthy individuals produced IL-12p70 after stimulation with HSP60.Our results show that intermediate monocytes of UA patients exhibited an enhanced expression of the receptors involved in the recognition of damage-associated molecular patterns (DAMPs) and enhancement of the migratory function. Hence, they might contribute to the propagation and progression of inflammation observed in atherosclerosis, especially in the acute setting.
2018Heat acclimation increases inflammatory and apoptotic responses to subsequent LPS challenge in C2C12 myotubes.Cell Stress ChaperonesThis work investigated the ability of a 6-day heat acclimation protocol to impart heat acclimation-mediated cross-tolerance (HACT) in C2C12 myotubes, as indicated by changes in inflammatory and apoptotic responses to subsequent lipopolysaccharide (LPS) challenge. Myotubes were incubated at 40 °C for 2 h/day over 6 days (HA) or maintained for 6 days at 37 °C (C). Following 24 h recovery, myotubes from each group received either no stimulation or 500 ng/ml LPS for 2 h (HA + LPS and C + LPS, respectively). Cell lysates were collected and analyzed for protein markers of the heat shock response, inflammation, and apoptosis. As compared to C, HA exhibited an elevated heat shock response [HSP70 (+ 99%); HSP60 (+ 216%); HSP32 (+ 40%); all p < 0.01] and reduced inflammatory and apoptotic signaling [p-NF-ĸB:NF-ĸB (- 99%%); p-JNK (- 49%); all p < 0.01]. When compared to C + LPS, HA + LPS also exhibited an elevated heat shock response [HSP70 (+ 68%); HSP60 (+ 32%); HSP32 (+ 38%); all p < 0.01]. However, inflammatory and apoptotic responses in HA + LPS were increased [p-IKBa:IKBa (+ 432%); p-NF-ĸB:NF-ĸB (+ 283%); caspase-8p18 (+ 53%); p-JNK (+ 41%); all p < 0.05]. This unanticipated finding may be due to increased TLR4-mediated signaling capacity in HA + LPS, as indicated by upregulation of TLR4 [(+ 24%); MyD88 (+ 308%); p-NIK (+ 199%); and p-IKKα/b (+ 81%); all p < 0.05]. Data suggest HA reduces inflammatory and apoptotic signaling in skeletal muscle cells that are maintained under basal conditions. However, HACT is selective and does not apply to TLR4 signaling in the present model.
2018Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling.Oncol RepCurcumin has been revealed to inhibit liver cancer, however, no studies have reported that the mechanism of curcumin's action on liver cancer is related to damage-associated molecular pattern (DAMP) molecules heat shock protein 70 (HSP70) and the toll-like receptor 4 (TLR4) signaling. This study aimed to investigate whether the activation of TLR4 signaling by HSP70 could be inhibited by curcumin, thus investigating the possible mechanism of curcumin in the inhibition of liver cancer. Western blotting was used to evaluate the expression of the HSP70 and TLR4 in HepG2 cells and ELISA was used to detect the concentration of HSP70 in cell culture medium. A thermal tolerance HepG2 (HepG2TT) cell model was established to simulate HSP70 accumulation in the microenvironment. A certain concentration of curcumin was co-cultured with HepG2 and HepG2TT cells to observe the changes of HSP70 and TLR4. Our results revealed that heat stress significantly increased the expression of extracellular HSP70 (eHSP70) and TLR4 (P<0.01), but significantly reduced the expression of intracellular HSP70 (P<0.01). Curcumin inhibited proliferation, invasion, and metastasis of HepG2 cells, caused cells to remain in the DNA S phase, promoted apoptosis, and significantly reduced intracellular HSP70, eHSP70 and TLR4 levels of HepG2TT cells. Following the removal of curcumin, eHSP70 increased again. In summary, our results demonstrated that the antitumor effect of curcumin was related to the inhibition HSP70-TLR4 signaling.
2018HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway.J NeuroinflammationInterleukin-1β (IL-1β) is one of the most important cytokine secreted by activated microglia as it orchestrates the vicious cycle of inflammation by inducing the expression of various other pro-inflammatory cytokines along with its own production. Microglia-mediated IL-1β production is a tightly regulated mechanism which involves the activation of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome pathway. Our previous study suggests the critical role of heat shock protein 60 (HSP60) in IL-1β-induced inflammation in microglia through TLR4-p38 MAPK axis. However, whether HSP60 regulates endogenous IL-1β production is not known. Therefore, to probe the underlying mechanism, we elucidate the role of HSP60 in endogenous IL-1β production.We used in vitro (N9 murine microglial cells) and in vivo (BALB/c mouse) models for our study. HSP60 overexpression and knockdown experiment was done to elucidate the role of HSP60 in endogenous IL-1β production by microglia. Western blotting and quantitative real-time PCR was performed using N9 cells and BALB/c mice brain, to analyze various proteins and transcript levels. Reactive oxygen species levels and mitochondrial membrane depolarization in N9 cells were analyzed by flow cytometry. We also performed caspase-1 activity assay and enzyme-linked immunosorbent assay to assess caspase-1 activity and IL-1β production, respectively.HSP60 induces the phosphorylation and nuclear localization of NF-κB both in vitro and in vivo. It also induces perturbation in mitochondrial membrane potential and enhances reactive oxygen species (ROS) generation in microglia. HSP60 further activates NLRP3 inflammasome by elevating NLRP3 expression both at RNA and protein levels. Furthermore, HSP60 enhances caspase-1 activity and increases IL-1β secretion by microglia. Knockdown of HSP60 reduces the IL-1β-induced production of IL-1β both in vitro and in vivo. Also, we have shown for the first time that knockdown of HSP60 leads to decreased IL-1β production during Japanese encephalitis virus (JEV) infection, which eventually leads to decreased inflammation and increased survival of JEV-infected mice.HSP60 mediates microglial IL-1β production by regulating NLRP3 inflammasome pathway and reduction of HSP60 leads to reduction of inflammation in JEV infection.
2018Toll-like receptor 2, 4 and 9 polymorphisms and their association with ICU-acquired infections in Central Greece.J Crit CareTo test the potential of four common Toll-like receptor (TLR) polymorphisms to predispose to specific intensive care unit (ICU)-acquired infections and affect outcomes in a Greek ICU.The incidence of TLR2-Arg753Gln, TLR4-Asp299Gly, TLR4-Thr399Ile and TLR9-T1237C polymorphisms, and their association with ICU-acquired infections and patients' clinical outcomes were prospectively evaluated The examined genetic polymorphisms were assessed by real-time Polymerase-Chain-Reaction (PCR).During a 15-month period, 224 patients were enrolled and genotyped. The prevalence of genetic polymorphisms for TLR4-Asp299Gly, TLR4-Thr399Ile, mixed TLR4-Asp299Gly/Thr399Ile, TLR9-T1237C and TLR2-Arg753Gln was 14.4%, 14.7%, 11.2%, 24.5% and 2.2%, respectively. TLR4 polymorphisms were associated with increased susceptibility towards specific ICU-acquired infections, i.e. Gram-negative central-nervous-system infections (CNSI), ventilator-associated pneumonia (VAP) and urinary-tract infections (UTI), principally due to multi-drug resistant (MDR) Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumonia, respectively (all P < 0.05). TLR9-T1237C polymorphism was associated with lower incidence and fewer relapses of CNSIs and UTIs when compared to mixed TLR4-Asp299Gly/Thr399Ile polymorphism group (P ≤ 0.039). ICU-stay was significantly prolonged in TLR4 polymorphisms (P ≤ 0.0416).Common TLR-signaling polymorphisms might be implicated in the clinical phenotype of ICU-acquired infections in Central Greece. The possible impact of TLR4 polymorphisms on enhanced susceptibility towards Gram-negative MDR-infections in defined critical-disease states warrants further investigation. Trial Registration Clinical Trials.gov identifier: NCT00932243.
Plugging the Leak in Dengue Shock.Adv Exp Med BiolRecent structural and functional advances provide fresh insight into the biology of the dengue virus non-structural protein, NS1 and suggest new avenues of research. The work of our lab and others have shown that the secreted, hexameric form of NS1 has a systemic toxic effect, inducing inflammatory cytokines and acting directly on endothelial cells to produce the hallmark of dengue disease, vascular leak. We also demonstrated that NS1 exerts its toxic activity through recognition by the innate immune receptor TLR4, mimicking the bacterial endotoxin LPS. This monograph covers the background underpinning these new findings and discusses new avenues for antiviral and vaccine intervention.
2018Thymulin, free or bound to PBCA nanoparticles, protects mice against chronic septic inflammation.PLoS OneIn the present work, we aimed to study the effects of free and polybutylcyanoacrylate nanoparticle-bound thymulin on immune cell activity in mice with chronic inflammation. NF-κB, MAPK, and PKC-θ signaling pathway activity was assessed, alongside Hsp72, Hsp90-α, and TLR4 expression and levels of apoptosis. In addition, plasma cytokines and blood and brain melatonin and serotonin levels were measured. In mice treated with gradually raised doses of lipopolysaccharide, significant increases in the activity of the signaling pathways tested, heat-shock protein and TLR4 expression, lymphocyte apoptosis, and plasma proinflammatory cytokine levels were noted. Moreover, we observed significantly heightened serotonin concentrations in the plasma and especially the brains of mice with inflammation. In contrast, melatonin levels were reduced in the tissues examined, particularly so in the brain. Treatment of these mice with thymulin alleviated fever, reduced apoptosis, increased splenic cell number, and decreased cytokine production, Hsp72, Hsp90, and TLR4 expression, and the activity of the signaling pathways examined. In addition, thymulin partially restored brain and blood serotonin and melatonin levels. Thus, thymulin suppressed the proinflammatory response in LPS-treated mice, indicating the potential of thymulin co-therapy in the treatment of sepsis. Nanoparticle-bound thymulin was more effective in several respects.
2018Ts-Hsp70 induces protective immunity against Trichinella spiralis infection in mouse by activating dendritic cells through TLR2 and TLR4.PLoS Negl Trop DisTrichinellosis is a serious food-borne parasitic zoonosis worldwide. In the effort to develop vaccine against Trichinella infection, we have identified Trichinella spiralis Heat shock protein 70 (Ts-Hsp70) elicits partial protective immunity against T. spiralis infection via activating dendritic cells (DCs) in our previous study. This study aims to investigate whether DCs were activated by Ts-Hsp70 through TLR2 and/or TLR4 pathways.After blocking with anti-TLR2 and TLR4 antibodies, the binding of Ts-Hsp70 to DCs was significantly reduced. The reduced binding effects were also found in TLR2 and TLR4 knockout (TLR2-/- and TLR4-/-) DCs. The expression of TLR2 and TLR4 on DCs was upregulated after treatment with Ts-Hsp70 in vitro. These results suggest that Ts-Hsp70 is able to directly bind to TLR2 and TLR4 on the surface of mouse bone morrow-derived DCs. In addition, the expression of the co-stimulatory molecules (CD80, CD83) on Ts-Hsp70-induced DCs was reduced in TLR2-/- and TLR4-/- mice. More evidence showed that Ts-Hsp70 reduced its activation on TLR2/4 knockout DCs to subsequently activate the naïve T-cells. Furthermore, Ts-Hsp70 elicited protective immunity against T. spiralis infection was reduced in TLR2-/- and TLR4-/- mice correlating with the reduced humoral and cellular immune responses.This study demonstrates that Ts-Hsp70 activates DCs through TLR2 and TLR4, and TLR2 and TLR4 play important roles in Ts-Hsp70-induced DCs activation and immune responses.
2018Brain Lipopolysaccharide Preconditioning-Induced Gene Reprogramming Mediates a Tolerance State in Electroconvulsive Shock Model of Epilepsy.Front PharmacolThere is increasing evidence pointing toward the role of inflammatory processes in epileptic seizures, and reciprocally, prolonged seizures induce more inflammation in the brain. In this regard, effective strategies to control epilepsy resulting from neuroinflammation could be targeted. Based on the available data, preconditioning (PC) with low dose lipopolysaccharide (LPS) through the regulation of the TLR4 signaling pathway provides neuroprotection against subsequent challenge with injury in the brain. To test this, we examined the effects of a single and chronic brain LPS PC, which is expected to lead to reduction of inflammation against epileptic seizures induced by electroconvulsive shock (ECS). A total of 60 male Sprague Dawley rats were randomly assigned to five groups: control, vehicle (single and chronic), and LPS PC (single and chronic). We first recorded the data regarding the behavioral and histological changes. We further investigated the alterations of gene and protein expression of important mediators in relation to TLR4 and inflammatory signaling pathways. Interestingly, significant increased presence of NFκB inhibitors [Src homology 2-containing inositol phosphatase-1 (SHIP1) and Toll interacting protein (TOLLIP)] was observed in LPS-preconditioned animals. This result was also associated with over-expression of IRF3 activity and anti-inflammatory markers, along with down-regulation of pro-inflammatory mediators. Summarizing, the analysis revealed that PC with LPS prior to seizure induction may have a neuroprotective effect possibly by reprogramming the signaling response to injury.
2018Ischemic preconditioning attenuates acute lung injury after partial liver transplantation.Int J Physiol Pathophysiol PharmacolPulmonary complications frequently occur after liver transplantation and are often life-threatening. Thus, we investigated whether hepatic ischemic preconditioning (IP) attenuates acute lung injury (ALI) after small-for-size liver transplantation. Rat livers were explanted after 9-min ischemia plus 5-min reperfusion, reduced to 50% of original size , and implanted into recipients with approximately twice the donor body weight, resulting in quarter-size liver grafts (QSG). After QSG transplantation, hepatic Toll-like receptor 4 (TLR4) and tumor necrosis factor-α (TNFα ) expression increased markedly and high mobility group box-1 (HMGB1), an endogenous damage-associated molecular pattern molecule (DAMP), was released from QSG into the blood. IP blunted TLR4 and TNFα expression and HMGB1 release from QSG. In the lungs of QSG recipients without IP treatment, nuclear factor-κB (NF-κB) activation and intercellular adhesion molecule (ICAM)-1 expression increased; alveolar septal walls thickened with increased cellularity as neutrophils, monocytes/macrophage and T lymphocytes infiltrated into alveolar septa and alveolar spaces; and pulmonary cleaved caspase-8 and -3 and TUNEL-positive cells increased. In contrast, in the lungs of recipients of ischemic-preconditioned QSG, NF-κB activation and ICAM-1 expression were blunted; leukocyte infiltration was decreased; and alveolar septal wall thickening, caspase activation, and cell apoptosis were attenuated. IP did not increase heat-shock proteins in the lungs of QSG recipients. In conclusion, toxic cytokine and HMGB1 released from failing small-for-size grafts leads to pulmonary adhesion molecule expression, leukocyte infiltration and injury. IP prevents DAMP release and toxic cytokine formation in small-for-size grafts, thereby attenuating ALI.
2018Damage-associated molecular patterns in resuscitated hemorrhagic shock are mitigated by peritoneal fluid administration.Am J Physiol Lung Cell Mol PhysiolConventional resuscitation (CR) of hemorrhagic shock (HS), a significant cause of trauma mortality, is intravenous blood and fluids. CR restores central hemodynamics, but vital organ flow can drop, causing hypoperfusion, hypoxia, damage-associated molecular patterns (DAMPs), and remote organ dysfunction (i.e., lung). CR plus direct peritoneal resuscitation (DPR) prevents intestinal and hepatic hypoperfusion. We hypothesized that DPR prevents lung injury in HS/CR by altering DAMPs. Anesthetized male Sprague-Dawley rats were randomized to groups ( n = 8/group) in one of two sets: 1) sham (no HS, CR, or DPR), 2) HS/CR (HS = 40% mean arterial pressure (MAP) for 60 min, CR = shed blood + 2 volumes normal saline), or 3) HS/CR + DPR. The first set underwent whole lung blood flow by colorimetric microspheres. The second set underwent tissue collection for Luminex, ELISAs, and histopathology. Lipopolysaccharide (LPS) and DAMPs were measured in serum and/or lung, including cytokines, hyaluronic acid (HA), high-mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 protein (MYD88), and TIR-domain-containing adapter-inducing interferon-β (TRIF). Statistics were by ANOVA and Tukey-Kramer test with a priori P < 0.05. HS/CR increased serum LPS, HA, HMGB1, and some cytokines [interleukin (IL)-1α, IL-1β, IL-6, and interferon-γ]. Lung TLR4 and MYD88 were increased but not TRIF compared with Shams. HS/CR + DPR decreased LPS, HA, cytokines, HMGB1, TLR4, and MYD88 levels but did not alter TRIF compared with HS/CR. The data suggest that gut-derived DAMPs can be modulated by adjunctive DPR to prevent activation of lung TLR-4-mediated processes. Also, DPR improved lung blood flow and reduced lung tissue injury. Adjunctive DPR in HS/CR potentially improves morbidity and mortality by downregulating the systemic DAMP response.
2018SjHSP60 induces CD4 CD25 Foxp3 Tregs via TLR4-Mal-drived production of TGF-β in macrophages.Immunol Cell BiolCD4 CD25 Foxp3 regulatory T cells (Tregs) play a pivotal role in limiting immunopathological damage to host organs after schistosome infection. Transforming growth factor-β (TGF-β) is an essential factor for the periphery conversion of CD4 CD25 T cells into CD4 CD25 Foxp3 Tregs by inducing the key transcription factor Foxp3. Antigen presenting cells (APCs), which highly express TGF-β, are involved in parasite antigen-induced Treg conversion in peripheral. However, the mechanisms underlying high TGF-β induction in APCs by parasite antigens remain to be clarified during schistosome infection. Here, we demonstrated that Schistosoma japonicum stress protein, heat shock protein 60 (SjHSP60), promoted TGF-β production in macrophages (Mφ). Furthermore, we showed that activation of TLR4-Mal (MyD88 adaptor-like protein) signaling by SjHSP60 is necessary for induction of TGF-β expression in Mφ, which subsequently promoted Treg induction. Our results not only demonstrate a novel mechanism of TGF-β production in Mφ for inducing Tregs in mice with schistosomiasis, but also allude to the possibility of targeting parasite stress protein for potential therapeutics.
2018Transduced PEP-1-Heme Oxygenase-1 Fusion Protein Attenuates Lung Injury in Septic Shock Rats.Oxid Med Cell LongevOxidative stress and inflammation have been identified to play a vital role in the pathogenesis of lung injury induced by septic shock. Heme oxygenase-1 (HO-1), an effective antioxidant and anti-inflammatory and antiapoptotic substance, has been used for the treatment of heart, lung, and liver diseases. Thus, we postulated that administration of exogenous HO-1 protein transduced by cell-penetrating peptide PEP-1 has a protective role against septic shock-induced lung injury. Septic shock produced by cecal ligation and puncture caused severe lung damage, manifested in the increase in the lung wet/dry ratio, oxidative stress, inflammation, and apoptosis. However, these changes were reversed by treatment with the PEP-1-HO-1 fusion protein, whereas lung injury in septic shock rats was alleviated. Furthermore, the septic shock upregulated the expression of Toll-like receptor 4 (TLR4) and transcription factor NF-B, accompanied by the increase of lung injury. Administration of PEP-1-HO-1 fusion protein reversed septic shock-induced lung injury by downregulating the expression of TLR4 and NF-B. Our study indicates that treatment with HO-1 protein transduced by PEP-1 confers protection against septic shock-induced lung injury by its antioxidant, anti-inflammatory, and antiapoptotic effects.
2018Inhibition of autophagy with 3-methyladenine is protective in a lethal model of murine endotoxemia and polymicrobial sepsis.Innate ImmunHere, the regulatory role of autophagy is examined in both an LPS-induced lethal endotoxic shock mouse model and cecal ligation and puncture (CLP) mouse model. Autophagy-inhibitor 3-methyladenine (3-MA) and autophagy-enhancer rapamycin were administrated to mice challenged with LPS or CLP. Animals challenged with LPS or CLP combined with 3-MA displayed increased survival after endotoxemia, but LPS combined with rapamycin worsened the endotoxic shock of the mice. Among the different organs studied, the lungs and intestines exhibited significant differences among LPS alone, LPS combined with 3-MA and LPS combined with rapamycin. LPS combined with 3-MA attenuated the inflammatory damages of these organs as compared with LPS alone. In contrast, LPS combined with rapamycin increased damage in these organs. Consistently, serum inflammatory mediators TNF-α and IL-6 were decreased by the treatment of LPS combined with 3-MA as compared with LPS alone, while administration of LPS combined with rapamycin increased the serum TNF-α and IL-6 levels. Similar results were found in mouse bone marrow-derived macrophages exposed to LPS. Moreover, the regulatory effect of autophagy to endotoxic shock is dependent on the TLR4 signaling pathway. Our results demonstrate the central role of autophagy in the regulation of endotoxic shock and its potential modulation for endotoxic shock treatment.
2018Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity.Anal Cell Pathol (Amst)Lipopolysaccharide (LPS) is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP), the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-B ligand (RANKL) expression and toll-like receptor 4 (TLR4) expression both and . Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK) signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.
2018GrpE, A Heat-Shock Stress Responsive Chaperone, Promotes Th1-Biased T Cell Immune Response via TLR4-Mediated Activation of Dendritic Cells.Front Cell Infect Microbiol(Mtb), the causative agent of tuberculosis, is an extremely successful pathogen with multifactorial ability to control the host immune response. Insights into the Mtb factors modulating host response are required for the discovery of novel vaccine antigen targets as well as a better understanding of dynamic interactions between the bacterial factors and host cells. Here, we exploited the functional role of Mtb GrpE, a cofactor of heat-shock protein 70 (HSP70), in promoting naïve CD4/CD8T cell differentiation toward Th1-type T-cell immunity through interaction with dendritic cells (DCs). GrpE functionally induced DC maturation by up-regulating the expression of cell surface molecules (CD80, CD86, and MHC class I and II) and production of several pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12p70) in DCs. These effects of GrpE in DC activation were initiated upon binding to Toll-like receptor 4 (TLR4) followed by activation of downstream MyD88-, TRIF-, MAPK-, and NF-κB-dependent signaling pathways. GrpE-activated DCs displayed an excellent capacity to effectively polarize naïve CD4 and CD8 T cells toward Th1-type T-cell immunity with the dose-dependent secretion of IFN-γ and IL-2 together with increased levels of CXCR3 expression. Notably, GrpE-stimulated DCs induced the proliferation of GrpE-specific Th1-type effector/memory CD4/CD8CD44CD62L T cells from the spleen of Mtb-infected mice in a TLR4-dependent manner. Collectively, these results demonstrate that GrpE is a novel immune activator that interacts with DCs, in particular, via TLR4, to generate Th1-biased memory T cells in an antigen-specific manner. GrpE may contribute to the enhanced understanding of host-pathogen interactions as well as providing a rational basis for the discovery of new potential targets to develop an effective tuberculosis vaccine.
2018Hypoacylated LPS from Foodborne Pathogen Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages.Front Cell Infect MicrobiolToll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of , the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.
2018Role of heme in lung bacterial infection after trauma hemorrhage and stored red blood cell transfusion: A preclinical experimental study.PLoS MedTrauma is the leading cause of death and disability in patients aged 1-46 y. Severely injured patients experience considerable blood loss and hemorrhagic shock requiring treatment with massive transfusion of red blood cells (RBCs). Preclinical and retrospective human studies in trauma patients have suggested that poorer therapeutic efficacy, increased severity of organ injury, and increased bacterial infection are associated with transfusion of large volumes of stored RBCs, although the mechanisms are not fully understood.We developed a murine model of trauma hemorrhage (TH) followed by resuscitation with plasma and leukoreduced RBCs (in a 1:1 ratio) that were banked for 0 (fresh) or 14 (stored) days. Two days later, lungs were infected with Pseudomonas aeruginosa K-strain (PAK). Resuscitation with stored RBCs significantly increased the severity of lung injury caused by P. aeruginosa, as demonstrated by higher mortality (median survival 35 h for fresh RBC group and 8 h for stored RBC group; p < 0.001), increased pulmonary edema (mean [95% CI] 106.4 μl [88.5-124.3] for fresh RBCs and 192.5 μl [140.9-244.0] for stored RBCs; p = 0.003), and higher bacterial numbers in the lung (mean [95% CI] 1.2 × 10(7) [-1.0 × 10(7) to 2.5 × 10(7)] for fresh RBCs and 3.6 × 10(7) [2.5 × 10(7) to 4.7 × 10(7)] for stored RBCs; p = 0.014). The mechanism underlying this increased infection susceptibility and severity was free-heme-dependent, as recombinant hemopexin or pharmacological inhibition or genetic deletion of toll-like receptor 4 (TLR4) during TH and resuscitation completely prevented P. aeruginosa-induced mortality after stored RBC transfusion (p < 0.001 for all groups relative to stored RBC group). Evidence from studies transfusing fresh and stored RBCs mixed with stored and fresh RBC supernatants, respectively, indicated that heme arising both during storage and from RBC hemolysis post-resuscitation plays a role in increased mortality after PAK (p < 0.001). Heme also increased endothelial permeability and inhibited macrophage-dependent phagocytosis in cultured cells. Stored RBCs also increased circulating high mobility group box 1 (HMGB1; mean [95% CI] 15.4 ng/ml [6.7-24.0] for fresh RBCs and 50.3 ng/ml [12.3-88.2] for stored RBCs), and anti-HMGB1 blocking antibody protected against PAK-induced mortality in vivo (p = 0.001) and restored macrophage-dependent phagocytosis of P. aeruginosa in vitro. Finally, we showed that TH patients, admitted to the University of Alabama at Birmingham ER between 1 January 2015 and 30 April 2016 (n = 50), received high micromolar-millimolar levels of heme proportional to the number of units transfused, sufficient to overwhelm endogenous hemopexin levels early after TH and resuscitation. Limitations of the study include lack of assessment of temporal changes in different products of hemolysis after resuscitation and the small sample size precluding testing of associations between heme levels and adverse outcomes in resuscitated TH patients.We provide evidence that large volume resuscitation with stored blood, compared to fresh blood, in mice increases mortality from subsequent pneumonia, which occurs via mechanisms sensitive to hemopexin and TLR4 and HMGB1 inhibition.
2018The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages.Nat CommunLipopolysaccharide (LPS) of Gram-negative bacteria can elicit a strong immune response. Although extracellular LPS is sensed by TLR4 at the cell surface and triggers a transcriptional response, cytosolic LPS binds and activates non-canonical inflammasome caspases, resulting in pyroptotic cell death, as well as canonical NLRP3 inflammasome-dependent cytokine release. Contrary to the highly regulated multiprotein platform required for caspase-1 activation in the canonical inflammasomes, the non-canonical mouse caspase-11 and the orthologous human caspase-4 function simultaneously as innate sensors and effectors, and their regulation is unclear. Here we show that the oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) inhibits the non-canonical inflammasome in macrophages, but not in dendritic cells. Aside from a TLR4 antagonistic role, oxPAPC binds directly to caspase-4 and caspase-11, competes with LPS binding, and consequently inhibits LPS-induced pyroptosis, IL-1β release and septic shock. Therefore, oxPAPC and its derivatives might provide a basis for therapies that target non-canonical inflammasomes during Gram-negative bacterial sepsis.
2018Dioscin prevents LPS‑induced acute lung injury through inhibiting the TLR4/MyD88 signaling pathway via upregulation of HSP70.Mol Med RepDioscin, as a type of important natural steroidal saponin, has widespread sources, primarily from the fenugreek plant, which is an important raw material in the production of synthetic steroid hormone drugs. Dioscin has anti‑tumor, anti‑inflammatory, antioxidant and other significant pharmacological effects with high medicinal value. The present work aimed to research the protective effect and underlying mechanisms by which dioscin prevents acute lung injury (ALI). Mice were injected with 5 mg/kg LPS to induce lung injury. Mice were treated with dioscin (20, 40 and 60 mg/kg) following LPS‑induced lung injury. Treatment with dioscin significantly decreased total number of alveolar macrophages, water content of lung and total protein concentration in ALI mice. Dioscin treatment significantly suppressed the ALI‑induced interleukin (IL)‑1B, IL‑6, tumor necrosis factor‑α, nuclear factor (NF)‑κB, myeloperoxidase, interferon‑γ and intercellular adhesion molecule‑1 activities in ALI rats. Following this, the authors identified that dioscin significantly also suppressed cyclooxygenase‑2, heat shock protein 70, Toll‑like receptor 4, MyD88 and NF‑κB protein expression in ALI rats. The results suggested that dioscin prevents LPS‑induced ALI through inhibiting the TLR4/MyD88 signaling pathway via upregulation of HSP70.
2018Medium-chain TAG improve intestinal integrity by suppressing toll-like receptor 4, nucleotide-binding oligomerisation domain proteins and necroptosis signalling in weanling piglets challenged with lipopolysaccharide.Br J NutrThis study was conducted to evaluate whether medium-chain TAG (MCT) could alleviate Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury by regulating intestinal epithelial inflammatory response, as well as necroptosis. A total of twenty-four weanling piglets were randomly allotted to one of four treatments in a 2×2 factorial arrangement including diet type (5 % maize oil v. 4 % MCT+1 % maize oil) and immune stress (saline v. E. coli LPS). The piglets were fed diets containing maize oil or MCT for 21 d. On 21 d, piglets were injected intraperitoneally with saline or LPS. The blood and intestinal samples were collected at 4 h post injection. Supplementation with MCT improved intestinal morphology, digestive and barrier function, indicated by increased jejunal villus height, increased jejunal and ileal disaccharidases (sucrase and maltase) activities, as well as enhanced protein expression of claudin-1. Furthermore, the protein expression of heat-shock protein 70 in jejunum and the concentration of TNF-α in plasma were reduced in the piglets fed diets supplemented with MCT. In addition, MCT down-regulated the mRNA expression of toll-like receptor 4 (TLR4) and nucleotide-binding oligomerisation domain proteins (NOD) signalling-related genes in jejunum and ileum. Finally, MCT inhibited jejunal and ileal enterocyte necroptosis indicated by suppressed mRNA expression of the receptor-interacting protein 3 and mixed-lineage kinase domain-like protein. These results indicate that MCT supplementation may be closely related to inhibition of TLR4, NOD and necroptosis signalling pathways and concomitant improvement of intestinal integrity under an inflammatory condition.
2018Penehyclidine hydrochloride inhibits TLR4 signaling and inflammation, and attenuates blunt chest trauma and hemorrhagic shock-induced acute lung injury in rats.Mol Med RepBlunt chest trauma with hemorrhagic shock (THS) frequently induces pulmonary inflammation that leads to acute lung injury (ALI). Penehyclidine hydrochloride (PHC) possesses anti‑inflammatory properties that may attenuate the systemic inflammatory response. The present study aimed to evaluate the molecular mechanism of PHC in modifying THS‑induced ALI in rats. Rats underwent either THS or a sham procedure. At 6 h subsequent to blunt chest trauma, arterial blood was drawn for blood gas and pro‑inflammatory factors analyses, and lung tissue samples were collected to examine pulmonary histopathological alterations, the wet/dry weight ratio, myeloperoxidase activity, and the protein expression levels of Toll-like receptor 4 (TLR4), phosphorylated (p‑)p38 mitogen‑activated protein kinase (MAPK), nuclear factor (NF)‑κB and activator protein‑1 (AP‑1). THS caused significant reductions in heart rate and mean arterial blood pressure, and was associated with significant increases in tumor necrosis factor‑α, interleukin (IL)‑6, IL‑1β, p‑p38MAPK, NF‑κB and AP‑1 activation, in addition to TLR4 expression, in the lung. PHC effectively attenuated THS‑induced ALI, and inhibited TLR4 expression, reduced the activation of p‑p38MAPK, NF‑κB and AP‑1, and downregulated the expression of pro‑inflammatory mediators. In conclusion, the results of the present study demonstrated that PHC may exert an anti‑inflammatory effect and attenuate THS‑induced ALI by inhibiting the TLR4 signaling pathway. These preclinical findings may offer a novel therapeutic strategy to restrict TLR4 overactivation in ALI.
2018The transcription factor cMaf is targeted by mTOR, and regulates the inflammatory response via the TLR4 signaling pathway.Int J Mol MedcMaf is a leucine-zipper transcription factor that is involved in cell differentiation, oncogenic transformation, and human diseases; however, the functions of cMaf in inflammatory responses in macrophages are still not fully understood. Western blot analysis showed that cMaf expression was induced by lipopolysaccharide (LPS) stimulation in mouse macrophages. An enzyme-linked immunosorbent assay was performed to detect the level of expression of inflammatory cytokines after knockdown of cMaf expression in macrophages using a small interfering RNA (siRNA). Signaling pathway inhibitor analyses indicated that extracellular signal-related kinase and phosphoinositide 3-kinase contribute to mammalian target of rapamycin phosphorylation (mTOR), which controls cMaf expression at the translational level by regulating the expression of eIF4E-binding protein 1 and S6 ribosomal kinase 1 in response to Toll-like receptor 4 signaling. Histopathological findings of the lung and a survival analysis showed that mice transplanted with cMaf-knockdown macrophages were more susceptible to LPS challenge. Taken together, our study revealed that the control of cMaf expression at the translational level by mTOR regulated the expression of inflammatory genes in response to LPS challenge. Moreover, cMaf protected mice from septic shock indicating that cMaf may improve host fitness, thereby enabling the survival of certain infectious diseases.
2018p204 Is Required for Canonical Lipopolysaccharide-induced TLR4 Signaling in Mice.EBioMedicinep204, a murine member of an interferon-inducible p200 family, was reported to recognize intracellular viral and bacterial DNAs, however, its role in the innate immunity in vivo remains unknown due to the lack of p204-deficient animal models. In this study we first generated the p204 mice. Unexpectedly, p204 deficiency led to significant defect in extracellular LPS signaling in macrophages, as demonstrated by dramatic reductions of LPS-mediated IFN-β and pro-inflammatory cytokines. The serum levels of IFN-β and pro-inflammatory cytokines were also significantly reduced in p204 mice following LPS challenge. In addition, p204 mice were resistant to LPS-induced shock. LPS-activated NF-ĸB and IRF-3 pathways were all defective in p204-deficient macrophages. p204 binds to TLR4 through its Pyrin domain, and it is required for the dimerization of TLR4 following LPS-challenge. Collectively, p204 is a critical component of canonical LPS-TLR4 signaling pathway, and these studies also suggest that p204 could be a potential target to prevent and treat inflammatory and infectious diseases.
2019Toll-Like Receptor 4 Signaling Licenses the Cytosolic Transport of Lipopolysaccharide From Bacterial Outer Membrane Vesicles.ShockOuter membrane vesicles (OMVs), released by variety of bacteria, are membrane-enclosed entities enriched in microbial components, toxins, and virulent factors. OMVs could deliver lipopolysaccharide (LPS) into the cytosol of host cells and subsequently activate caspase-11, which critically orchestrates immune responses and mediates septic shock. Although it is known that caspase-11 is activated by intracellular LPS, how OMVs deliver LPS into the cytosol remains largely unknown. Here we show that the activation of toll-like receptor 4 (TLR4), a LPS receptor on the cytoplasmic membrane, licenses macrophages to transport LPS from OMVs into the cytosol through TIR domain-containing adaptor-inducing interferon-β (TRIF). TRIF-mediated cytosolic delivery of LPS from OMVs depends on the production of type 1 interferon and the expression of guanylate-binding proteins (GBPs). Deletion of TRIF or GBPs prevents pyroptosis and lethality induced by OMVs or OMVs-releasing Escherichia coli. Together, these findings provide novel insight into how host coordinates extracellular and intracellular LPS sensing to orchestrate immune responses during gram-negative bacterial infection.
2018Paraquat-induced inflammatory response of microglia through HSP60/TLR4 signaling.Hum Exp ToxicolPrevious studies showed that paraquat (PQ) caused the apoptosis of dopaminergic neurons by inducing the generation of oxygen radical. The purpose of this study is to explore PQ-induced microglial inflammatory response and its underlying molecular mechanisms. The murine microglia BV cell line was used. After stimulation with PQ and lipopolysaccharides (positive control), the concentrations of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) in the culture supernatant and mRNA expression of TNF-α and IL-1β were determined by ELISA and quantitative real-time Polymerase Chain Reaction (PCR), respectively. The protein expression of heat shock protein 60 (HSP60) and toll-like receptor 4 (TLR4), along with the mRNA expression of transcription factors of nuclear factor κB-p65 (NF-κB-p65) and activated protein 1 (AP1, c-fos, and c-jun dimer) were evaluated with western blot and quantitative real-time PCR, respectively. The results showed that PQ activated microglia, which was characterized by increasing the generation and upregulated mRNA expression of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6. In addition, PQ significantly enhanced the expressions of HSP60 and TLR4 proteins in BV cells, as well as NF-κB-p65, c-fos, and c-jun mRNA. These findings suggest that PQ can activate microglia and enhance the expression and secretion of pro-inflammatory cytokines in a HSP60/TLR4 signaling, leading to the inflammatory response.
2017Impact of prenatal cold stress on placental physiology, inflammatory response, and apoptosis in rats.OncotargetPrenatal cold stress is one of the earliest factors affecting mammalian health, and is associated with neonatal growth retardation and immune dysfunction, thus increasing disease susceptibility. The mechanisms underlying these observations remain unclear; hence, the objective of this study was to elucidate placental responses to cold stress. 60 maternal rats were randomly allocated to either stressed (n = 30) or non-stressed (control, n = 30) treatment conditions and 30 pubs (n=15) were used for the pups analysis. We found that maternal exposure to cold stress resulted in decreased body temperature, increased food intake without body weight gain, and a high level of plasma corticosterone (CORT) between gestational day (GD) 14 and GD21. In addition, gestation cold stress induced the placental expression of heat shock protein 70 (HSP70), IκBα, glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), interferon (IFN) regulatory factor 3 (IRF3), Caspase-3 proteins and altered the ratio of B-cell lymphoma-extra large (Bcl-xL) to Bcl-associated x (Bax) proteins on gestational GD15, GD17, GD19, and GD21, also resulted in the production of interleukin (IL)-1β. Next, gestational cold stress provoked a decrease in plasma GH levels of 21-day-old offspring, and the body weights of offspring were have no differences from postnatal day (PD) 1-21. Taken together, our results indicate that gestational cold stress induces placental apoptosis and the activation of NF-kB via HSP70/TLR4/NF-κB signaling pathways in the placenta, these changes may affect placental function and fetus development.
2018DeSUMOylation of MKK7 kinase by the SUMO2/3 protease SENP3 potentiates lipopolysaccharide-induced inflammatory signaling in macrophages.J Biol ChemProtein SUMOylation has been reported to play a role in innate immune response, but the enzymes, substrates, and consequences of the specific inflammatory signaling events are largely unknown. Reactive oxygen species (ROS) are abundantly produced during macrophage activation and required for Toll-like receptor 4 (TLR4)-mediated inflammatory signaling. Previously, we demonstrated that SENP3 is a redox-sensitive SUMO2/3 protease. To explore any links between reversible SUMOylation and ROS-related inflammatory signaling in macrophage activation, we generated mice with conditional knock-out in myeloid cells. In bacterial lipopolysaccharide (LPS)-induced and inflammation models, we found that SENP3 deficiency markedly compromises the activation of TLR4 inflammatory signaling and the production of proinflammatory cytokines in macrophages exposed to LPS. Moreover, conditional knock-out mice were significantly less susceptible to septic shock. Of note, SENP3 deficiency was associated with impairment in JNK phosphorylation. We found that MKK7, which selectively phosphorylates JNK, is a SENP3 substrate and that SENP3-mediated deSUMOylation of MKK7 may favor its binding to JNK. Importantly, ROS-dependent SENP3 accumulation and MKK7 deSUMOylation rapidly occurred after LPS stimulation. In conclusion, our findings indicate that SENP3 potentiates LPS-induced TLR4 signaling via deSUMOylation of MKK7 leading to enhancement in JNK phosphorylation and the downstream events. Therefore this work provides novel mechanistic insights into redox regulation of innate immune responses.
2018Impact of Trans-Fats on Heat-Shock Protein Expression and the Gut Microbiota Profile of Mice.J Food SciPartially hydrogenated oils are known to cause metabolic stress and dyslipidemia. This paper explores a new dimension about the interaction between dietary trans-fats and the defense heat-shock protein (HSP) system, inflammation, and the gut microbiota of mice consuming a hyperlipidic diet containing partially hydrogenated vegetable oil free of animal fat. Five diet groups were installed: control diet, 2 hyperlipidic-partially hydrogenated-oil diets, each containing either casein or whey-protein hydrolysate (WPH) as protein source, and 2 consuming hyperlipidic-unhydrogenated-oil diets containing either WPH or casein as a protein source. The partially hydrogenated oil inhibited c-Jun NH -terminal kinase phosphorylation in the casein diets, but without altering κ-B kinase. Neither the lipid nor the protein had an influence on the proinflammatory toll-like receptor 4 (TLR4) pathway, but the combination of the high-lipid content and WPH impaired glucose tolerance without altering insulin or glucose transporter-4 translocation. It was remarkable to observe that, contrary to the case of a common high-fat diet, the lard-free hyperlipidic diets were hardly able to invert the Bacteroidetes:Firmicutes phylum ratio. Our results suggest that, in the absence of lard, the intake of trans-fatty acids is less harmful than expected because it does not trigger TLR4-inflammation or pose great threat to the normal gut microbiota. WPH had the effect of promoting the expression of HSP90, HSP60, and HSP25, but did not prevent dysbiosis, when the diet contained the unhydrogenated oil. The partially hydrogenated oil also seemed to antagonize the ability of WPH to induce the expression of protective HSPs.
2018Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases.Drug Discov TodayMyeloid differentiation protein 2 (MD2), together with Toll-like receptor 4 (TLR4), binds lipopolysaccharide (LPS) with high affinity, inducing the formation of the activated homodimer LPS-MD2-TLR4. MD2 directly recognizes the Lipid A domain of LPS, leading to the activation of downstream signaling of cytokine and chemokine production, and initiation of inflammatory and immune responses. However, excessive activation and potent host responses generate severe inflammatory syndromes such as acute sepsis and septic shock. MD2 is increasingly being considered as an attractive pharmacological target for the development of potent anti-inflammatory agents. In this Keynote review, we provide a comprehensive overview of the recent advances in the structure and biology of MD2, and present MD2 modulators as promising agents for anti-inflammatory intervention.
2018Ulinastatin Protects Against LPS-Induced Acute Lung Injury By Attenuating TLR4/NF-κB Pathway Activation and Reducing Inflammatory Mediators.ShockAcute lung injury (ALI) and its severe form, acute respiratory distress syndrome, remain the leading causes of morbidity and mortality in intensive care units. Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced sepsis; thus, it is now widely used in the treatment of pancreatitis, sepsis, and septic shock. Toll-like receptor 4 (TLR4), an essential LPS signaling receptor, plays a critical role in the activation of innate immunity. The aim of this study was to investigate whether UTI alleviates ALI by attenuating TLR4 expression and to explore the underlying molecular mechanisms involved. Male C56BL/6 mice were administered UTI intravenously 1 h before and 6 h after exposure to LPS by intratracheal instillation. Human lung epithelial (BEAS-2B) cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect levels of inflammatory cytokines. Western blot analysis was performed to detect changes in TLR4 expression and nuclear factor-κB (NF-κB) activation. UTI significantly protected animals from LPS-induced ALI, decreasing the lung wet/dry weight ratio, ALI score, total cells, neutrophils, macrophages, myeloperoxidase activity, and malondialdehyde content, factors associated with lung histological damage. UTI treatment also markedly attenuated levels of TLR4 and other proinflammatory cytokines. Furthermore, UTI significantly attenuated LPS-induced increases in TLR4 protein expression and NF-κB activation in lung tissues. Similarly, UTI markedly attenuated TLR4 expression and NF-κB activation in LPS-stimulated BEAS-2B cells. These findings indicate that UTI ameliorates LPS-induced ALI by attenuating the TLR4/NF-κB pathway activation.
2018Cold-inducible RNA binding protein in cancer and inflammation.Wiley Interdiscip Rev RNARNA binding proteins (RBPs) play key roles in RNA dynamics, including subcellular localization, translational efficiency and metabolism. Cold-inducible RNA binding protein (CIRP) is a stress-induced protein that was initially described as a DNA damage-induced transcript (A18 hnRNP), as well as a cold-shock domain containing cold-stress response protein (CIRBP) that alters the translational efficiency of its target messenger RNAs (mRNAs). This review summarizes recent work on the roles of CIRP in the context of inflammation and cancer. The function of CIRP in cancer appeared to be solely driven though its functions as an RBP that targeted cancer-associated mRNAs, but it is increasingly clear that CIRP also modulates inflammation. Several recent studies highlight roles for CIRP in immune responses, ranging from sepsis to wound healing and tumor-promoting inflammation. While modulating inflammation is an established role for RBPs that target cytokine mRNAs, CIRP appears to modulate inflammation by several different mechanisms. CIRP has been found in serum, where it binds the TLR4-MD2 complex, acting as a Damage-associated molecular pattern (DAMP). CIRP activates the NF-κB pathway, increasing phosphorylation of Iκκ and IκBα, and stabilizes mRNAs encoding pro-inflammatory cytokines. While CIRP promotes higher levels of pro-inflammatory cytokines in certain cancers, it also decreases inflammation to accelerate wound healing. This dichotomy suggests that the influence of CIRP on inflammation is context dependent and highlights the importance of detailing the mechanisms by which CIRP modulates inflammation. WIREs RNA 2018, 9:e1462. doi: 10.1002/wrna.1462 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
2017Gp96 Peptide Antagonist gp96-II Confers Therapeutic Effects in Murine Intestinal Inflammation.Front ImmunolThe expression of heat shock protein gp96 is strongly correlated with the degree of tissue inflammation in ulcerative colitis and Crohn's disease, thereby leading us to the hypothesis that inhibition of expression gp96-II peptide prevents intestinal inflammation.We employed daily injections of gp96-II peptide in two murine models of intestinal inflammation, the first resulting from five daily injections of IL-12/IL-18, the second a single intrarectal application of TNBS (2,4,6-trinitrobenzenesulfonic acid). We also assessed the effectiveness of gp96-II peptide in murine and human primary cell culture.In the IL-12/IL-18 model, all gp96-II peptide-treated animals survived until day 5, whereas 80% of placebo-injected animals died. gp96-II peptide reduced IL-12/IL-18-induced plasma IFNγ by 89%, IL-1β by 63%, IL-6 by 43% and tumor necrosis factor (TNF) by 70% compared to controls. The clinical assessment Disease Activity Index of intestinal inflammation severity was found to be significantly lower in the gp96-II-treated animals when compared to vehicle-injected mice. gp96-II peptide treatment in the TNBS model limited weight loss to 5% on day 7 compared with prednisolone treatment, whereas placebo-treated animals suffered a 20% weight loss. Histological disease severity was reduced equally by prednisolone (by 40%) and gp96-II peptide (35%). Mice treated with either gp96-II peptide or prednisolone exhibited improved endoscopic scores compared with vehicle-treated control mice: vascularity, fibrin, granularity, and translucency scores were reduced by up to 49% by prednisolone and by up to 30% by gp96-II peptide. , gp96-II peptide reduced TLR2-, TLR4- and IL-12/IL-18-induced cytokine expression in murine splenocytes, with declines in constitutive IL-6 (54%), lipopolysaccharide-induced TNF (48%), IL-6 (81%) and in -induced TNF (67%) and IL-6 (81%), as well as IL-12/IL-18-induced IFNγ (75%). gp96-II peptide reduced IL-1β, IL-6, TNF and GM-CSF in human peripheral blood mononuclear cells to a similar degree without affecting cell viability, whereas RANTES, IL-25 and MIF were twofold to threefold increased.gp96-II peptide protects against murine intestinal inflammation by regulating inflammation and , pointing to its promise as a novel treatment for inflammatory bowel disease.
2018Loxosceles venom Sphingomyelinase D activates human blood leukocytes: Role of the complement system.Mol ImmunolEnvenomation by Loxosceles spiders can result in severe systemic and local reactions, which are mainly triggered by Sphingomyelinase D (SMase D), a toxic component of Loxosceles venom. SMase D induces a systemic inflammatory condition similar to the reaction observed during an endotoxic shock. Considering the potent pro-inflammatory potential of Loxosceles venom and the SMase D, in this study we have used the whole human blood model to study the endotoxic-like shock triggered by SMase D. Recombinant purified SMase D from L. intermedia venom, similarly to LPS, induced activation of blood leukocytes, as observed by the increase in the expression of CD11b and TLR4, production of reactive oxygen and nitrogen species (superoxide anion and peroxynitrite) and release of TNF-α. Complement consumption in the plasma was also detected, and complement inhibition by compstatin decreased the SMase D and LPS-induced leukocyte activation, as demonstrated by a reduction in the expression of CD11b and TLR4 and superoxide anion production. Similar results were found for the L. intermedia venom, except for the production of TNF-α. These findings indicate that SMase D present in Loxosceles venom is able to activate leukocytes in a partially complement-dependent manner, which can contribute to the systemic inflammation that follows envenomation by this spider. Thus, future therapeutic management of systemic Loxosceles envenomation could include the use of complement inhibitors as adjunct therapy.
2017Toll-Like Receptor 4 on both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice.Front ImmunolTrauma combined with hemorrhagic shock (HS/T) leads to systemic inflammation, which results in organ injury. Toll-like Receptor 4 (TLR4)-signaling activation contributes to the initiation of inflammatory pathways following HS/T but its cell-specific roles in this setting are not known. We assessed the importance of TLR4 on leukocytes of myeloid lineage and dendritic cells (DCs) to the early systemic inflammatory response following HS/T. Mice were subjected to HS/T and 20 inflammatory mediators were measured in plasma followed by Dynamic Bayesian Network (DBN) Analysis. Organ damage was assessed by histology and plasma ALT levels. The role of TLR4 was determined using TLR4, MyD88, and Trif C57BL/6 (B6) mice, and by administration of a TLR4-specific neutralizing monoclonal antibody (mAb). The contribution of TLR4 expressed by myeloid leukocytes and DC was determined by generating cell-specific TLR4 B6 mice, including Lyz-Cre × TLR4, and CD11c-Cre × TLR4 B6 mice. Adoptive transfer of bone marrow-derived TLR4 or TLR4 DC into TLR4 mice confirmed the contribution of TLR4 on DC to the systemic inflammatory response after HS/T. Using both global knockout mice and the TLR4-blocking mAb 1A6 we established a central role for TLR4 in driving systemic inflammation. Using cell-selective TLR4 B6 mice, we found that TLR4 expression on both myeloid cells and CD11c DC is required for increases in systemic cytokine levels and organ damage after HS/T. We confirmed the capacity of TLR4 on CD11c DC to promote inflammation and liver damage using adoptive transfer of TLR4 conventional (CD11c) DC into TLR4 mice. DBN inference identified CXC chemokines as proximal drivers of dynamic changes in the circulating levels of cytokines/chemokines after HS/T. TLR4 on DC was found to contribute selectively to the elevations in these proximal drivers. TLR4 on both myeloid cells and conventional DC is required for the initial systemic inflammation and organ damage in a mouse model of HS/T. This includes a role for TLR4 on DC in promoting increases in the early inflammatory networks identified in HS/T. These data establish DC along with macrophages as essential to the recognition of tissue damage and stress following tissue trauma with HS.
2017Dietary Supplementation with Lactobacillus casei Alleviates Lipopolysaccharide-Induced Liver Injury in a Porcine Model.Int J Mol SciThis study aims to determine whether () could relieve liver injury in piglets challenged with lipopolysaccharide (LPS). Piglets were randomly allocated into one of the three groups: control, LPS, and . The control and LPS groups were fed a corn- and soybean meal-based diet, whereas the group was fed the basal diet supplemented with 6 × 10⁶ cfu/g . On Day 31 of the trial, piglets in the LPS and groups received intraperitoneal administration of LPS (100 µg/kg body weight), while the control group received the same volume of saline. Blood and liver samples were collected for analysis. Results showed that supplementation decreased the feed/gain ratio ( = 0.027) and diarrhea incidence ( < 0.001), and attenuated LPS-induced liver histomorphological abnormalities. Compared with the control group, LPS challenge dramatically increased glutamyl transpeptidase activity ( = 0.001) in plasma as well as the concentrations of Interleukin 6 (IL-6) ( = 0.048), Tumor necrosis factor-alpha (TNF-α) ( = 0.041), and Malondialdehyde (MDA) ( = 0.001) in the liver, while decreasing the hepatic SOD activity. LPS also increased ( < 0.05) the mRNA levels for IL-6, IL-8, TNF-α, Toll-like receptors 4 (TLR4), Nuclear factor κB (NF-κB) and Heat shock protein 70 (HSP70) in the liver. The adverse effects of LPS challenge were ameliorated by supplementation. In conclusion, dietary alleviates LPS-induced liver injury via reducing pro-inflammatory cytokines and increasing anti-oxidative capacity.
2017Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation.J NeuroinflammationLong-term use of morphine induces analgesic tolerance, which limits its clinical efficacy. Evidence indicated morphine-evoked neuroinflammation mediated by toll-like receptor 4 (TLR4) - NOD-like receptor protein 3 (NLRP3) inflammasome was important for morphine tolerance. In our study, we investigated whether other existing alternative pathways caused morphine-induced activation of TLR4 in microglia. We focused on heat shock protein 70 (HSP70), a damage-associated molecular pattern (DAMP), which was released from various cells upon stimulations under the control of K channel and bound with TLR4-inducing inflammation. Glibenclamide, a classic K channel blocker, can improve neuroinflammation by inhibiting the activation of NLRP3 inflammasome. Our present study investigated the effect and possible mechanism of glibenclamide in improving morphine tolerance via its specific inhibition on the release of HSP70 and activation of NLRP3 inflammasome induced by morphine.CD-1 mice were used for tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 and neural cell line SH-SY5Y were used to investigate the pharmacological effects and the mechanism of glibenclamide on morphine-induced neuroinflammation. The activation of microglia was accessed by immunofluorescence staining. Neuroinflammation-related cytokines were measured by western blot and real-time PCR. The level of HSP70 and related signaling pathway were evaluated by western blot and immunofluorescence staining.Morphine induced the release of HSP70 from neurons. The released HSP70 activated microglia and triggered TLR4-mediated inflammatory response, leading to the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) p65 and the activation of NLRP3 inflammasome. Moreover, anti-HSP70 neutralizing antibody partly attenuated chronic morphine tolerance. The secretion of HSP70 was under the control of MOR/AKT/K/ERK signal pathway. Glibenclamide as a classic K channel blocker markedly inhibited the release of HSP70 induced by morphine and suppressed HSP70-TLR4-NLRP3 inflammasome-mediated neuroinflammation, which consequently attenuated morphine tolerance.Our study indicated that morphine-induced extracellular HSP70 was an alternative way for the activation of TLR4-NLRP3 in analgesic tolerance. The release of HSP70 was regulated by MOR/AKT/K/ERK pathway. Our study suggested a promising target, K channel and a new leading compound, glibenclamide, for treating morphine tolerance.
2017Piperidylmethyloxychalcone improves immune-mediated acute liver failure via inhibiting TAK1 activity.Exp Mol MedMice deficient in the toll-like receptor (TLR) or the myeloid differentiation factor 88 (MyD88) are resistant to acute liver failure (ALF) with sudden death of hepatocytes. Chalcone derivatives from medicinal plants protect from hepatic damages including ALF, but their mechanisms remain to be clarified. Here, we focused on molecular basis of piperidylmethyloxychalcone (PMOC) in the treatment of TLR/MyD88-associated ALF. C57BL/6J mice were sensitized with D-galactosamine (GalN) and challenged with Escherichia coli lipopolysaccharide (LPS, TLR4 agonist) or oligodeoxynucleotide containing unmethylated CpG motif (CpG ODN, TLR9 agonist) for induction of ALF. Post treatment with PMOC sequentially ameliorated hepatic inflammation, apoptosis of hepatocytes, severe liver injury and shock-mediated death in ALF-induced mice. As a mechanism, PMOC inhibited the catalytic activity of TGF-β-activated kinase 1 (TAK1) in a competitive manner with respect to ATP, displaced fluorescent ATP probe from the complex with TAK1, and docked at the ATP-binding active site on the crystal structure of TAK1. Moreover, PMOC inhibited TAK1 auto-phosphorylation, which is an axis in the activating pathways of nuclear factor-κB (NF-κB) or activating protein 1 (AP1), in the liver with ALF in vivo or in primary liver cells stimulated with TLR agonists in vitro. PMOC consequently suppressed TAK1-inducible NF-κB or AP1 activity in the inflammatory injury, an early pathogenesis leading to ALF. The results suggested that PMOC could contribute to the treatment of TLR/MyD88-associated ALF with the ATP-binding site of TAK1 as a potential therapeutic target.
2017Human resistin protects against endotoxic shock by blocking LPS-TLR4 interaction.Proc Natl Acad Sci U S AHelminths trigger multiple immunomodulatory pathways that can protect from sepsis. Human resistin (hRetn) is an immune cell-derived protein that is highly elevated in helminth infection and sepsis. However, the function of hRetn in sepsis, or whether hRetn influences helminth protection against sepsis, is unknown. Employing hRetn-expressing transgenic mice (hTg) and recombinant hRetn, we identify a therapeutic function for hRetn in lipopolysaccharide (LPS)-induced septic shock. hRetn promoted helminth-induced immunomodulation, with increased survival of ()-infected hTg mice after a fatal LPS dose compared with naive mice or -infected hTg mice. Employing immunoprecipitation assays, hTg mice, and human immune cell culture, we demonstrate that hRetn binds the LPS receptor Toll-like receptor 4 (TLR4) through its N terminal and modulates STAT3 and TBK1 signaling, triggering a switch from proinflammatory to anti-inflammatory responses. Further, we generate hRetn N-terminal peptides that are able to block LPS proinflammatory function. Together, our studies identify a critical role for hRetn in blocking LPS function with important clinical significance in helminth-induced immunomodulation and sepsis.
2017Calreticulin Fragment 39-272 Promotes B16 Melanoma Malignancy through Myeloid-Derived Suppressor Cells .Front ImmunolCalreticulin (CRT), a multifunctional Ca-binding glycoprotein mainly located in the endoplasmic reticulum, is a tumor-associated antigen that has been shown to play protective roles in angiogenesis suppression and anti-tumor immunity. We previously reported that soluble CRT (sCRT) was functionally similar to heat shock proteins or damage-associated molecular patterns in terms of ability to activate myeloid cells and elicit strong inflammatory cytokine production. In the present study, B16 melanoma cell lines expressing recombinant CRT fragment 39-272 (sCRT/39-272) in secreted form (B16-CRT), or recombinant enhanced green fluorescence protein (rEGFP) (B16-EGFP), were constructed for investigation on the roles of sCRT in tumor development. When s.c. inoculated into C57BL/6 mice, the B16-CRT cells were significantly more aggressive (in terms of solid tumor growth rate) than B16-EGFP controls in a TLR4- and myeloid-derived suppressor cells (MDSC)-dependent manner. The B16-CRT-bearing mice showed increased Gr1 MDSC infiltration in tumor tissues, accelerated proliferation of CD11bLy6GLy6C (G-MDSC) precursors in bone marrow, and higher percentages of G-MDSCs in spleen and blood, which was mirrored by decreased percentage of dendritic cells (DC) in periphery. In studies, recombinant sCRT/39-272 was able to promote migration and survival of tumor-derived MDSCs interaction with TLR4, inhibit MDSC differentiation into DC, and also elicit expression of inflammatory proteins S100A8 and S100A9 which are essential for functional maturation and chemotactic migration of MDSCs. Our data provide solid evidence for CRT as a double-edged sword in tumor development.
2017Dihydromyricetin protects against lipopolysaccharide‑induced cardiomyocyte injury through the toll‑like receptor‑4/nuclear factor‑κB pathway.Mol Med RepDihydromyricetin (DHM) is a bioactive flavonoid compound extracted from the stems and leaves of Ampelopsis grossedentata. Previous studies have indicated that DHM has antioxidation and antitumor capabilities, while the effect of DHM on lipopolysaccharide (LPS)‑induced cardiomyocyte injury has not been clarified. Therefore, the aim of the present study was to investigate the effect of DHM on LPS‑induced cardiomyocyte injury. In the present study, cardiomyocytes were randomized to the control (PBS), LPS and DHM + LPS groups. The LPS group was treated with 10 µg/ml LPS for 12 h and the DHM + LPS group was treated with 100 or 25 µM DHM 12 h prior to treatment with LPS. The protective effect of DHM on LPS‑induced cardiomyocytes injury was evaluated by Cell Counting kit‑8 assay, TUNEL staining, reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The results demonstrated that LPS treatment led to cardiomyocyte apoptosis, and these effects were significantly attenuated by DHM. Furthermore, LPS treatment downregulated the expression of B‑cell lymphoma 2 apoptosis regulator (Bcl‑2) and induced increased expression of Bcl‑2‑associated X apoptosis regulator (Bax). Additionally, DHM treatment reversed LPS‑induced changes in Bcl‑2 expression and Bax expression in cardiomyocytes, and rescued cells from apoptosis. In addition, increased mRNA expression levels of tumor necrosis factor‑α and interleukin‑6 induced by LPS were attenuated following treatment with DHM. Further investigation demonstrated that DHM suppressed the activation of toll‑like receptor‑4 (TLR4), which is involved in regulating the downstream signaling pathway of nuclear factor‑κB (NF‑κB). DHM attenuated LPS‑induced cardiomyocyte injury, the potential mechanism responsible for this effect may involve inhibition of TLR4 activation and subsequent regulation of the associated downstream signaling pathway of NF‑κB. The current study indicates that DHM may protect cardiomyocytes against LPS‑induced injury by inhibition of the TLR4/NF‑κB signaling pathway. The results of the present study may provide support for the development DHM as a strategy for the treatment of heart failure in septic shock.
2017Lipopolysaccharide Potentiates Insulin-Driven Hypoglycemic Shock.J ImmunolCritically ill patients typically present with hyperglycemia. Treatment with conventional insulin therapy (targeting 144-180 mg/dl) improves patient survival; however, intensive insulin therapy (IIT) targeting normal blood glucose levels (81-108 mg/dl) increases the incidence of moderate and severe hypoglycemia, and increases mortality. Septic patients are especially prone to IIT-induced hypoglycemia, but the mechanism remains unknown. Here, we show that codelivery of insulin with otherwise sublethal doses of LPS induced hypoglycemic shock in mice within 1-2 h. LPS impaired clearance of insulin, which amplified insulin receptor signaling. These effects were mediated by caspase-11, TLR4, and complement, each of which trigger eicosanoid production that potentiates insulin signaling. Finally, in an animal model of sepsis, we observed that -infected mice exhibited simultaneous impaired insulin clearance coexisting with insulin resistance. Our results raise the possibility that septic patients have impaired insulin clearance, which could increase their susceptibility to hypoglycemia during IIT, contraindicating its use.
2018Induction of suppressor of cytokine signaling 3 via HSF-1-HSP70-TLR4 axis attenuates neuroinflammation and ameliorates postoperative pain.Brain Behav ImmunPostoperative pain is a common form of acute pain that, if not managed effectively, can become chronic pain. Evidence has shown that glia, especially microglia, mediate neuroinflammation, which plays a vital role in pain sensitization. Moreover, toll-like receptor 4 (TLR4), the tumor necrosis factor receptor (TNF-R), the interleukin-1 receptor (IL-1R), and the interleukin-6 receptor (IL-6R) have been considered key components in central pain sensitization and neuroinflammation. Therefore, we hypothesized that activation of the body's endogenous "immune brakes" will inhibit these receptors and achieve inflammation tolerance as well as relieve postoperative pain. After searching for potential candidates to serve as this immune brake, we identified and focused on the suppressor of cytokine signaling 3 (SOCS3) gene. To regulate SOCS3 expression, we used paeoniflorin to induce heat shock protein 70 (HSP70)/TLR4 signaling. We found that paeoniflorin significantly induced SOCS3 expression both in vitro and in vivo and promoted the efflux of HSP70 from the cytoplasm to the extracellular environment. Furthermore, paeoniflorin markedly attenuated incision-induced mechanical allodynia, and this effect was abolished by small interfering RNAs targeting SOCS3. These findings demonstrated an effective and safe strategy to alleviate postoperative pain.
2018Protraction of neuropathic pain by morphine is mediated by spinal damage associated molecular patterns (DAMPs) in male rats.Brain Behav ImmunWe have recently reported that a short course of morphine, starting 10days after sciatic chronic constriction injury (CCI), prolonged the duration of mechanical allodynia for months after morphine ceased. Maintenance of this morphine-induced persistent sensitization was dependent on spinal NOD-like receptor protein 3 (NLRP3) inflammasomes-protein complexes that proteolytically activate interleukin-1β (IL-1β) via caspase-1. However, it is still unclear how NLRP3 inflammasome signaling is maintained long after morphine is cleared. Here, we demonstrate that spinal levels of the damage associated molecular patterns (DAMPs) high mobility group box 1 (HMGB1) and biglycan are elevated during morphine-induced persistent sensitization in male rats; that is, 5weeks after cessation of morphine dosing. We also show that HMGB1 and biglycan levels are at least partly dependent on the initial activation of caspase-1, as well as Toll like receptor 4 (TLR4) and the purinergic receptor P2X7R-receptors responsible for priming and activation of NLRP3 inflammasomes. Finally, pharmacological attenuation of the DAMPs HMGB1, biglycan, heat shock protein 90 and fibronectin persistently reversed morphine-prolonged allodynia. We conclude that after peripheral nerve injury, morphine treatment results in persistent DAMP release via TLR4, P2X7R and caspase-1, which are involved in formation/activation of NLRP3 inflammasomes. These DAMPs are responsible for maintaining persistent allodynia, which may be due to engagement of a positive feedback loop, in which NLRP3 inflammasomes are persistently activated by DAMPs signaling at TLR4 and P2X7R.
2017Discovery of new MD2-targeted anti-inflammatory compounds for the treatment of sepsis and acute lung injury.Eur J Med ChemMyeloid differentiation 2 (MD2) is essential to the recognition of lipopolysaccharide (LPS) and the subsequent mediation of toll-like receptor 4 (TLR4)-dependent acute inflammatory disorders including sepsis and acute lung injury. Inhibitors targeting MD2 may provide an alternative means to subdue acute inflammatory diseases. In the present study, 39 bisaryl-1,4-dien-3-one compounds with 5-carbon connection chains were designed and synthesized as MD2 inhibitors based on the analysis of the molecular docking of xanthohumol to MD2. The compound-MD2 interactions were measured by cell-free assays including bis-ANS displacement and SPR, and the active compounds were further tested for MD2 inhibition and anti-inflammatory activities in LPS-challenged macrophages. The most active compound, 1f, was shown to have remarkable protective effects against sepsis shock and pulmonary inflammation. Collectively, we present evidence that bisaryl-1,4-dien-3-one is a new lead structure for the development of anti-inflammatory agents targeting MD2.
2018Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation Toll-like receptor 4.FASEB JAcute lung injury (ALI) is a common cause of morbidity in patients after severe injury due to dysregulated inflammation, which is believed to be driven by gut-derived inflammatory mediators carried mesenteric lymph (ML). We have previously demonstrated that nano-sized extracellular vesicles, called exosomes, secreted into ML after trauma/hemorrhagic shock (T/HS) have the potential to activate immune cells Here, we assess the function of ML exosomes in the development of T/HS-induced ALI and the role of TLR4 in the ML exosome-mediated inflammatory response. ML exosomes isolated from rats subjected to T/HS stimulated NF-κB activation and caused proinflammatory cytokine production in alveolar macrophages. experiments revealed that intravenous injection of exosomes harvested after T/HS, but not before shock, caused recruitment of inflammatory cells in the lung, increased vascular permeability, and induced histologic ALI in naive mice. The exosome-depleted supernatant of ML had no effect on and inflammatory responses. We also demonstrated that both pharmacologic inhibition and genetic knockout of TLR4 completely abolished ML exosome-induced cytokine production in macrophages. Thus, our findings define the critical role of exosomes secreted into ML as a critical mediator of T/HS-induced ALI through macrophage TLR4 activation.-Kojima, M., Gimenes-Junior, J. A., Chan, T. W., Eliceiri, B. P., Baird, A., Costantini, T. W., Coimbra, R. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation Toll-like receptor 4.
2017FcγRIIb attenuates TLR4‑mediated NF‑κB signaling in B cells.Mol Med RepToll‑like receptors (TLRs) serve a vital role in activating the innate immune system by sensing conserved microbial products. Fc γ receptor IIb (FcγRIIb), the inhibitory Fc receptor, exerts its immune regulatory functions by binding to the immunoglobulin G Fc domain. Although the individual roles of TLRs and FcγRIIb have been studied intensively, the cross‑talk between FcγRIIb and TLR4 on B cells remains unknown. The present study demonstrated that FcγRIIb ligation by the immune complex (IC) attenuated the TLR4‑triggered nuclear factor (NF)‑κΒ activation, and decreased the release of interleukin (IL)‑6 from B cells, via enhancing LYN proto‑oncogene (Lyn) phosphorylation. In addition, IC treatment protected mice from lethal endotoxic shock. Accordingly, IC decreased the LPS‑induced serum levels of IL‑6, as well as intracellular IL‑6 production in B cells in vivo. However, these protective and inhibitory effects of IC were not observed in FcγRIIb‑/‑ mice. In conclusion, the present data demonstrated that FcγRIIb inhibited TLR4 signaling in B cells by activating Lyn phosphorylation and by inhibiting NF‑κΒ signaling. The present study elucidated the mechanism associated with the TLR4 and FcγRIIb cross‑talk in B cells.
2017Neuroendocrine Modulation of IL-27 in Macrophages.J ImmunolHeterodimeric IL-27 (p28/EBV-induced gene 3) is an important member of the IL-6/IL-12 cytokine family. IL-27 is predominantly synthesized by mononuclear phagocytes and exerts immunoregulatory functional activities on lymphocytic and nonlymphocytic cells during infection, autoimmunity or neoplasms. There is a great body of evidence on the bidirectional interplay between the autonomic nervous system and immune responses during inflammatory disorders, but so far IL-27 has not been defined as a part of these multifaceted neuroendocrine networks. In this study, we describe the role of catecholamines (as mediators of the sympathetic nervous system) related to IL-27 production in primary mouse macrophages. Noradrenaline and adrenaline dose-dependently suppressed the release of IL-27p28 in LPS/TLR4-activated macrophages, which was independent of α adrenoceptors. Instead, β adrenoceptor activation was responsible for mediating gene silencing of IL-27p28 and EBV-induced gene 3. The β adrenoceptor agonists formoterol and salbutamol mediated suppression of IL-27p28 production, when triggered by zymosan/TLR2, LPS/TLR4, or R848/TLR7/8 activation, but selectively spared the polyinosinic-polycytidylic acid/TLR3 pathway. Mechanistically, β adrenergic signaling reinforced an autocrine feedback loop of macrophage-derived IL-10 and this synergized with inhibition of the JNK pathway for limiting IL-27p28. The JNK inhibitors SP600125 and AEG3482 strongly decreased intracellular IL-27p28 in F4/80CD11b macrophages. In endotoxic shock of C57BL/6J mice, pharmacologic activation of β adrenoceptors improved the severity of shock, including hypothermia and decreased circulating IL-27p28. Conversely, IL-27p28 was 2.7-fold increased by removal of the catecholamine-producing adrenal glands prior to endotoxic shock. These data suggest a novel role of the sympathetic neuroendocrine system for the modulation of IL-27-dependent acute inflammation.
2017Extracellular HSP72 induces proinflammatory cytokines in human periodontal ligament fibroblast cells through the TLR4/NFκB pathway in vitro.Arch Oral BiolThe aim of the present study was to examine the effect of extracellular heat shock protein (HSP) 72 on human periodontal ligament fibroblast cells (hPDLFs) in vitro.hPDLFs were stimulated by recombinant human HSP72 (rhHSP72). TAK-242 was used to inhibit toll-like receptor 4 (TLR4) activity. Interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α mRNA levels were analyzed by real-time PCR and protein levels were analyzed by enzyme-linked immunosorbent assay. p65/RelA phosphorylation was analyzed by western blot.IL-6, IL-8 and TNF-α mRNA and protein levels were significantly increased by rhHSP72 stimulation. These effects were inhibited by TAK-242 treatment. Additionally, p65/RelA phosphorylation was increased after 5-min rhHSP72 stimulation, which was inhibited by TAK-242 treatment.Extracellular HSP72 induces proinflammatory cytokines through TLR4/NF-κB in hPDLFs.
2017Glucocorticoids downregulate TLR4 signaling activity via its direct targeting by miR-511-5p.Eur J ImmunolEndotoxin tolerance assures proper regulation of the TLR4 signaling pathway and avoids uncontrolled inflammation, limiting tissue damage and endotoxin shock development. Though underlying molecular mechanisms are still undefined, evidence indicates the involvement of microRNAs, which represent a new layer of regulation of inflammatory pathways. Here, we report that LPS and other inflammatory stimuli repress miR-511-5p expression in human monocytes, while anti-inflammatory stimuli, such as TGF-β and glucocorticoids, have the opposite effect. MiR-511-5p levels selectively influenced cell activation when endotoxin was used, while biological activity of other TLR agonists was unaffected. Consistent with this, TLR4 was validated as the miR-511-5p direct target responsible for glucocorticoids- and TGF-β-mediated inhibition of pro-inflammatory cytokines production observed in endotoxin tolerant monocytes. MiR-511-5p thus acts as an intracellular mediator of glucocorticoids and TGF-β for the induction of endotoxin tolerance in human monocytes.
2017TRIM8 Negatively Regulates TLR3/4-Mediated Innate Immune Response by Blocking TRIF-TBK1 Interaction.J ImmunolTLR-mediated signaling pathways play critical roles in host defense against microbials. However, dysregulation of innate immune and inflammatory responses triggered by TLRs would result in harmful damage to the host. Using a gene-knockout mouse model, we show that tripartite motif (TRIM) 8 negatively regulates TLR3- and TLR4-mediated innate immune and inflammatory responses. TRIM8 deficiency leads to increased polyinosinic-polycytidylic acid- and LPS-triggered induction of downstream anti-microbial genes including , , , and , evaluated serum cytokine levels, and increased susceptibility of mice to polyinosinic-polycytidylic acid- and LPS-induced inflammatory death as well as infection-induced loss of body weight and septic shock. TRIM8 interacted with Toll/IL-1 receptor domain-containing adapter-inducing IFN-β and mediated its K6- and K33-linked polyubiquitination, leading to disruption of the Toll/IL-1 receptor domain-containing adapter-inducing IFN-β-TANK-binding kinase-1 association. Our findings uncover an additional mechanism on the termination of TLR3/4-mediated inflammatory and innate immune responses.
2017An inhibitory epitope of human Toll-like receptor 4 resides on leucine-rich repeat 13 and is recognized by a monoclonal antibody.FEBS LettLipopolysaccharide (LPS)-induced activation of Toll-like receptor 4 (TLR4) elicits the innate immune response and can trigger septic shock if excessive. Two antibodies (HT4 and HT52) inhibit LPS-induced human TLR4 activation via novel LPS binding-independent mechanisms. The HT52 epitope resides on leucine-rich repeat 2 (LRR2) and is a feature of many inhibitory antibodies; antigen specificity of HT4 does not reside in LRR2. Here, we identified an HT4 epitope on LRR13 located close to the TLR4 dimerization interface that plays a role in NFκB activation. HT4 and HT52 mutually enhanced TLR4 inhibition. LRR13 is a novel inhibitory epitope and may be useful for developing anti-TLR4 antibodies. Combination therapy with LRR2 and LRR13 may effectively inhibit TLR4 activation.
2017Titanium dioxide nanoparticles prime a specific activation state of macrophages.NanotoxicologyTitanium dioxide nanoparticles (TiO NPs) are widely used in foods, cosmetics, and medicine. Although the inhalation toxicity of TiO NPs has been studied, the potential adverse effects of oral exposure of low-dose TiO NPs are largely unclear. Herein, with macrophage cell lines, primary cells, and mouse models, we show that TiO NPs prime macrophages into a specific activation state characterized by excessive inflammation and suppressed innate immune function. After a month of dietary exposure in mice or exposure in vitro to TiO NPs (10 and 50 nm), the expressions of pro-inflammatory genes in macrophages were increased, and the expressions of anti-inflammatory genes were decreased. In addition, for macrophages exposed to TiO NPs in vitro and in vivo, their chemotactic, phagocytic, and bactericidal activities were lower. This imbalance in the immune system could enhance the susceptibility to infections. In mice, after a month of dietary exposure to low doses of TiO NPs, an aggravated septic shock occurred in response to lipopolysaccharide challenge, leading to elevated levels of inflammatory cytokines in serum and reduced overall survival. Moreover, TLR4-deficient mice and primary macrophages, or TLR4-independent stimuli, showed less response to TiO NPs. These results demonstrate that TiO NPs induce an abnormal state of macrophages characterized by excessive inflammation and suppressed innate immune function in a TLR4-dependent manner, which may suggest a potential health risk, particularly for those with additional complications, such as bacterial infections.
2017Paying for the Tolls: The High Cost of the Innate Immune System for the Cardiac Myocyte.Adv Exp Med BiolThe cardiac myocyte differs strikingly from the specialized cells of the immune system, which has two different responses to invading organisms and tissue damage. Adaptive or acquired immunity generates highly specific antibodies in response to threats and is an essential component of immunity; however, adaptive immunity can take 4-7 days to mobilize, and a more primitive response, innate immunity, fills the gap. Innate immunity is expressed in complex and in primitive life forms. Specialized receptors, Toll-like receptors (TLRs), which are widely distributed throughout different tissues recognize danger signals and rapidly respond with the release of noxious substances, such as TNFα. The problem is that many endogenous molecules have been found to act as ligands for specific TLRs, and when these molecules are released into the extracellular environment, they can cause problems by activating innate immunity and an inflammatory response. In cardiac myocytes heat shock protein (HSP)60 can activate TLR4, as can HMGB1, and this type of response can amplify the response to ischemia/reperfusion leading to increased cell and tissue injury. Activation of TLRs can potentially amplify chronic, inflammatory diseases, such as ischemic heart failure. Thus, it is important to understand the regulation of the TLRs and their downstream effects. This chapter will focus on the TLRs and cardiac myocytes.
2017Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages.Cell RepMacrophages perform critical functions in both innate immunity and cholesterol metabolism. Here, we report that activation of Toll-like receptor 4 (TLR4) in macrophages causes lanosterol, the first sterol intermediate in the cholesterol biosynthetic pathway, to accumulate. This effect is due to type I interferon (IFN)-dependent histone deacetylase 1 (HDAC1) transcriptional repression of lanosterol-14α-demethylase, the gene product of Cyp51A1. Lanosterol accumulation in macrophages, because of either treatment with ketoconazole or induced conditional disruption of Cyp51A1 in mouse macrophages in vitro, decreases IFNβ-mediated signal transducer and activator of transcription (STAT)1-STAT2 activation and IFNβ-stimulated gene expression. These effects translate into increased survival to endotoxemic shock by reducing cytokine secretion. In addition, lanosterol accumulation increases membrane fluidity and ROS production, thus potentiating phagocytosis and the ability to kill bacteria. This improves resistance of mice to Listeria monocytogenes infection by increasing bacterial clearance in the spleen and liver. Overall, our data indicate that lanosterol is an endogenous selective regulator of macrophage immunity.
2017Functional interfaces between TICAM-2/TRAM and TICAM-1/TRIF in TLR4 signaling.Biochem Soc TransToll-like receptor 4 (TLR4) recognizes lipopolysaccharide (LPS), produces pro-inflammatory cytokines and type I interferons, and associates with a trigger of endotoxin shock. TLR4 is interacted with a TIR domain-containing adaptor molecule-2 (TICAM-2)/TRAM [TRIF (TIR domain-containing adaptor-inducing interferon-β)-related adaptor molecule] via its Toll-interleukin-1 receptor homology (TIR) domain. TICAM-2 acts as a scaffold protein and activates TIR domain-containing adaptor molecule-1 (TICAM-1)/TRIF. According to the structural analysis by NMR, TICAM-2 interacts with TICAM-1 by the acidic amino acids motif, E87/D88/D89. The TIR domain of TICAM-2 couples with the dimer of TIR domain of TLR4 beneath the membrane, and TICAM-2 itself also forms dimer and constitutes a binding site with TICAM-1. Endosomal localization of TICAM-2 is essential for TLR4-mediated type I interferon-inducing signal from the endosome. N-terminal myristoylation allows TICAM-2 to anchor to the endosomal membrane. Additionally, we have identified two acidic amino acids, D91/E92, as a functional motif that cooperatively determines endosomal localization of TICAM-2. This structural information of TICAM-2 suggests that the specific structure is indispensable for the endosomal localization and type I interferon production of TICAM-2. Taken together with the knowledge on cytoplasmic sensors for LPS, TICAM-2/TICAM-1 may conform to a signal network on TLR4 to facilitate induction of cytokine disorders.
2017Isoacteoside, a dihydroxyphenylethyl glycoside, exhibits anti-inflammatory effects through blocking toll-like receptor 4 dimerization.Br J PharmacolIsoacteoside (is a phenylethanoid isolated from Monochasma savatieri Franch. ex Maxim., which is an anti-inflammatory herb widely used in traditional Chinese medicine. However, the exact mechanism of the anti-inflammatory activity of isoacteoside is not completely understood. In this study, its anti-inflammatory mechanism was elucidated in mouse macrophages.The expression of the NF-κB pathway, MAPK pathway, iNOS, TNF-α, IL-6 and IL-1β was evaluated using Western blotting, quantitative real-time PCR or ELISA. TLR4 dimerization was determined by transfecting HEK293T cells with TLR4 plasmids. The in vivo anti-inflammatory effect of isoacteoside was determined using mouse models of xylene-induced ear oedema, LPS-induced endotoxic shock and LPS-induced endotoxaemia-associated acute kidney injury (AKI).Isoacteoside suppressed COX-2, iNOS, TNF-α, IL-6 and IL-1β expression. Furthermore, isoacteoside attenuated the LPS-induced transcriptional activity of NF-κB by decreasing the levels of phosphorylated IκB-α and IKK and NF-κB/p65 nuclear translocation. In addition, isoacteoside inhibited LPS-induced transcriptional activity of AP-1 by reducing the levels of phosphorylated JNK1/2 and p38MAPK. Isoacteoside blocked LPS-induced TLR4 dimerization, resulting in a reduction in the recruitment of MyD88 and TIR-domain-containing adapter-inducing interferon-β (TRIF) and the phosphorylation of TGF-β-activated kinase-1 (TAK1). Pretreatment of mice with isoacteoside effectively inhibited xylene-induced ear oedema and LPS-induced endotoxic death and protected against LPS-induced AKI.Isoacteoside blocked TLR4 dimerization, which activates the MyD88-TAK1-NF-κB/MAPK signalling cascades and TRIF pathway. Our data indicate that isoacteoside is a potential lead compound for the treatment of inflammatory diseases.
2017The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation.Nat CommunCaveolin-1 (CAV1), the major constituent of caveolae, plays a pivotal role in various cellular biological functions, including cancer and inflammation. The ubiquitin/proteasomal pathway is known to contribute to the regulation of CAV1 expression, but the ubiquitin ligase responsible for CAV1 protein stability remains unidentified. Here we reveal that E3 ubiquitin ligase ZNRF1 modulates CAV1 protein stability to regulate Toll-like receptor (TLR) 4-triggered immune responses. We demonstrate that ZNRF1 physically interacts with CAV1 in response to lipopolysaccharide and mediates ubiquitination and degradation of CAV1. The ZNRF1-CAV1 axis regulates Akt-GSK3β activity upon TLR4 activation, resulting in enhanced production of pro-inflammatory cytokines and inhibition of anti-inflammatory cytokine IL-10. Mice with deletion of ZNRF1 in their hematopoietic cells display increased resistance to endotoxic and polymicrobial septic shock due to attenuated inflammation. Our study defines ZNRF1 as a regulator of TLR4-induced inflammatory responses and reveals another mechanism for the regulation of TLR4 signalling through CAV1.
2017Microglia activation triggers oligodendrocyte precursor cells apoptosis via HSP60.Mol Med RepReactive microglia are present in lesions of myelin‑associated white matter disorders resulting in injuries to oligodendrocyte precursor cells (OPCs). Therefore, protection of OPCs from injury due to excessive activation of microglia is important in treating these diseases. Heat shock protein 60 (HSP60) has been demonstrated to be released extracellularly in the failing heart upon stress or injury. However, the role of HSP60 in the central nervous system and whether it participates in the toxic effects of microglia on OPCs remains unclear. The present study used the co‑culture, cell death assays, binding assays, immunochemistry, western blot and ELISA. HSP60 was demonstrated to be released extracellularly by LPS‑activated microglia and to bind to OPCs, triggering OPC apoptosis. When pretreated with toll‑like receptor (TLR) 4 blocking antibody, the viability of OPCs increased, while the expression of nuclear factor κB (NFκB), caspase 3 and the release of proinflammatory cytokines triggered by HSP60 decreased. These results suggest that HSP60 released by microglia may mediate OPC apoptosis through binding to TLR4 on the surface of OPCs and subsequently activating the TLR4‑NFκB signaling pathway. HSP60 may, therefore, serve as a potential target for treatment of myelin‑associated neurodegenerative diseases that are accompanied by microglia activation.
2017Attenuation of thioacetamide-induced hepatocellular injury by short-term repeated injections associated with down-regulation of metabolic enzymes and relationship with MHC class II-presenting cells.Exp Toxicol PatholThe liver is the primary organ participating in the metabolism of xenobiotics and is therefore an important target in the safety assessment of drugs, chemicals and environmental toxins. Drug-induced liver injury (DILI) has recently become widely recognized in human medicine as an adverse event. The progression of DILI often involves "damage-associated molecular patterns" (DAMPs) of gene and protein expression such as high-mobility group boxes (HMGBs), S100 proteins and heat shock proteins (Hsp). DAMPs are released from injured or necrotic cells and are bound to Toll-like receptors (TLRs) and modulate inflammatory reactions. Previously, in thioacetamide (TAA; 300mg/kg body weight, single injection)-induced rat liver, we demonstrated that the expressions of DAMPs, TLR4 and major histocompatibility complex (MHC) class II were simultaneously increased, accompanied with progression of hepatocellular injury and inflammation. Here we investigated the association of DILI and DAMPs, TLRs and MHC class II by using rat livers repeated injections with TAA (100mg/kg body weight, once, three times). Two days after TAA single injection, centrilobular hepatocellular necrosis with infiltration of mononuclear cells was observed, being paralleled with increase in serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP). However, two days after duplicate and triplicate injections, only mild degenerative change of hepatocytes and slight infiltration of mononuclear cells were seen in the affected centrilobular area. Serum levels of AST, ALT and ALP were also decreased to the same levels of control. mRNA expressions of DAMPs (HMGBs, S100A4 and Hsp 70-2), TLR4 and MHC class II tended to be increased only on single injection, although the number of MHC class II-positive cells in the centrilobular area was still increased on each examination point. The analysis of enzymes (CYP2E1 and Flavin monooxygenase (FMO) 3), which metabolize TAA in hepatocytes, showed a significant decrease in FMO3 on the duplicate and triplicate injections. Autophagy and regulatory T cells were not significantly changed for the attenuation of hepatocyte injury. Collectively, these results suggest that hepatocytes may adapt accumulation of the toxicant by changing their enzyme functions; furthermore, MHC class II cells, which still showed increased number in the duplicate and triplicate injections, may be related with protection from the toxicant.
2017Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses.Biochem PharmacolToll-like receptor (TLR) 4-independent recognition of lipopolysaccharide (LPS) in the cytosol by inflammatory caspases leads to non-canonical inflammasome activation and induction of IL-1 secretion and pyroptosis. The discovery of this novel mechanism has potential implications for the development of effective drugs to treat sepsis since LPS-mediated hyperactivation of caspases is critically involved in endotoxic shock. Previously, we demonstrated that Pep19-2.5, a synthetic anti-endotoxin peptide, efficiently neutralises pathogenicity factors of Gram-negative and Gram-positive bacteria and protects against sepsis in vivo. Here, we report that Pep19-2.5 inhibits the effects of cytoplasmic LPS in human myeloid cells and keratinocytes. In THP-1 monocytes and macrophages, the peptide strongly reduced secretion of IL-1β and LDH induced by intracellular LPS. In contrast, the TLR4 signaling inhibitor TAK-242 abrogates LPS-induced TNF and IL-1β secretion, but not pyroptotic cell death. Furthermore, Pep19-2.5 suppressed LPS-induced HMGB-1 production and caspase-1 activation in THP-1 monocytes. Consistent with this observation, we found impaired IL-1β and IL-1α release in LPS-stimulated primary monocytes in the presence of Pep19-2.5 and reduced LDH release and IL-1B and IL-1A expression in LPS-transfected HaCaT keratinocytes. Additionally, Pep19-2.5 completely abolished IL-1β release induced by LPS/ATP in macrophages via canonical inflammasome activation. In conclusion, we provide evidence that anti-endotoxin peptides inhibit the inflammasome/IL-1 axis induced by cytoplasmic LPS sensing in myeloid cells and keratinocytes and activation of the classical inflammasome by LPS/ATP which may contribute to the protection against bacterial sepsis and skin infections with intracellular Gram-negative bacteria.
2017Innate inflammatory gene expression profiling in potential brain-dead donors: detailed investigation of the effect of common corticosteroid therapy.Innate ImmunOur study aimed to assess the influence of common methylprednisolone therapy on innate inflammatory factors in potential brain-dead organ donors (BDDs). The study groups consisted of 50 potential BDDs who received 15 mg/kg/d methylprednisolone and 25 live organ donors (LDs) as control group. Innate immunity gene expression profiling was performed by RT-PCR array. Soluble serum cytokines and chemokines, complement components, heat shock protein 70 (HSP70) and high mobility group box-1 (HMGB1) were measured by ELISA. Surface expression of TLR2 and TLR4 were determined using flow cytometry. Gene expression profiling revealed up-regulation of TLRs 1, 2, 4, 5, 6, 7 and 8, MYD88, NF-κB, NF-κB1A, IRAK1, STAT3, JAK2, TNF-α, IL-1β, CD86 and CD14 in the BDD group. Remarkably, the serum levels of C-reactive protein and HSP70 were considerably higher in the BDD group. In addition, serum amounts of IL-1β, IL-6, TNF-α, HMGB1, HSP70, C3a and C5a, but not IL-8, sCD86 or monocyte chemoattractant protein-1, were significantly increased in the BDD group. Significant differences were observed in flow cytometry analysis of TLR2 and TLR4 between the two groups. In summary, common methylprednisolone therapy in BDDs did not adequately reduce systemic inflammation, which could be due to inadequate doses or inefficient impact on other inflammatory-inducing pathways, for example oxidative stress or production of damage-associated molecules.
2017A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia.GliaMicroglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock. A putative, naturally occurring antagonist of TLR4 derives from the photosynthetic bacterium Rhodobacter sphaeroides. However, the antagonistic potential of R. sphaeroides LPS (Rs-LPS) is no universal feature, since several studies suggested agonistic rather than antagonistic actions of this molecule depending on the investigated mammalian species. Here we show the agonistic versus antagonistic potential of Rs-LPS in primary mouse microglia. We demonstrate that Rs-LPS efficiently induces the release of cytokines and chemokines, which depends on TLR4, MyD88, and TRIF, but not CD14. Furthermore, Rs-LPS is able to regulate the phagocytic capacity of microglia as agonist, while it antagonizes Re-LPS-induced MHC I expression. Finally, to our knowledge, we are the first to provide in vivo evidence for an agonistic potential of Rs-LPS, as it efficiently triggers the recruitment of peripheral immune cells to the endotoxin-challenged CNS. Together, our results argue for a versatile and complex organization of the microglial TLR4 system, which specifically translates exogenous signals into cellular functions. Importantly, as demonstrated here for microglia, the antagonistic potential of Rs-LPS needs to be considered with caution, as reactions to Rs-LPS not only differ by cell type, but even by function within one cell type.
2017Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro.Mar DrugsParenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro.Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α.KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone.KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.
2017Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6.Immunol Cell BiolThe secreted hexameric form of the dengue virus (DENV) non-structural protein 1 (NS1) has recently been shown to elicit inflammatory cytokine release and disrupt endothelial cell monolayer integrity. This suggests that circulating NS1 contributes to the vascular leak that plays a major role in the pathology of dengue haemorrhagic fever and shock. Pathways activated by NS1 are thus of great interest as potential therapeutic targets. Recent works have separately implicated both toll-like receptor 4 (TLR4) and the TLR2/6 heterodimer in immune cell activation by NS1. Here we have used mouse gene knockout macrophages and antibodies blocking TLR function in human peripheral blood mononuclear cells to show that recombinant NS1, expressed and purified from eukaryotic cells, induces cytokine production via TLR4 but not TLR2/6. Furthermore, the commercial Escherichia coli-derived recombinant NS1 preparation used in other work to implicate TLR2/6 in the response is not correctly folded and appears to be contaminated by several microbial TLR ligands. Thus TLR4 remains a therapeutic target for DENV infections, with TLR4 antagonists holding promise for the treatment of dengue disease.
2017Regulatory effects of Echinococcus multilocularis extracellular vesicles on RAW264.7 macrophages.Vet ParasitolExtracellular vesicles (EVs) play a role in intercellular communications via exchanging biological molecules, being involved in host-parasite interplay. Little is to date known about E. multilocularis EVs and their biological activities. Here spherical EVs secreted by E. multilocularis metacestodes were shown to range predominately from 34nm to 95nm in diameter. A total of 433 proteins were identified in the EVs, and the proteins involved in binding (42%) and catalytic activity (41%) were most frequently represented. Moreover, the proteins associated with EV biogenesis and trafficking, including annexin, 14-3-3, tetraspanin and heat shock protein 70kDa, were highly enriched. It was shown that the EVs remarkably suppressed NO produced by activated RAW macrophages via downregulation of inducible nitric oxide synthase expression (p <0.01). Suppression of pro-inflammatory cytokines, especially IL-1α and IL-1β, was also observed post treatment with the EVs. Conversely, increased expression of the majority (10/11) of key components involved in the LPS/TLR4 pathway was induced by the EVs. These results demonstrate a regulatory effect of E. multilocularis EVs on macrophages, suggesting a role in parasite-host interactions.
2017Expression profiling of TRIM protein family in THP1-derived macrophages following TLR stimulation.Sci RepActivated macrophages play an important role in many inflammatory diseases including septic shock and atherosclerosis. However, the molecular mechanisms limiting macrophage activation are not completely understood. Members of the tripartite motif (TRIM) family have recently emerged as important players in innate immunity and antivirus. Here, we systematically analyzed mRNA expressions of representative TRIM molecules in human THP1-derived macrophages activated by different toll-like receptor (TLR) ligands. Twenty-nine TRIM members were highly induced (>3 fold) by one or more TLR ligands, among which 19 of them belong to TRIM C-IV subgroup. Besides TRIM21, TRIM22 and TRIM38 were shown to be upregulated by TLR3 and TLR4 ligands as previous reported, we identified a novel group of TRIM genes (TRIM14, 15, 31, 34, 43, 48, 49, 51 and 61) that were significantly up-regulated by TLR3 and TLR4 ligands. In contrast, the expression of TRIM59 was down-regulated by TLR3 and TLR4 ligands in both human and mouse macrophages. The alternations of the TRIM proteins were confirmed by Western blot. Finally, overexpression of TRIM59 significantly suppressed LPS-induced macrophage activation, whereas siRNA-mediated knockdown of TRIM59 enhanced LPS-induced macrophage activation. Taken together, the study provided an insight into the TLR ligands-induced expressions of TRIM family in macrophages.
2017Plasmodium falciparum Heat Shock Protein 70 Lacks Immune Modulatory Activity.Protein Pept LettHeat shock protein 70 (Hsp70) family are conserved molecules that constitute a major part of the cell's protein folding machinery. The role of Hsp70s of parasitic origin in host cell immune modulation has remained contentious. This is largely due to the fact that several studies implicating Hsp70 in immune modulation rely on the use of recombinant protein derived from bacteria which is often fraught with lipopolysaccharide (LPS) contamination. For this reason, there is need to clarify the role of parasite Hsp70 in modulating host immune cells.The current study sought to investigate the role of Plasmodium falciparum Hsp70 (PfHsp70) in immune modulation.We expressed recombinant PfHsp70 using three bacterial expression hosts: E. coli XL1 Blue, E. coli ClearColi BL21 and Brevibacillus choshinensis, respectively. We further investigated the immunostimulatory capability of PfHsp70 by monitoring cytokine production by murine immune cells cultured in the presence of the protein.Recombinant PfHsp70 produced using E. coli XL1 Blue expression host induced IL6 and IL8 cytokines. On the other hand, PfHsp70 produced in E. coli ClearColi and B. choshinensis expression systems was associated with no detectable traces of LPS and exhibited no immunomodulatory activity.Our findings demonstrate that PfHsp70 does not possess immunomodulatory function. Furthermore, our study further confirm E. coli ClearColi and B. choshinensis as appropriate expression systems for the production of LPS-free recombinant protein.
2017Rv2299c, a novel dendritic cell-activating antigen of Mycobacterium tuberculosis, fused-ESAT-6 subunit vaccine confers improved and durable protection against the hypervirulent strain HN878 in mice.OncotargetUnderstanding functional interactions between DCs and antigens is necessary for achieving an optimal and desired immune response during vaccine development. Here, we identified and characterized protein Rv2299c (heat-shock protein 90 family), which effectively induced DC maturation. The Rv2299c-maturated DCs showed increased expression of surface molecules and production of proinflammatory cytokines. Rv2299c induced these effects by binding to TLR4 and stimulating the downstream MyD88-, MAPK- and NF-κB-dependent signaling pathways. The Rv2299c-maturated DCs also showed an induced Th1 cell response with bactericidal activity and expansion of effector/memory T cells. The Rv2299c-ESAT-6 fused protein had greater immunoreactivity than ESAT-6. Furthermore, boosting BCG with the fused protein significantly reduced hypervirulent Mycobacterium tuberculosis HN878 burdens post-challenge. The pathological study of the lung from the challenged mice assured the efficacy of the fused protein. The fused protein boosting also induced Rv2299c-ESAT-6-specific multifunctional CD4+ T-cell response in the lungs of the challenged mice. Our findings suggest that Rv2299c is an excellent candidate for the rational design of an effective multiantigenic TB vaccine.
2017Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury.Neurol ResInflammatory damage plays an important role in ischemic stroke and provides potential targets for therapy. Ulinastatin (UTI), a drug used to treat shock and acute pancreatitis in clinic, has attracted attention for its protective effects through immunomodulatory and anti-inflammatory properties. However, the effect of UTI in the acute phase of cerebral ischemia/reperfusion (I/R) is not clear. This study is to investigate the potential neuroprotective effect of UTI and explore its underlying mechanisms.Male CD-1 mice were subjected to transient middle cerebral artery occlusion (tMCAO) and randomly assigned into four groups: Sham (sham-operated) group, tMCAO (tMCAO + 0.9% saline) group, UTI-L (tMCAO + UTI 1500 U/100 g), and UTI-H (tMCAO + UTI 3000 U/100 g) group. UTI was administered immediately after reperfusion in the UTI-L and UTI-H groups. About 24 h after the reperfusion, the neurological deficit, brain water content, and infarct volume were detected. Immunohistochemistry, western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to detect the expression of TLR4 and NF-κB in the ischemic cerebral cortex.Compared with tMCAO group, both UTI-L and UTI-H groups dramatically ameliorated neurological deficit (p < 0.05), lessened the brain water content (p < 0.05) and infarct volume (p < 0.05), and decreased the expression of TLR4 and NF-κB.These results showed that UTI protected the brain against ischemic injury which may be due to the alleviation of inflammation reaction in early stage through downregulating TLR4 and NF-κB expression.
2017Type I interferon signalling is not required for the induction of endotoxin tolerance.CytokineEndotoxin, or LPS tolerance, is an immunomodulatory mechanism that results in a significantly diminished response to secondary LPS exposure, which may serve to protect the host against endotoxic shock. Type I interferons (IFNs) are cytokines released upon LPS binding to TLR4 and have been shown to have immunomodulatory properties. Due to this regulatory function of type I IFN, we aimed to investigate the role of type I IFN signalling in LPS tolerance. Our data suggests that type I IFN does not play a role in LPS tolerance in vitro, as both wild type and IFNAR1 peritoneal macrophages showed reduced cytokine production after secondary LPS exposure. Furthermore, both wild type and IFNAR1 mice were protected from a lethal dose of LPS after receiving three small doses to induce tolerance. However, IFNAR mice seemed to recover faster than wild type mice, suggesting type I IFN signalling plays a detrimental role in LPS-induced sepsis. Although type I IFN may have a regulatory function in microbial infections, it does not seem to play a role in endotoxin tolerance. Type I IFN involvement in bacterial infection remains complex and further studies are needed to define the regulatory function of type I IFN signalling.
2017Caffeic Acid Cyclohexylamide Rescues Lethal Inflammation in Septic Mice through Inhibition of IκB Kinase in Innate Immune Process.Sci RepTargeting myeloid differentiation protein 2 (MD-2) or Toll-like receptor 4 (TLR4) with small molecule inhibitor rescues the systemic inflammatory response syndrome (SIRS) in sepsis due to infection with Gram-negative bacteria but not other microbes. Herein, we provided IκB kinase β (IKKβ) in innate immune process as a molecular target of caffeic acid cyclohexylamide (CGA-JK3) in the treatment of polymicrobial TLR agonists-induced lethal inflammation. CGA-JK3 ameliorated E. coli lipopolysaccharide (LPS, MD-2/TLR4 agonist)-induced endotoxic shock, cecal ligation and puncture (CLP)-challenged septic shock or LPS plus D-galactosamine (GalN)-induced acute liver failure (ALF) in C57BL/6J mice. As a molecular basis, CGA-JK3 inhibited IKKβ-catalyzed kinase activity in a competitive mechanism with respect to ATP, displaced fluorescent ATP probe from the complex with IKKβ, and docked at the ATP-binding active site on the crystal structure of human IKKβ. Furthermore, CGA-JK3 inhibited IKKβ-catalyzed IκB phosphorylation, which is an axis leading to IκB degradation in the activating pathway of nuclear factor-κB (NF-κB), in macrophages stimulated with TLR (1/2, 2/6, 4, 5, 7, 9) agonists from Gram-positive/negative bacteria and viruses. CGA-JK3 consequently interrupted IKKβ-inducible NF-κB activation and NF-κB-regulated expression of TNF-α, IL-1α or HMGB-1 gene, thereby improving TLRs-associated redundant inflammatory responses in endotoxemia, polymicrobial sepsis and ALF.
2017The role of pattern recognition receptors in lung sarcoidosis.Eur J PharmacolSarcoidosis is a granulomatous disorder of unknown etiology. Infection, genetic factors, autoimmunity and an aberrant innate immune system have been explored as potential causes of sarcoidosis. The etiology of sarcoidosis remains unknown, and it is thought that it might be caused by an infectious agent in a genetically predisposed, susceptible host. Inflammation results from recognition of evolutionarily conserved structures of pathogens (Pathogen-associated molecular patterns, PAMPs) and/or from reaction to tissue damage associated patterns (DAMPs) through recognition by a limited number of germ line-encoded pattern recognition receptors (PRRs). Due to the similar clinical and histopathological picture of sarcoidosis and tuberculosis, Mycobacterium tuberculosis antigens such early secreted antigen (ESAT-6), heat shock proteins (Mtb-HSP), catalase-peroxidase (katG) enzyme and superoxide dismutase A peptide (sodA) have been often considered as factors in the etiopathogenesis of sarcoidosis. Potential non-TB-associated PAMPs include lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria, peptidoglycan, lipoteichoic acid, bacterial DNA, viral DNA/RNA, chitin, flagellin, leucine-rich repeats (LRR), mannans in the yeast cell wall, and microbial HSPs. Furthermore, exogenous non-organic antigens such as metals, silica, pigments with/without aluminum in tattoos, pesticides, and pollen have been evoked as potential causes of sarcoidosis. Exposure of the airways to diverse infectious and non-infectious agents may be important in the pathogenesis of sarcoidosis. The current review provides and update on the role of PPRs and DAMPs in the pathogenesis of sarcoidsis.
2017Attenuated recovery of contractile function in aging hearts following global ischemia/reperfusion: Role of extracellular HSP27 and TLR4.Mol MedWhile cardiac functional recovery is attenuated in the elderly following cardiac surgery with obligatory global myocardial ischemia/reperfusion (I/R), the underlying mechanism remains incompletely understood. We observed previously that human and mouse myocardium releases heat shock protein (HSP) 27 during global I/R. Extracellular HSP27 induces myocardial inflammatory response and plays a role in post-ischemic cardiac dysfunction in adult mouse hearts.This study was to determine the role of extracellular HSP27 and Toll-like receptor 4 (TLR4) in the attenuated functional recovery in aging mouse hearts following global I/R.Hearts isolated from aging (18-24 months) and adult (4-6 months) mice were subjected to global I/R. Augmented release of HSP27 in aging hearts is associated with greater production of cytokines (TNF-α and IL-1β) and worse functional recovery. Anti-HSP27 suppressed the inflammatory response and markedly improved functional recovery in aging hearts. Perfusion of recombinant HSP27 to aging hearts resulted in greater cytokine production and more severe contractile depression in comparison to adult hearts. TLR4 deficiency abolished cytokine production and functional injury in aging hearts exposed to recombinant HSP27. Interestingly, aging hearts had higher TLR4 protein levels and displayed enhanced TLR4-mediated NF-κB activation following HSP27 stimulation or I/R.Extracellular HSP27 and TLR4 jointly enhance the inflammatory response and hamper functional recovery following I/R in aging hearts. The enhanced inflammatory response to global I/R and attenuated post-ischemic functional recovery in aging hearts is due, at least in part, to augmented myocardial release of HSP27 and elevated myocardial TLR4 levels.
2017Extremely low-level microwaves attenuate immune imbalance induced by inhalation exposure to low-level toluene in mice.Int J Radiat BiolTo clarify whether extremely low-level microwaves (MW) alone or in combination with p38 inhibitor affect immune cell responses to inhalation exposure of mice to low-level toluene.The cytokine profile, heat shock proteins expression, and the activity of several signal cascades, namely, NF-κB, SAPK/JNK, IRF-3, p38 MAPK, and TLR4 were measured in spleen lymphocytes of mice treated to air-delivered toluene (0.6 mg/m) or extremely low-level microwaves (8.15-18 GHz, 1μW/cm, 1 Hz swinging frequency) or combined action of these two factors.A single exposure to air-delivered low-level toluene induced activation of NF-κB, SAPK/JNK, IFR-3, p38 MAPK and TLR4 pathways. Furthermore, air toluene induced the expression of Hsp72 and enhanced IL-1, IL-6, and TNF-α in blood plasma, which is indicative of a pro-inflammatory response. Exposure to MW alone also resulted in the enhancement of the plasma cytokine values (e.g. IL-6, TNF-α, and IFN-γ) and activation of the NF-κB, MAPK p38, and especially the TLR4 pathways in splenic lymphocytes. Paradoxically, pre-exposure to MW partially recovered or normalized the lymphocyte parameters in the toluene-exposed mice, while the p38 inhibitor XI additionally increased protective activity of microwaves by down regulating MAPKs (JNK and p38), IKK, as well as expression of TLR4 and Hsp90-α.The results suggest that exposure to low-intensity MW at specific conditions may recover immune parameters in mice undergoing inhalation exposure to low-level toluene via mechanisms involving cellular signaling.
2017Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90.PLoS OneUp to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90) for folding. However, the interactors of its endoplasmic reticulum (ER) paralogue (gp96, Grp94 and HSP90b1) has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs) and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development.
2017Pseudomonas aeruginosa GroEL Stimulates Production of PTX3 by Activating the NF-κB Pathway and Simultaneously Downregulating MicroRNA-9.Infect ImmunAs one of the first lines of host defense, monocytes play important roles in clearing infected microbes. The defensive response is triggered by recognition of diverse microbial moieties, including released factors, which modulate host immune responses to establish a harsh environment for clinically important bacterial pathogens. In this study, we found that the expression of PTX3, a soluble form of pattern recognition receptor, was induced by infection with live or treatment of cells with its supernatant. GroEL, a homolog of heat shock protein 60, was identified as one of the factors responsible for inducing the expression of in host cells. GroEL induced expression by activating the Toll-like receptor 4 (TLR4)-dependent pathway via nuclear factor-kappa B (NF-κB), while simultaneously inhibiting expression of microRNA-9, which targets the transcript. Finally, by acting as an opsonin, GroEL-induced PTX3 promoted the association and phagocytosis of into macrophages. These data suggest that the host defensive environment is supported by the production of PTX3 in response to GroEL, which thus has therapeutic potential for clearance of bacterial infections.
2017Heat Shock Proteins: Therapeutic Perspectives in Inflammatory Disorders.Recent Pat Inflamm Allergy Drug DiscovHeat shock proteins (HSPs) are highly conserved proteins present in all kingdoms of organisms. These are expressed under stress conditions in order to protect the cells from injuries. The stress induced protein denaturation is rectified by refolding and remodelling. These are intracellular proteins but can be present in extracellular fluid like serum of the patients suffering from trauma, autoimmune and inflammatory disorders. Virtually in most inflammatory diseases, immune response towards HSPs is developed.The present review expedites the role of HSPs in inflammatory process and associated disorders, mainly in context to HSP70 and HSP90.Commencing a thorough survey of the literature and patents available on HSPs and their role in the process of inflammation, from the authentic published resources available on Medline, Pubmed, Pubmed Central, Science Direct and other scientific databases; the information retrieved has been compiled and analyzed.HSPs modulate the process of inflammation by producing anti-inflammatory cytokines in chronic inflammatory disease. HSPs mediated expression of IL10 contributes in anti-inflammatory role via TLR2 and TLR4-dependent mechanisms. Necroptosis, a caspase independent programmed apoptosis plays an important role in progression of several inflammatory disorders and its major components MLKL and RIPK-1 are the clients of HSP. Necroptosis is also involved in exposure of several damageassociated molecular patterns (DAMPs) including HSPs in extracellular environment leading to inflammation. Endocytosed or intracellular HSP70, is presented by MHC-II molecules and in absence of proper co stimulation, it lead to expansion of tolerogenic or regulatory T cells (Tregs) responses, which have inflammation suppressive activity by virtue of production of anti-inflammatory cytokines, suppression or killing of effector T cells or bringing the APC into tolerogenic state. HSP induced Tregs play an important role in combating autoimmunity and inflammation.Present review gives an insight towards the cause of inflammation and an account of different HSPs contributing various inflammatory disorders viz. inflammatory bowel disease (IBD), intestinal inflammation, atherosclerosis, rheumatoid arthritis (RA), multiple sclerosis etc. The importance of HSPs in handling inflammatory disorders has been depicted in recent patents also.
2017Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges.Clin Microbiol RevAcinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
2017MARCH1 E3 Ubiquitin Ligase Dampens the Innate Inflammatory Response by Modulating Monocyte Functions in Mice.J ImmunolUbiquitination was recently identified as a central process in the pathogenesis and development of numerous inflammatory diseases, such as obesity, atherosclerosis, and asthma. Treatment with proteasomal inhibitors led to severe side effects because ubiquitination is heavily involved in a plethora of cellular functions. Thus, new players regulating ubiquitination processes must be identified to improve therapies for inflammatory diseases. In addition to their role in adaptive immunity, endosomal MHC class II (MHCII) molecules were shown to modulate innate immune responses by fine tuning the TLR4 signaling pathway. However, the role of MHCII ubiquitination by membrane associated ring-CH-type finger 1 (MARCH1) E3 ubiquitin ligase in this process remains to be assessed. In this article, we demonstrate that MARCH1 is a key inhibitor of innate inflammation in response to bacterial endotoxins. The higher mortality of March1 mice challenged with a lethal dose of LPS was associated with significantly stronger systemic production of proinflammatory cytokines and splenic NK cell activation; however, we did not find evidence that MARCH1 modulates LPS or IL-10 signaling pathways. Instead, the mechanism by which MARCH1 protects against endotoxic shock rests on its capacity to promote the transition of monocytes from Ly6C to Ly6C Moreover, in competitive bone marrow chimeras, March1 monocytes and polymorphonuclear neutrophils outcompeted wild-type cells with regard to bone marrow egress and homing to peripheral organs. We conclude that MARCH1 exerts MHCII-independent effects that regulate the innate arm of immunity. Thus, MARCH1 might represent a potential new target for emerging therapies based on ubiquitination reactions in inflammatory diseases.
2017Lipid raft-dependent endocytosis negatively regulates responsiveness of J774 macrophage-like cells to LPS by down regulating the cell surface expression of LPS receptors.Cell ImmunolActing through CD14 and TLR4/MD-2, lipopolysaccharide (LPS) triggers strong pro-inflammatory activation of macrophages, which, if not appropriately controlled, may lead to lethal septic shock. Therefore, numerous mechanisms of negative regulation of responses to LPS exist, but whether they include down-regulation of LPS receptors is not clear. We have found that in J774 cells, the clathrin-dependent endocytic pathway enables activation of TRIF-dependent TLR4 signaling within endosomes, but is not associated with the down-regulation of TLR4 or CD14 surface expression. In contrast, lipid raft-dependent endocytosis negatively regulates the basal cell surface expression of LPS receptors and, consequently, responsiveness to LPS. Together with observations that treatments, known to selectively disrupt lipid rafts, do not inhibit LPS-stimulated cytokine production, our results suggest that lipid rafts may serve as sites in which LPS receptors are sorted for endocytosis, rather than being platforms for the assembly of TLR4-centered signaling complexes, as suggested previously.
2016Oxymatrine inhibits microglia activation via HSP60-TLR4 signaling.Biomed RepOxymatrine (OMT) is an alkaloid extracted from , which has broad anti-inflammatory, antitumor and immunosuppressant actions. However, the underlying molecular mechanisms have remained elusive. Heat shock protein 60 (HSP60) has recently been shown to have an important role in autoimmune reactions. The present study aimed to investigate whether OMT exerts its anti-inflammatory effects by inhibiting microglial activation and examined the role of HSP60 in this process. Western blot analysis and ELISA showed that OMT decreased the expression and release of HSP60 by LPS-activated BV2 cells. The expression of heat shock factor 1, the transcription factor of HSP60, was also suppressed by OMT. Extracellular HSP60 has been previously indicated to induce microglial apoptosis through the Toll-like receptor (TLR)-4 pathway. Flow cytometric analysis demonstrated that LPS treatment induced apoptosis of BV2 cells, which was inhibited by OMT in parallel with inhibition of LPS-induced expression of TLR-4. Furthermore, OMT was shown to suppress the levels of myeloid differentiation factor (MYD)88, nuclear factor (NF)-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6. In light of these results, it was concluded that OMT may exert its neuroprotective effects via HSP60/TLR-4/MYD88/NF-κB signaling pathways to inhibit microglial activation. OMT may therefore offer substantial therapeutic potential for treating neurodegenerative diseases associated with microglial activation.
2017Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor-mediated inflammatory responses.J Exp MedSubcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)- and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain-containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7 endosomal/phagosomal compartment. This specific Rab7 compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms.
2017The Effect of Elevated Intra-Abdominal Pressure on TLR4 Signaling in Intestinal Mucosa and on Intestinal Bacterial Translocation in a Rat.J Laparoendosc Adv Surg Tech ARecent evidence suggests that elevated intra-abdominal pressure (IAP) may adversely affect the intestinal barrier function. Toll-like receptor 4 (TLR-4) is responsible for the recognition of bacterial endotoxin or lipopolysaccharide and for initiation of the Gram-negative septic shock syndrome. The objective of the current study was to determine the effects of elevated IAP on intestinal bacterial translocation (BT) and TLR-4 signaling in intestinal mucosa in a rat model.Male Sprague-Dawley rats were randomly assigned to one of two experimental groups: sham animals (Sham) and IAP animals who were subjected to a 15 mmHg pressure pneumoperitoneum for 30 minutes. Rats were sacrificed 24 hours later. BT to mesenteric lymph nodes, liver, portal vein blood, and peripheral blood was determined at sacrifice. TLR4-related gene and protein expression (TLR-4; myeloid differentiation factor 88 [Myd88] and TNF-α receptor-associated factor 6 [TRAF6]) expression were determined using real-time PCR, western blotting, and immunohistochemistry.Thirty percent of sham rats developed BT in the mesenteric lymph nodes (level I) and 20% of control rats developed BT in the liver and portal vein (level II). abdominal compartment syndrome (ACS) rats demonstrated an 80% BT in the lymph nodes (Level I) and 40% BT in the liver and portal vein (Level II). Elevated BT was accompanied by a significant increase in TLR-4 immunostaining in jejunum (51%) and ileum (35.9%), and in a number of TRAF6-positive cells in jejunum (2.1%) and ileum (24.01%) compared to control animals. ACS rats demonstrated a significant increase in TLR4 and MYD88 protein levels compared to control animals.Twenty-four hours after the induction of elevated IAP in a rat model, increased BT rates were associated with increased TLR4 signaling in intestinal mucosa.
2017Putative model for heat shock protein 70 complexation with receptor of advanced glycation end products through fluorescence proximity assays and normal mode analyses.Cell Stress ChaperonesExtracellular heat shock protein 70 (HSP70) is recognized by receptors on the plasma membrane, such as Toll-like receptor 4 (TLR4), TLR2, CD14, and CD40. This leads to activation of nuclear factor-kappa B (NF-κB), release of pro-inflammatory cytokines, enhancement of the phagocytic activity of innate immune cells, and stimulation of antigen-specific responses. However, the specific characteristics of HSP70 binding are still unknown, and all HSP70 receptors have not yet been described. Putative models for HSP70 complexation to the receptor for advanced glycation endproducts (RAGEs), considering both ADP- and ATP-bound states of HSP70, were obtained through molecular docking and interaction energy calculations. This interaction was detected and visualized by a proximity fluorescence-based assay in A549 cells and further analyzed by normal mode analyses of the docking complexes. The interacting energy of the complexes showed that the most favored docking situation occurs between HSP70 ATP-bound and RAGE in its monomeric state. The fluorescence proximity assay presented a higher number of detected spots in the HSP70 ATP treatment, corroborating with the computational result. Normal-mode analyses showed no conformational deformability in the interacting interface of the complexes. Results were compared with previous findings in which oxidized HSP70 was shown to be responsible for the differential modulation of macrophage activation, which could result from a signaling pathway triggered by RAGE binding. Our data provide important insights into the characteristics of HSP70 binding and receptor interactions, as well as putative models with conserved residues on the interface area, which could be useful for future site-directed mutagenesis studies.
2016High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system.Sci RepDue to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.
2016Looped limulus anti-lipopolysaccharide derived peptide CLP-19 induces endotoxin tolerance involved inhibition of NF-κB activation.Biochem Biophys Res CommunEndotoxin tolerance (ET) is a complex protective mechanism against endotoxin shock. The looped CLP-19 peptide derived from Limulus anti-LPS peptide induced the ET phenomenon but the molecular mechanism has yet to be fully elucidated. Here, we confirmed that CLP-19 attenuated upon LPS stimulated pro-inflammatory factor secretion of TNF-α and IL-6 but increased anti-inflammatory factor production of IL-10 in dose- and time-dependent manners. CLP-19 also inhibited subsequent LPS stimulated expression of TLR4 on the cell membrane. Moreover, the CLP-19 inhibited degradation of the inhibitor of NF-κB (IκBα and IκBβ) and reduced LPS induced NF-κB activity, but not of effects on expression of MyD88 and TRAF-6. Finally CLP-19 significantly increased survival of lethal LPS shock mouse models with significantly less pathological injury to lung. These findings collectively suggest that CLP-19 induces ET phenomenon involved inhibition of NF-κB activation. In conclusion, this study has revealed a novel function of CLP-19 that appears to represent a potential therapeutic agent for clinical treatment of septic shock.
2016Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation.OncotargetCross-presentation by dendritic cells (DCs) requires surface molecules such as lectin, CD40, langerin, heat shock protein, mannose receptor, mediated endocytosis, the endosomal translocation of internalized antigen, and the relocation of transporter associated with antigen processing (TAP). Although the activation of α7 nicotinic acetylcholine receptor (α7 nAchR) up-regulate surface molecule expression, augment endocytosis, and enhance cross-presentation, the molecular mechanism of α7 nAchR activation-increased cross-presentation is still poorly understood. In this study, we investigated the role of mannose receptor in nicotine-increased cross-presentation and the mechanism that endotoxins orchestrating the recruitment of TAP toward endosomes. We demonstrated that nicotine increase the expressiones of mannose receptor and Toll-like receptor 4 (TLR4) via PI3K-Akt-mTOR-p70S6 pathway. Both endosomal translocation of mannose receptor-internalized antigens and TLR4 sig- naling are necessary for nicotine-augmented cross-presentation and cross-priming. Importantly, the recruitment of TAP toward endosomes via TLR4-MyD88-IRAK4 signaling contributes to nicotine-increased cross-presentation and cross-activation of T cells. Thus, these data suggest that increased recruitment of TAP to Ag-containing vesicles contributes to the superior cross-presentation efficacy of α7 nAchR activated DCs.
2016Tlr2 on Bone Marrow and Non-Bone Marrow Derived Cells Regulates Inflammation and Organ Injury in Cooperation with Tlr4 During Resuscitated Hemorrhagic Shock.ShockAlthough the role of TLR4 in driving inflammation and organ injury after hemorrhagic shock and resuscitation (H/R) is well established, the role of TLR2-another receptor for damage-associated molecular pattern (DAMP) molecules-is not. In this study, we used a combination of TLR2 and wild type (WT) mice treated with anti-TLR2 and anti-TLR4 neutralizing monoclonal antibodies (mAb) to discern the contribution of TLR2 relative to TLR4 to the systemic inflammatory response in murine H/R.WT mice, TLR2, and WT mice receiving an anti-TLR2 or an anti-TLR4 mAB (given as a pretreatment) were sacrificed at 6 or 20 h post-H/R. Bone marrow TLR2/WT chimeric mice were created to assess the importance of immune and nonimmune cell-associated TLR2.TLR2 mice subjected to H/R exhibited significantly less liver damage and lower markers of systemic inflammation only at 20 h. Bone marrow chimeric mice using combinations of TLR2 mice and WT mice demonstrated that TLR2 on non-bone marrow derived cells played a dominant role in the differences at 20 h. Interestingly, WT mice treated with anti-TLR2 mAB demonstrated a reduction in organ damage and systemic inflammation at both 6 and 20 h following H/R. A combination of anti-TLR2 mAB and anti-TLR4 mAB showed that both receptors drive IP-10 and KC levels and that there is cooperation for increases in IL-6, MIG, and MCP-1 levels between TLR2 and TLR4.These data also support the conclusion that TLR2 and TLR4 act in concert as important receptors in the host immune response to H/R.
2016Genetic dissection of host immune response in pneumonia development and progression.Sci RepThe role of host genetic variation in pneumonia development and outcome is poorly understood. We studied common polymorphisms in the genes of proinflammatory cytokines (IL6 rs1800795, IL8 rs4073, IL1B rs16944), anti-inflammatory cytokines (IL10 rs1800896, IL4 rs2243250, IL13 rs20541) and toll-like receptors (TLR2 rs5743708 and rs4696480, TLR4 rs4986791, TLR9 rs352139, rs5743836 and rs187084) in patients with community-acquired pneumonia (CAP) (390 cases, 203 controls) and nosocomial pneumonia (355 cases, 216 controls). Experimental data were included in a series of 11 meta-analyses and eight subset analyses related to pneumonia susceptibility and outcome. TLR2 rs5743708 minor genotype appeared to be associated with CAP/Legionnaires' disease/pneumococcal disease. In CAP patients, the IL6 rs1800795-C allele was associated with severe sepsis/septic shock/severe systemic inflammatory response, while the IL10 rs1800896-A allele protected against the development of these critical conditions. To contribute to deciphering of the above results, we performed an in silico analysis and a qualitative synthesis of literature data addressing basal and stimulated genotype-specific expression level. This data together with database information on transcription factors' affinity changes caused by SNPs in putative promoter regions, the results of linkage disequilibrium analysis along with SNPs functional annotations supported assumptions about the complexity underlying the revealed associations.
2017Role of invariant NKT cells in lipopolysaccharide-induced lethal shock during encephalomyocarditis virus infection.ImmunobiologyViral infections can give rise to secondary bacterial infections. In the present study, we examined the role of invariant natural killer T (iNKT) cells in lipopolysaccharide (LPS)-induced lethal shock during encephalomyocarditis virus (EMCV) infection. Wild-type (WT) mice and Jα18 gene knockout (Jα18 KO) mice were inoculated with EMCV, 5days prior to challenging with LPS. The survival rate of Jα18 KO mice subjected to EMCV and LPS was significantly higher than that of WT mice. TNF-α and nitric oxide (NO) production were increased in WT mice, than that in Jα18 KO mice, after the administration of EMCV and LPS. EMCV infection increased the number of iNKT cells and IFN-γ production by iNKT cells in WT mice. Moreover, EMCV infection enhanced the expression of Toll-like receptor 4 (TLR4) in the lung and spleen. IFN-γ also increased the expression of TLR4 in splenocytes. These findings indicated that EMCV infection activated iNKT cells, and IFN-γ secreted from the iNKT cells up-regulated the expression of TLR4 in various tissues. As a result, EMCV-infected mice were susceptible to LPS and easily developed the lethal shock. In conclusion, iNKT cells were involved in the development of LPS-induced lethal shock during EMCV infection.
2016IinQ attenuates systemic inflammatory responses via selectively impairing the Myddosome complex formation upon TLR4 ligation.Biochem PharmacolA specific small-molecule inhibitor of the TLR4 signaling complex upstream of the IKK would likely provide therapeutic benefit for NF-κB-mediated inflammatory disease. We previously identified brazilin as a selective upstream IKK inhibitor targeting the Myddosome complex. In this study, using a cell-based ubiquitination assay for IRAK1 and a chemical library comprising a series of structural analogues of brazilin, a novel small molecule, 2-hydroxy-5,6-dihydroisoindolo[1,2-a]isoquinoline-3,8-dione (IinQ), was identified as a selective and potent inhibitor of IRAK1-dependent NF-κB activation upon TLR4 ligation. In RAW264.7 macrophages, IinQ drastically suppressed activation of upstream IKK signaling events including membrane-bound IRAK1 ubiquitination and IKK phosphorylation by the TLR4 ligand, resulting in reduced expression of proinflammatory mediators including IL-6, TNF-α, and nitric oxide. Interestingly, IinQ did not suppress NF-κB activation via the TLR3 ligand, DNA damaging agents, or a protein kinase C activator, indicating IinQ is specific for TLR4 signaling. Analysis of upstream signaling events further confirmed that IinQ disrupts the MyD88-IRAK1-TRAF6 complex formation induced by LPS treatment, without affecting TLR4 oligomerization. Moreover, intravenous administration of IinQ significantly reduced lethality and attenuated systemic inflammatory responses in an in vivo mouse model of endotoxin shock following LPS challenge. Thus, IinQ represents a novel class of brazilin analogues with improved potency and specificity toward disruption of Myddosome complex formation in TLR4 signaling, indicating that IinQ may be a promising therapeutic candidate for the treatment of systemic inflammatory diseases.
2016Extracellular HSP110 skews macrophage polarization in colorectal cancer.OncoimmunologyHSP110 is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps the cells to survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently showed that colorectal cancer (CRC) patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110 inactivating mutation (HSP110DE9). In this work, we have used patients' biopsies and human CRC cells grown in vitro and in vivo (xenografts) to demonstrate that (1) HSP110 is secreted by CRC cells and that the amount of this extracellular HSP110 is strongly decreased by the expression of the mutant HSP110DE9, (2) Supernatants from CRC cells overexpressing HSP110 or purified recombinant human HSP110 (LPS-free) affect macrophage differentiation/polarization by favoring a pro-tumor, anti-inflammatory profile, (3) Conversely, inhibition of HSP110 (expression of siRNA, HSP110DE9 or immunodepletion) induced the formation of macrophages with a cytotoxic, pro-inflammatory profile. (4) Finally, this effect of extracellular HSP110 on macrophages seems to implicate TLR4. These results together with the fact that colorectal tumor biopsies with HSP110 high were infiltrated with macrophages with a pro-tumoral profile while those with HSP110 low were infiltrated with macrophages with a cytotoxic profile, suggest that the effect of extracellular HSP110 function on macrophages may also contribute to the poor outcomes associated with HSP110 expression.
2016Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS.Cell Death DisHemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI.
2016Exogenous heat shock protein HSP70 reduces response of human neuroblastoma cells to lipopolysaccharide.Dokl Biochem BiophysThe effect of exogenous heat shock protein HSP70 and lipopolysaccharide (LPS) on the production of reactive oxygen species (ROS), TNFα secretion, and mRNA expression by human neuroblastoma SK-N-SH cells. It was shown that exogenous HSP70 protects neuroblastoma cells from the action of LPS. The protection mechanism of HSP70 includes a reduction in the production of ROS and TNFα and a decrease in the expression of TLR4 and IL-1β mRNA in SK-N-SH cells induced by LPS.
2016Runt-related Transcription Factor 1 (RUNX1) Binds to p50 in Macrophages and Enhances TLR4-triggered Inflammation and Septic Shock.J Biol ChemAn appropriate inflammatory response plays critical roles in eliminating pathogens, whereas an excessive inflammatory response can cause tissue damage. Runt-related transcription factor 1 (RUNX1), a master regulator of hematopoiesis, plays critical roles in T cells; however, its roles in Toll-like receptor 4 (TLR4)-mediated inflammation in macrophages are unclear. Here, we demonstrated that upon TLR4 ligand stimulation by lipopolysaccharide (LPS), macrophages reduced the expression levels of RUNX1 Silencing of Runx1 attenuated the LPS-induced IL-1β and IL-6 production levels, but the TNF-α levels were not affected. Overexpression of RUNX1 promoted IL-1β and IL-6 production in response to LPS stimulation. Moreover, RUNX1 interacted with the NF-κB subunit p50, and coexpression of RUNX1 with p50 further enhanced the NF-κB luciferase activity. Importantly, treatment with the RUNX1 inhibitor, Ro 5-3335, protected mice from LPS-induced endotoxic shock and substantially reduced the IL-6 levels. These findings suggest that RUNX1 may be a new potential target for resolving TLR4-associated uncontrolled inflammation and preventing sepsis.
[Modulation of immune response by bacterial lipopolysaccharides].Rev Alerg MexLipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.
2016Identification of Two Genes Encoding for the Late Acyltransferases of Lipid A in Klebsiella pneumoniae.Curr MicrobiolLipid A, the hydrophobic anchor of lipopolysaccharide, is an essential component in the outer membrane of most gram-negative bacteria. It is recognized by the TLR4/MD2 receptor of the innate immune system, which triggers an inflammatory response accompanied by massive overproduction of cytokines and leads to gram-negative septic shock. Human pathogen Klebsiella pneumoniae, which may synthesize two lipid A species, differs by the length of the secondary acyl chain. In this study, we identified two genes encoding the putative late acyltransferases of lipid A biosynthesis pathway in K. pneumoniae. Based on the sequence alignment, proteins YP_002239312.1 encoded by KPK3489 and YP_002239899.1 encoded by KPK4096 are homologous to E. coli LpxL, which were designated as LpxL1 and LpxL2, respectively. Functions of the two acyltransferases were confirmed by overexpressing the genes in E. coli, isolating lipid A and analyzing their structures using an ESI/MS. Like E. coli LpxL, K. pneumoniae LpxL1 transfers a C12:0 secondary acyl chain to the 2'-position of lipid A, while K. pneumoniae LpxL2 transfers a C14:0 secondary acyl chain to the 2'-position primary acyl chain of lipid A. These two acyltransferases might play important roles in the biosynthesis of lipid A and the innate immune system recognition in K. pneumoniae.
2016Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway.Tumour BiolHeat shock protein 70 (HSP70) and HSP70-peptide complexes (HSP70-PCs) have been implicated in the pathogenesis of multiple tumors in humans and have been experimentally shown to increase the proliferation of cell lines derived from hepatocellular carcinoma. The goal of this study was to elucidate the molecular mechanisms through which extracellular HSP70/HSP70-PCs stimulate the proliferation of hepatocellular carcinoma (HCC). The molecular mechanisms of HSP70/HSP70-PC action were studied in the human hepatocellular carcinoma cell lines HepG2 and Huh-7, as well as tumor tissue collected from patients with HCC (n = 95). We found that HSP70/HSP70-PCs can stimulate the proliferation of HepG2 cells and that this effect is blocked by knocking down TLR2 and TLR4 expression by RNA interference. A physical interaction between HSP70/HSP70-PCs and TLR2/4 was established using co-immunoprecipitation and pull-down assays. Pharmacological inhibition of different branches of the MAPK intracellular signaling pathway indicated that the extracellular HSP70/HSP70-PC effect was mediated by the JNK1/2 signaling pathway within the cell. We also studied TLR2 and TLR expression at the protein and messenger RNA (mRNA) level in tumor and non-tumor tissue in patients with HCC (n = 95), finding that TLR2 and 4 are increased in HCC tumor tissue and that the expression of TLR2 correlates with clinicopathologic features of HCC. Our data conclusively demonstrates that extracellular HSP70/HSP70-PCs can promote the proliferation of HCC cells through activation of TLR2 and TLR4 and subsequent activation of the intracellular JNK1/2/MAPK signaling pathway.
2016Viperin inhibits rabies virus replication via reduced cholesterol and sphingomyelin and is regulated upstream by TLR4.Sci RepViperin (virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an interferon-inducible protein that mediates antiviral activity. Generally, rabies virus (RABV) multiplies extremely well in susceptible cells, leading to high virus titres. In this study, we found that viperin was significantly up-regulated in macrophage RAW264.7 cells but not in NA, BHK-21 or BSR cells. Transient viperin overexpression in BSR cells and stable expression in BHK-21 cells could inhibit RABV replication, including both attenuated and street RABV. Furthermore, the inhibitory function of viperin was related to reduce cholesterol/sphingomyelin on the membranes of RAW264.7 cells. We explored the up-stream regulation pathway of viperin in macrophage RAW264.7 cells in the context of RABV infection. An experiment confirmed that a specific Toll-like receptor 4 (TLR4) inhibitor, TAK-242, could inhibit viperin expression in RABV-infected RAW264.7 cells. These results support a regulatory role for TLR4. Geldanamycin, a specific inhibitor of interferon regulatory factor 3 (IRF3) (by inhibiting heat-shock protein 90 (Hsp90) of the IRF3 phosphorylation chaperone), significantly delayed and reduced viperin expression, indicating that IRF3 is involved in viperin induction in RAW264.7 cells. Taken together, our data support the therapeutic potential for viperin to inhibit RABV replication, which appears to involve upstream regulation by TLR4.
2016Platelet-derived high-mobility group box 1 promotes recruitment and suppresses apoptosis of monocytes.Biochem Biophys Res CommunPlatelets are circulating cellular sensors that express and release the damage-associated molecular pattern molecule (DAMP) high-mobility group box 1 (HMGB1) at sites of disrupted vascular and tissue integrity. We have recently identified platelet-derived HMGB1 as a critical mediator of thrombosis. The role of platelet-derived HMGB1 in mediating interactions with monocytes remains unknown. In transgenic mice with platelet-specific ablation of HMGB1 and neutralization studies, we show that HMGB1 derived from platelets promotes recruitment of monocytes and prevents monocytes from undergoing apoptosis. During experimental trauma and hemorrhagic shock, infiltrated monocytes in the lung and liver were significantly attenuated in mice lacking HMGB1 in platelets. Platelet-derived HMGB1 mediated monocyte migration via the receptor for advanced glycation end products (RAGE) and suppressed apoptosis via toll-like receptor 4 (TLR4)-dependent activation of MAPK/ERK (extracellular signal-regulated kinase) in monocytes. In conclusion, we identify platelet-derived HMGB1 as a critical regulator of monocyte recruitment and apoptosis, with potential implications in disease states associated with thrombosis and inflammation.
2016The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages.Sci RepProinflammatory cytokine production in macrophages involves multiple regulatory mechanisms, which are affected by environmental and intrinsic stress. In particular, accumulating evidence has suggested epigenetic control of macrophage differentiation and function mainly in vitro. SET domain, bifurcated 1 (Setdb1, also known as Eset) is a histone 3 lysine 9 (H3K9)-specific methyltransferase and is essential for early development of embryos. Here we demonstrate that Setdb1 in macrophages potently suppresses Toll-like receptor 4 (TLR4)-mediated expression of proinflammatory cytokines including interleukin-6 through its methyltransferase activity. As a molecular mechanism, Setdb1-deficiency decreases the basal H3K9 methylation levels and augments TLR4-mediated NF-κB recruitment on the proximal promoter region of interleukin-6, thereby accelerating interleukin-6 promoter activity. Moreover, macrophage-specific Setdb1-knockout mice exhibit higher serum interleukin-6 concentrations in response to lipopolysaccharide challenge and are more susceptible to endotoxin shock than wildtype mice. This study provides evidence that the H3K9 methyltransferase Setdb1 is a novel epigenetic regulator of proinflammatory cytokine expression in macrophages in vitro and in vivo. Our data will shed insight into the better understanding of how the immune system reacts to a variety of conditions.
2016[DAMPs (damage-associated molecular patterns) and inflammation].Nihon RinshoPost-ischemic inflammation is re-appraised as an important player in the progression of ischemic stroke. Activation of inflammatory cells via Toll-like receptor 2 (TLR2) and TLR4 is caused by several damage-associated molecular patterns (DAMPs), including high mobility group box-1 (HMGB-1) and heat shock proteins. We have recently found that peroxiredoxin (Prx) is one of the strong DAMPs and activates infiltrating macrophages in brain ischemia. We have also found that interleukin-23 (IL-23) from the activated macrophages stimulates γδT cells which release IL-17, thereby causing the delayed expansion of infarct lesions. Further investigation of the innate immune response would lead to development of novel stroke treatment with a broad therapeutic time window.
2016Lipopolysaccharide-Induced CD300b Receptor Binding to Toll-like Receptor 4 Alters Signaling to Drive Cytokine Responses that Enhance Septic Shock.ImmunityReceptor CD300b is implicated in regulating the immune response to bacterial infection by an unknown mechanism. Here, we identified CD300b as a lipopolysaccharide (LPS)-binding receptor and determined the mechanism underlying CD300b augmentation of septic shock. In vivo depletion and adoptive transfer studies identified CD300b-expressing macrophages as the key cell type augmenting sepsis. We showed that CD300b, and its adaptor DAP12, associated with Toll-like receptor 4 (TLR4) upon LPS binding, thereby enhancing TLR4-adaptor MyD88- and TRIF-dependent signaling that resulted in an elevated pro-inflammatory cytokine storm. LPS engagement of the CD300b-TLR4 complex led to the recruitment and activation of spleen tyrosine kinase (Syk) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). This resulted in an inhibition of the ERK1/2 protein kinase- and NF-κB transcription factor-mediated signaling pathways, which subsequently led to a reduced interleukin-10 (IL-10) production. Collectively, our data describe a mechanism of TLR4 signaling regulated by CD300b in myeloid cells in response to LPS.
2016The role of Toll-like receptor 4 (TLR4) in cardiac ischaemic-reperfusion injury, cardioprotection and preconditioning.Clin Exp Pharmacol PhysiolCardiac ischaemic-reperfusion injury (IRI) remains the primary cause of mortality throughout the developed world. Molecular mechanisms underlying IRI are complex and are often interlinked with each other driving a synergistic response. Toll-like receptor 4 (TLR4), an immunosurveillance receptor, is known to enhance tissue injury during IRI by enhancing the inflammatory response. The release of endogenous components during IRI bind onto TLR4 leading to the activation of multiple signalling kinases. Once this event occurs these proteins are defined as danger associated molecular patterns molecules (DAMPs) or alarmins. Examples include heat shock proteins, high mobility group box one (HMGB1) and extracellular matrix proteins, all of which are involved in IRI. However, literature in the last two decades suggests that transient stimulation of TLR4 may suppress IRI and thus improve cardiac recovery. Furthermore, it remains to be seen what role TLR4 plays during ischaemic-preconditioning where acute bouts of ischaemia, preceding a harmful bout of ischaemic-reperfusion, is cardioprotective. The other question which also needs to be considered is that if transient TLR4 signalling drives a preconditioning response then what are the ligands which drive this? Hence the second part of this review explores the possible TLR4 ligands which may promote cardioprotection against IRI.
2016Potential role of heat-shock protein 70 and interleukin-15 in the pathogenesis of threatened spontaneous abortions.Am J Reprod ImmunolThe role of HSP70 and both its constitutive (Hsc) and inducible (Hsp) forms in the pathogenesis of threatened spontaneous abortions was investigated.Immunohistology and/or immunofluorescence was used to analyze paraffin-embedded tissue sections, and reverse transcriptase-quantitative polymerase chain reaction and flow cytometry were used for analyses of decidual mononuclear cells (DMCs) and confocal microscopy for the detection of perforin, granulysin, and lysosome-associated membrane protein-1 (LAMP-1) in decidual lymphocytes (DLs).The percentage of single Hsp70(+) , Hsc70(+) , and IL-15(+) cells and mRNA levels of HSP70, CD91, and TLR4 were lower in the decidua basalis in cases of threatened miscarriages compared to that in cases of normal pregnancy. In a suspension of normal DMCs, IL-15 significantly decreased the HSP70 members and TLR4 in dendritic cells, T cells, and NK cells while increasing CD91 in NK cells alone.Downregulation of Hsc70, Hsp70, and IL-15 expression at gene and/or protein levels might support the retention of fertilization products in cases of missed abortion and blighted ovum.
2017Global TLR2 and 4 deficiency in mice impacts bone resorption, inflammatory markers and atherosclerosis to polymicrobial infection.Mol Oral MicrobiolToll-like-receptors (TLRs) play a significant role in the generation of a specific innate immune response against invading pathogens. TLR2 and TLR4 signaling contributes to infection-induced inflammation in periodontal disease (PD) and atherosclerosis. Observational studies point towards a relationship between PD and atherosclerosis, but the role of TLR2 and TLR4 in the recognition of multiple oral pathogens and their modulation of host response leading to atherosclerosis are not clear. We evaluated the role of TLR2 and TLR4 signaling in the induction of both PD and atherosclerosis in TLR2 and TLR4 mice to polymicrobial infection with periodontal pathogens Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum. Polybacterial infections have established gingival colonization in TLR2 and TLR4 mice and induction of a pathogen-specific immunoglobulin G immune response. But TLR deficiency dampened accelerated alveolar bone resorption and intrabony defects, indicating a central role in infection-induced PD. Periodontal bacteria disseminated from gingival tissue to the heart and aorta through intravascular dissemination; however, there was no increase in atherosclerosis progression in the aortic arch. Polybacterial infection does not alter levels of serum risk factors such as oxidized low-density lipoprotein, nitric oxide, and lipid fractions in both mice. Polymicrobial-infected TLR2 mice demonstrated significant levels (P < 0.05 to P < 0.01) of T helper type 2 [transforming growth factor-β , macrophage inflammatory protein-3α, interleukin-13 (IL-13)] and T helper type 17 (IL-17, IL-21, IL-22, IL-23) splenic T-cell cytokine responses. Increased heat-shock protein expression, hspa1a for Hsp 70, was observed for both TLR2 and TLR4 mice. This study supports a role for TLR2 and TLR4 in PD and atherosclerosis, corroborating an intricate association between two inflammatory diseases.
2016Marginal zone B cells exacerbate endotoxic shock via interleukin-6 secretion induced by Fcα/μR-coupled TLR4 signalling.Nat CommunMarginal zone (MZ) B cells produce a first wave of antibodies for protection from blood-borne pathogens. However, the role of MZ B cells in inflammatory responses has not been elucidated. Here we show that MZ B cells produce pro-inflammatory cytokines, such as interleukin-6 (IL-6), and exacerbate systemic inflammatory responses to lipopolysaccharide (LPS). After intravenous injection of LPS or E. coli, mice deficient in MZ B cells or IL-6 only in MZ B cells have attenuated systemic inflammatory responses and prolonged survival compared with wild-type mice. LPS directly stimulates MZ B cells via Toll-like receptor 4 (TLR4) and MyD88 pathways for IL-6 production. Furthermore, TLR4 requires physical and functional association with Fcα/μR (CD351) for its oligomer formation, NF-κB signalling and IL-6 production from MZ B cells; this association is responsible for systemic inflammatory responses and endotoxic shock. These results reveal a pro-inflammatory role of MZ B cells in endotoxic shock.
2016Peroxiredoxin 1 induces inflammatory cytokine response and predicts outcome of cardiogenic shock patients necessitating extracorporeal membrane oxygenation: an observational cohort study and translational approach.J Transl MedExtracellular peroxiredoxin 1 (Prdx1) has been implicated to play a pivotal role in regulating inflammation; however, its function in tissue hypoxia-induced inflammation, such as severe cardiogenic shock patients, has not yet been defined. Thus, the objective of this study was to test the hypothesis that Prdx1 possesses prognostic value and instigates systemic inflammatory response syndrome in cardiogenic shock patients undergoing extracorporeal membrane oxygenation (ECMO) support.We documented the early time course evolution of circulatory Prdx1, hypoxic marker carbonic anhydrase IX, inflammatory cytokines including IL-6, IL-8, IL-10, MCP-1, TNF-α, IL-1β, and danger signaling receptors (TLR4 and CD14) in a cohort of cardiogenic shock patients within 1 day after ECMO support. In vitro investigations employing cultured murine macrophage cell lines and human monocytes were applied to clarify the relationship between Prdx1 and inflammatory response.Prdx1 not only peaked earlier than all the other cytokines we studied during the initial course, but also predicted a worse outcome in patients who had higher initial Prdx1 plasma levels. The Prdx1 levels in patients positively correlated with hypoxic markers carbonic anhydrase IX and lactate, and inflammatory cytokines. In vitro study demonstrated that hypoxia/reoxygenation induced Prdx1 release from human monocytes and enhanced the responsiveness of the monocytes in Prdx1-induced cytokine secretions. Furthermore, functional inhibition by Prdx1 antibody implicated a crucial role of Prdx1 in hypoxia/reoxygenation-induced IL-6 secretion.Prdx1 release during the early phase of ECMO support in cardiogenic shock patients is associated with the development of systemic inflammatory response syndrome and poor clinical outcomes. Thus, circulating Prdx1 provides not only prognostic information but may be a promising target against ischemia/reperfusion injury.
2016[SPECIFICITY OF IMMUNE MODULATING EFFECT OF YERSINIA PESTIS ENDOTOXIN].Zh Mikrobiol Epidemiol ImmunobiolLiterature and own data on mechanisms, of realization of lipopolysaccharide (LPS) toxic potential of Yersinia pestis in the conditions of a macroorganism are analyzed. 2 modifications of LPS are examined - temperature dependent changes of chemical structure of polymers and a change in their conformation under the effect of micro- and macroorganism factors. A special attention is paid to comparative study of toxic and immune modulating properties of the specified LPS forms. Both LPS forms are concluded to activate TLR4/MD2 receptor, inducing synthesis of 2 types of cytokines - pro-inflammatory and interferons. However, dominance of their signal pathways and cross-regulation of the transduced signal are mirrored, and as a result the initial form of LPS initiates interferon synthesis, and conformationally changed - pro-inflammatory cytokines. Results of the experiments are summarized in 2 schemes of signal transfer by TLR4/MD2 receptor under the effect of 2 forms of Y pestis LPS. Variations of cytokine-inducing properties of the initial and conformationally-altered forms of Y pestis LPS corresponds to the immune response of the organism at each stage of the infectious process: late inflammatory response by interferon type is characteristic for intracellular cycle of plague development, and pro-inflammatory cytokine hyper-production is observed at the terminal stage of infection-toxic shock.
2016Lipopolysaccharide pretreatment promotes cardiac stem cell migration through heat shock protein 90-dependent β-catenin activation.Life SciTo investigate the effect of lipopolysaccharide (LPS) on the migration of cardiac stem cells (CSCs) and whether β-catenin is involved in its underlying mechanism.CSCs were isolated from neonatal Sprague-Dawley rat hearts. Migration was detected using 24-well transwell system in vitro cultured CSCs and using carboxyfluorescein diacetate (CFDA)-labelled method in myocardial infarction rat model. The expression of toll like receptor 4 (TLR4), β-catenin, heat shock protein 90 (HSP90) was analyzed using western blotting.Exposure of CSCs to higher LPS (1μg/mL) for 24h inhibited the cell migration. However, LPS (0.01, 0.1μg/mL) significantly increased the number of migrated CSCs, which reached a peak at 0.01μg/mL. LPS (0.01μg/mL) pretreatment promoted the migration of CFDA-labeled CSCs into the risk area in ischemia-reperfusion rat heart. And injection of LPS-pretreated CSCs also caused a significant decrease in infarct size when compared with LPS-untreated CSCs group. Lower dose of LPS did not influence the expression of TLR4 and total β-catenin protein. However, it enhanced the levels of active β-catenin, nuclear β-catenin, and HSP90 protein. Compared with LPS group, after preincubated with HSP90 inhibitor 17-AAG, the LPS-induced enhancement of active β-catenin protein and nuclear β-catenin protein was abolished. In addition, 17-AAG also prevented the lower dose of LPS-induced cell migration.The results suggested that low dose of LPS pretreatmemt induced increased CSC migration, reduced the infarct size of ischemia-reperfusion heart. The mechanism might be due to the activation and translocation of β-catenin via HSP90-dependent manner.
2016Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock.PLoS OneInterferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production.
2016Fish Oil-Based Fat Emulsion Reduces Acute Kidney Injury and Inflammatory Response in Antibiotic-Treated Polymicrobial Septic Mice.NutrientsAcute kidney injury (AKI) is a common complication in sepsis. This study compared the effects of a fish oil-based with a mixed oil fat emulsion on remote renal injury in an antibiotic-treated septic murine model. Mice were randomly assigned to a normal control (NC) group and three septic groups. Sepsis was induced by cecal ligation and puncture (CLP). The antibiotic was injected intraperitoneally (IP) after CLP and then daily till the time of sacrifice. Three hours after antibiotic treatment, one of the septic groups was injected IP with a fish oil-based emulsion (FO), while the other two groups were given either a mixed oil emulsion (MO) or saline (SC). The septic groups were further divided into two separate time groups, with blood and kidneys samples collected at 24 h or 72 h post-CLP. The results showed that sepsis leads to the activation of neutrophils, T helper (Th)1/Th-2/Th-17 and Treg cells (p < 0.05). Plasma NGAL and mRNA expressions of renal MyD88 and TLR4 were also enhanced (p < 0.05). Compared to the SC group, the group given the fish oil-based emulsion had decreased plasma NGAL by 22% and Treg by 33%. Furthermore, renal gene expressions of MyD88 and TLR4 reduced by 46% and 62%, respectively, whereas heat shock protein 70 and peroxisome proliferator-activated receptor-γ increased by 158% and 69%, respectively (p < 0.05), at Day 3 after CLP. These results suggest that administration of a fish oil-based emulsion has favorable effects, maintaining blood T cell percentage, downregulating Treg expression, attenuating systemic and local inflammation and offering renal protection under conditions of antibiotic-treated polymicrobial sepsis.
2016Structure, function and disease relevance of Omega-class glutathione transferases.Arch ToxicolThe Omega-class cytosolic glutathione transferases (GSTs) have distinct structural and functional attributes that allow them to perform novel roles unrelated to the functions of other GSTs. Mammalian GSTO1-1 has been found to play a previously unappreciated role in the glutathionylation cycle that is emerging as significant mechanism regulating protein function. GSTO1-1-catalyzed glutathionylation or deglutathionylation of a key signaling protein may explain the requirement for catalytically active GSTO1-1 in LPS-stimulated pro-inflammatory signaling through the TLR4 receptor. The observation that ML175 a specific GSTO1-1 inhibitor can block LPS-stimulated inflammatory signaling has opened a new avenue for the development of novel anti-inflammatory drugs that could be useful in the treatment of toxic shock and other inflammatory disorders. The role of GSTO2-2 remains unclear. As a dehydroascorbate reductase, it could contribute to the maintenance of cellular redox balance and it is interesting to note that the GSTO2 N142D polymorphism has been associated with multiple diseases including Alzheimer's disease, Parkinson's disease, familial amyotrophic lateral sclerosis, chronic obstructive pulmonary disease, age-related cataract and breast cancer.
2016An Endothelial Hsp70-TLR4 Axis Limits Nox3 Expression and Protects Against Oxidant Injury in Lungs.Antioxid Redox SignalOxidants play a critical role in the pathogenesis of acute lung injury (ALI). Nox3 is a novel member of the NADPH oxidase (Nox) family of oxidant-generating enzymes, which our laboratory had previously identified to be induced in the lungs of TLR4(-/-) mice. However, the physiologic role of Nox3 induction in lungs and its precise relationship to TLR4 are unknown. Furthermore, the cell compartment involved and the signaling mechanisms of Nox3 induction are unknown.We identified that Nox3 is regulated by heat shock protein 70 (Hsp70) signaling via a TLR4-Trif-signal transducer and activator of transcription 3 (Stat3) pathway and that Nox3 induction leads to increased oxidant injury and death in mice and lung endothelial cells. We generated Nox3(-/-)/TLR4(-/-) double knockout mice, endothelial-targeting lentiviral silencing constructs, and endothelial-targeted Stat3(-/-) mice to specifically demonstrate that Nox3 induction is responsible for the pro-oxidant, proapoptotic phenotype of TLR4(-/-) mice. We also show that an endothelial Hsp70-TLR4-Trif-Stat3 axis is required to suppress deleterious Nox3 induction.To date, a physiologic role for Nox3 in oxidant-induced ALI has not been identified. In addition, we generated unique double knockout mice and endothelial-targeted lentiviral silencing constructs to specifically demonstrate the role of a TLR4 signaling pathway in regulating pro-oxidant generation.We identified an endothelial TLR4-Trif antioxidant pathway that leads to the inhibition of a novel NADPH oxidase, Nox3, in lungs and lung endothelial cells. We also identified the role of a TLR4 ligand, Hsp70, in suppressing Nox3 in basal and pro-oxidant conditions. These studies identify potentially new therapeutic targets in oxidant-induced ALI. Antioxid. Redox Signal. 24, 991-1012.
2016Heat shock protein complex vaccines induce antibodies against Neisseria meningitidis via a MyD88-independent mechanism.VaccineNeisseria meningitidis are common colonizers of the human nasopharynx. In some circumstances, N. meningitidis becomes an opportunistic pathogen that invades tissues and causes meningitis. While a vaccine against a number of serogroups has been in effective use for many years, a vaccine against N. meningitidis group B has not yet been universally adopted. Bacterial heat shock protein complex (HSPC) vaccines comprise bacterial HSPs, purified with their chaperoned protein cargo. HSPC vaccines use the intrinsic adjuvant activity of their HSP, thought to act via Toll-like receptors (TLR), to induce an immune response against their cargo antigens. This study evaluated HSPC vaccines from N. meningitidis and the closely related commensal N. lactamica.The protein composition of N. lactamica and N. meningitidis HSPCs were similar. Using human HEK293 cells we found that both HSPCs can induce an innate immune response via activation of TLR2. However, stimulation of TLR2 or TLR4 deficient murine splenocytes revealed that HSPCs can activate an innate immune response via multiple receptors. Vaccination of wildtype mice with the Neisseria HSPC induced a strong antibody response and a Th1-restricted T helper response. However, vaccination of mice deficient in the major TLR adaptor protein, MyD88, revealed that while the Th1 response to Neisseria HSPC requires MyD88, these vaccines unexpectedly induced an antigen-specific antibody response via a MyD88-independent mechanism.N. lactamica and N. meningitidis HSPC vaccines both have potential utility for immunising against neisserial meningitis without the requirement for an exogenous adjuvant. The mode of action of these vaccines is highly complex, with HSPCs inducing immune responses via both MyD88-dependent and -independent mechanisms. In particular, these HSPC vaccines induced an antibody response without detectable T cell help.
2016Viral vector mediated continuous expression of interleukin-10 in DRG alleviates pain in type 1 diabetic animals.Mol Cell NeurosciPainful diabetic neuropathy is a common and difficult to treat complication of diabetes. A growing body of evidence implicates the role of inflammatory mediators in the damage to the peripheral axons and in the pathogenesis of neuropathic pain. Increased expression of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the peripheral nervous system suggests the possibility of change in pain perception in diabetes. In this study we investigated that continuous delivery of IL10 in the nerve fibers achieved by HSV vector mediated transduction of dorsal root ganglion (DRG) in animals with Type 1 diabetes, blocks the nociceptive and stress responses in the DRG neurons by reducing IL1β expression along with inhibition of phosphorylation of p38 MAPK (mitogen-activated protein kinase) and protein kinase C (PKC). The continuous expression of IL10 also alters Toll like receptor (TLR)-4 expression in the DRG with increased expression of heat shock protein (HSP)-70 in conjunction with the reduction of pain. Taken together, this study suggests that macrophage activation in the peripheral nervous system may be involved in the pathogenesis of pain in Type 1 diabetes and therapeutic benefits of HSV mediated local expression of IL10 in the DRG with the reduction of a number of proinflammatory cytokines, subsequently inhibits the development of painful neuropathy along with a decrease in stress associated markers in the DRG. This basic and preclinical study provides an important evidence for a novel treatment strategy that could lead to a clinical trial for what is currently a treatment resistant complication of diabetes.
2016Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior.Brain Behav ImmunMost psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and these stress responses contribute to susceptibility to depression-like behavior in mice.
2015Immunomodulatory effect of riboflavin deficiency and enrichment - reversible pathological response versus silencing of inflammatory activation.J Physiol PharmacolAriboflavinosis, that is, vitamin B2 deficiency, is a common problem affecting the populations of both developing and affluent countries. Teenagers, elderly people, pregnant women, and alcohol abusers represent groups that are particularly susceptible to this condition. This study was aimed to determine the effect of different riboflavin concentrations (deficiency and supplementation) on macrophages response induced by bacteria or yeast-derived factors i.e. lipopolysaccharide (LPS) and zymosan, respectively. Mouse macrophage RAW 264.7 cells were cultured for 5 days in a medium with a riboflavin concentration corresponding to moderate riboflavin deficiency (3.1 nM), physiological state (10.4 nM), or vitamin pill supplementation (300 nM). On the third or fourth day of deprivation, the medium in some groups was supplemented with riboflavin (300 nM). Macrophages activation were assessed after LPS or zymosan stimulation. Short-term (5 days) riboflavin deprivation resulted in the pathological macrophages activation, manifested especially in a reduction of cell viability and excess release of tumor necrosis factor-α (TNF-α) and high-mobility group box 1 (HMGB1) protein. Moreover, the levels of inducible nitric oxide synthase (iNOS), nitric oxide (NO), heat shock protein (Hsp72), interleukin 1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and interleukin 10 (IL-10) decreased after riboflavin deprivation, but medium enrichment with riboflavin (300 nM) on the third or fourth day reversed this effect. In the riboflavin-supplemented group, LPS-stimulated macrophages showed lower mortality accompanied by higher Hsp72 expression, reduction of Toll-like receptor 4 (TLR4) and TNF-α, and elevation of NO, IL-6, and IL-10. Moreover, the TLR6, NO, iNOS, IL-1β, MCP-1, and the keratinocyte chemoattractant (KC) levels significantly decreased in the zymosan-stimulated groups maintained in riboflavin-enriched medium. We conclude that short-term riboflavin deficiency significantly impairs the ability of macrophages to induce proper immune response, while riboflavin enrichment decreases the proinflammatory activation of macrophages.
2016A Common Genetic Variant in TLR1 Enhances Human Neutrophil Priming and Impacts Length of Intensive Care Stay in Pediatric Sepsis.J ImmunolPolymorphonuclear leukocytes (PMN) achieve an intermediate or primed state of activation following stimulation with certain agonists. Primed PMN have enhanced responsiveness to subsequent stimuli, which can be beneficial in eliminating microbes but may cause host tissue damage in certain disease contexts, including sepsis. As PMN priming by TLR4 agonists is well described, we hypothesized that ligation of TLR2/1 or TLR2/6 would prime PMN. Surprisingly, PMN from only a subset of donors were primed in response to the TLR2/1 agonist, Pam3CSK4, although PMN from all donors were primed by the TLR2/6 agonist, FSL-1. Priming responses included generation of intracellular and extracellular reactive oxygen species, MAPK phosphorylation, integrin activation, secondary granule exocytosis, and cytokine secretion. Genotyping studies revealed that PMN responsiveness to Pam3CSK4 was enhanced by a common single-nucleotide polymorphism (SNP) in TLR1 (rs5743618). Notably, PMN from donors with the SNP had higher surface levels of TLR1 and were demonstrated to have enhanced association of TLR1 with the endoplasmic reticulum chaperone gp96. We analyzed TLR1 genotypes in a pediatric sepsis database and found that patients with sepsis or septic shock who had a positive blood culture and were homozygous for the SNP associated with neutrophil priming had prolonged pediatric intensive care unit length of stay. We conclude that this TLR1 SNP leads to excessive PMN priming in response to cell stimulation. Based on our finding that septic children with this SNP had longer pediatric intensive care unit stays, we speculate that this SNP results in hyperinflammation in diseases such as sepsis.
2016Chemical Hybridization of Vizantin and Lipid A to Generate a Novel LPS Antagonist.Chem Pharm Bull (Tokyo)Lipopolysaccharide (LPS) antagonists have attracted considerable interest as promising candidates for the treatment of severe sepsis triggered by Gram-negative bacteria. In this article, we describe the development of a novel LPS antagonist based on chemical hybridization of vizantin and the hydrophobic molecular unit of LPS (lipid A). Vizantin, 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose, was designed as an immunostimulator from a structure-activity relationship (SAR) study with trehalose 6,6'-dicorynomycolate (TDCM). Our recent study indicated that vizantin displays adjuvant activity by specifically binding to the Toll-like receptor 4 (TLR4)/MD2 protein complex. Because lipid A unit (or LPS) is also known to trigger an inflammatory response via the same TLR4/MD2 complex as vizantin, we designed a hybrid compound of vizantin and lipid A with the aim of developing a novel biofunctional glycolipid. Focusing on the antagonism to Escherichia coli LPS in an in vitro model with human macrophages (THP-1 cells), we identified a potent LPS antagonist among the synthesized hybrid compounds. The novel LPS antagonist effectively inhibited LPS-induced release of tumor necrosis factor-alpha (TNF-α) in a dose-dependent manner with an IC50 value of 3.8 nM, making it a candidate for the treatment drug of Gram-negative sepsis and/or septic shock.
2016Signaling, stress response and apoptosis in pre-diabetes and diabetes: restoring immune balance in mice with alloxan-induced type 1 diabetes mellitus.Int ImmunopharmacolThe aim of this study was to compare immune imbalances in "pre-diabetic" and diabetic mice and to evaluate the efficacy of several agents in improving the immunity of mice with type 1 diabetes. Pre-diabetic and diabetic models generated by a single or double alloxan injection were monitored for plasma glucose and pancreas immunohistochemistry. To study the immunity in pre-diabetic and diabetic Balb/C male mice; the levels of cytokines; synthesis of inducible heat shock proteins HSP72 and HSP90α; activity of the NF-κB, IFR3, SAPK/JNK, and TLR4 pathways; and apoptosis levels in thymuses were measured. Pre-diabetes resulted in a decrease in IL-4, IL-5 and IL-10 in plasma; in diabetic mice, plasma IFN-gamma, IL-6, TNF-alpha, and IL-10 were decreased. The NF-κB alternative pathway activity and TLR4 expression were significantly increased only in pre-diabetic mice, whereas SAPK/JNK activation was observed at both stages of diabetes. Other measured parameters also showed distinct altered patterns in the immunity of pre-diabetic and diabetic mice. Treatment with an inhibitor of NF-κB, thymulin, or a diet with an antioxidant improved or normalized the immune balance in diabetic mice and also notably decreased pancreatic cell damage in pre-diabetic mice.
2016Bimodal role of NADPH oxidases in the regulation of biglycan-triggered IL-1β synthesis.Matrix BiolBiglycan, a ubiquitous proteoglycan, acts as a danger signal when released from the extracellular matrix. As such, biglycan triggers the synthesis and maturation of interleukin-1β (IL-1β) in a Toll-like receptor (TLR) 2-, TLR4-, and reactive oxygen species (ROS)-dependent manner. Here, we discovered that biglycan autonomously regulates the balance in IL-1β production in vitro and in vivo by modulating expression, activity and stability of NADPH oxidase (NOX) 1, 2 and 4 enzymes via different TLR pathways. In primary murine macrophages, biglycan triggered NOX1/4-mediated ROS generation, thereby enhancing IL-1β expression. Surprisingly, biglycan inhibited IL-1β due to enhancement of NOX2 synthesis and activation, by selectively interacting with TLR4. Synthesis of NOX2 was mediated by adaptor molecule Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF). Via myeloid differentiation primary response protein (MyD88) as well as Rac1 activation and Erk phosphorylation, biglycan triggered translocation of the cytosolic NOX2 subunit p47(phox) to the plasma membrane, an obligatory step for NOX2 activation. In contrast, by engaging TLR2, soluble biglycan stimulated the expression of heat shock protein (HSP) 70, which bound to NOX2, and consequently impaired the inhibitory function of NOX2 on IL-1β expression. Notably, a genetic background lacking biglycan reduced HSP70 expression, rescued the enhanced renal IL-1β production and improved kidney function of Nox2(-/y) mice in a model of renal ischemia reperfusion injury. Here, we provide a novel mechanism where the danger molecule biglycan influences NOX2 synthesis and activation via different TLR pathways, thereby regulating inflammation severity. Thus, selective inhibition of biglycan-TLR2 or biglycan-TLR4 signaling could be a novel therapeutic approach in ROS-mediated inflammatory diseases.
2016Direct saliva transcript analysis as a novel non-invasive method for oestrus marker detection in buffaloes.BiomarkersSalivary RNA-based biomarkers are not available for any physiological condition in farm animals. Hence, an objective of this study was to perform salivary transcript analysis in buffaloes. Saliva, after removal of the cells and particulate matter, was directly used for RT-PCR without RNA isolation. Direct saliva transcript analysis (DSTA) showed a suggestively significant higher expression of the Heat shock protein 70 (HSP70) and Toll-like receptor 4 (TLR4) at oestrus than the diestrous period in buffaloes by a non-parametric Mann-Whitney U test. Therefore, DSTA without RNA isolation is an easy method to identify salivary RNA markers for oestrus detection in buffaloes.
2015Leucine-rich repeat 2 of human Toll-like receptor 4 contains the binding site for inhibitory monoclonal antibodies.FEBS LettExcessive activation of Toll-like receptor 4 (TLR4)/MD-2 by lipopolysaccharide (LPS) causes septic shock. We previously produced an inhibitory antibody, HT52, against LPS-induced human TLR4 activation independently of LPS binding of MD-2. Consistent with the hypothesis that HT52 recognizes the epitopes inherent to inhibitory antibodies, we generated an HT52-crossblockable antibody and revealed the relationship between its inhibitory activity and the anti-TLR4 antibody epitope. Leucine-rich repeat 2 was identified as an inhibitory epitope, and Phe(75), Ser(76) and Pro(79) as antigenic determinants. These findings provide a way to design therapeutic antibodies targeted to TLR4 that are distinct from LPS analog antagonists targeting MD-2.
2015Role of Toll-like receptors in diabetic renal lesions in a miniature pig model.Sci AdvThe mechanisms of diabetic renal injury remain unclear. Recent studies have shown that immunological and inflammatory elements play important roles in the initiation and development of diabetic nephropathy (DN). Toll-like receptors (TLRs) comprise a superfamily of innate immune system receptors. The roles and mechanisms of TLRs in the pathogenesis of diabetic renal lesions are mostly unknown. Compared with rodents, miniature pigs are more similar to humans with respect to metabolism, kidney structure, and immune system, and therefore represent an ideal large-animal model for DN mechanistic studies. A diabetes model was established by feeding miniature pigs with high-sugar and high-fat diets. Functional and pathological markers, expression and activation of endogenous TLR ligands [HSP70 (heat shock protein 70) and HMGB1], TLR1 to TLR11 and their downstream signaling pathway molecules (MyD88, IRAK-1, and IRF-3), nuclear factor κB (NF-κB) signaling pathway molecules (IKKβ, IκBα, and NF-κBp65), inflammatory cytokines [IL-6 (interleukin-6), MIP-2, MCP-1, CCL5, and VCAM-1 (vascular cell adhesion molecule-1)], and infiltration of inflammatory cells were systematically evaluated. The expression of HSP70 was significantly increased in diabetic pig kidneys. The expression of MyD88-dependent TLR2, TLR4, TLR5, TLR7, TLR8, and TLR11 and their downstream signaling molecules MyD88 and phospho-IRAK-1 (activated IRAK-1), as well as that of MyD88-independent TLR3 and TLR4 and their downstream signaling molecule phospho-IRF-3 (activated IRF-3), was significantly up-regulated. The expression and activation of NF-κB pathway molecules phospho-IKKβ, phospho-IκBα, NF-κBp65, and phospho-NF-κBp65 were significantly increased. Levels of IL-6, MIP-2, MCP-1, CCL5, VCAM-1, and macrophage marker CD68 were significantly increased in diabetic pig kidneys. These results suggested that the metabolic inflammation activated by TLRs might play an important role in diabetic renal injuries.
2016Hypoxic stress: impact on the modulation of TLR2, TLR4, NOD1 and NOD2 receptor and their down-stream signalling genes expression in catla (Catla catla).Mol Biol RepThe damage-associated molecular patterns (DAMPs) released from the damaged tissue/cells are recently reported as endogenous ligands to activate toll-like receptors (TLRs) and nucleotide binding and oligomerization domain (NOD) receptors signaling pathways. In the aquatic environment, reduction in dissolved oxygen (DO) concentration causes hypoxic stress resulting in tissue damage and patho-biological changes in fish. We envisaged the critical role of TLR and NOD receptors in recognizing DAMPs as endogenous ligands during hypoxic stress in fish. Catla (Catla catla) fingerlings (avg. wt ~56 g) was exposed to hypoxic stress (DO: 1-3 mg/L) for 1 and 24 h. After the designated time course, total RNA was extracted from gill, liver, kidney and blood, and modulation of TLRs (TLR2 and TLR4), NOD (NOD1 and NOD2) receptors, MyD88 (myeloid differentiation primary response gene 88), RICK (receptor interacting serine-threonine protein kinase-2), interleukin (IL)-6, IL-8 and IL-10 gene expression were analyzed by quantitative reverse transcriptase PCR assay. Significant (p < 0.05) up-regulation of some DAMPs {high-mobility group box 1 and heat shock protein-70}, TLRs and NOD receptors genes expressions were observed in the hypoxic fish tissues as compared to the control. Further investigation revealed inductive expression of MyD88, RICK, IL-6, IL-8 and IL-10 genes in the TLRs and NODs activated tissues of the hypoxic fish. These data together may suggest the important role of TLRs and NOD receptors signaling pathway in sterile inflammation and pathobiology of fish in hypoxic stress, and warrant further study to investigate the role of TLR and NOD receptors in abiotic stress management in aquaculture.
2016Sensing Gram-negative bacteria: a phylogenetic perspective.Curr Opin ImmunolGram-negative bacteria represent a major group of pathogens that infect all eukaryotes from plants to mammals. Gram-negative microbe-associated molecular patterns include lipopolysaccharides and peptidoglycans, major immunostimulatory determinants across phyla. Recent advances have furthered our understanding of Gram-negative detection beyond the well-defined pattern recognition receptors such as TLR4. A B-type lectin receptor for LPS and Lysine-motif containing receptors for peptidoglycans were recently added to the plant arsenal. Caspases join the ranks of mammalian cytosolic immune detectors by binding LPS, and make TLR4 redundant for septic shock. Fascinating bacterial evasion mechanisms lure the host into tolerance or promote inter-bacterial competition. Our review aims to cover recent advances on bacterial messages and host decoding systems across phyla, and highlight evolutionarily recurrent strategies.
2015Platelet-derived HMGB1 is a critical mediator of thrombosis.J Clin InvestThrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis. Mice lacking HMGB1 in platelets exhibited increased bleeding times as well as reduced thrombus formation, platelet aggregation, inflammation, and organ damage during experimental trauma/hemorrhagic shock. Platelets were the major source of HMGB1 within thrombi. In trauma patients, HMGB1 expression on the surface of circulating platelets was markedly upregulated. Moreover, evaluation of isolated platelets revealed that HMGB1 is critical for regulating platelet activation, granule secretion, adhesion, and spreading. These effects were mediated via TLR4- and MyD88-dependent recruitment of platelet guanylyl cyclase (GC) toward the plasma membrane, followed by MyD88/GC complex formation and activation of the cGMP-dependent protein kinase I (cGKI). Thus, we establish platelet-derived HMGB1 as an important mediator of thrombosis and identify a HMGB1-driven link between MyD88 and GC/cGKI in platelets. Additionally, these findings suggest a potential therapeutic target for patients sustaining trauma and other inflammatory disorders associated with abnormal coagulation.
2015Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury.J Am Heart AssocParaplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll-like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia.A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3(-/-) mice, whereas the effect was still present in TLR4(-/-) mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave-treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices.Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair.
2015Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes.Nat CommunMonocytes promote the early host response to infection releasing key pro-inflammatory cytokines, such as IL-1β. The biologically inactive IL-1β precursor is processed to active form by inflammasomes, multi-protein complexes activating caspase-1. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation in response to lipopolysaccharide (LPS) alone. Although this lineage-restricted mechanism is likely to contribute to the pathology of endotoxin shock, signalling pathways regulating this mechanism are currently unknown. Here we report that caspase-4 and caspase-5 mediate IL-1α and IL-1β release from human monocytes after LPS stimulation. Although caspase-4 remains uncleaved, caspase-5 undergoes rapid processing upon LPS treatment. We also identify an additional caspase-5 cleavage product in LPS-stimulated monocytes, which correlates with IL-1 secretion. This one-step pathway requires Syk activity and Ca(2+) flux instigated by CD14/TLR4-mediated LPS internalization. Identification of caspase-4/5 as the key determinants of one-step inflammasome activation in human monocytes provides potential targets for therapeutic intervention in endotoxin shock.
2015Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation.Sci RepAccumulating evidence indicates that heat shock protein (HSP) 60 is strongly associated with the pathology of atherosclerosis (AS). However, the precise mechanisms by which HSP60 promotes atherosclerosis remain unclear. In the present study, we found that HSP60 mRNA and protein expression levels in the thoracic aorta are enhanced not only in a mouse model of AS but also in high-fat diet (HFD) mice. HSP60 expression and secretion was activated by platelet-derived growth factor-BB (PDGF-BB) and interleukin (IL)-8 in both human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). HSP60 was found to induce VSMC migration, and exposure to HSP60 activated ERK MAPK signaling. U0126, an inhibitor of ERK, reduced VSMC migration. The HSP60-stimulated VSMCs were found to express TLR4 mRNA but not TLR2 mRNA. Knockdown of TLR4 by siRNA reduced HSP60-induced VSMC migration and HSP60-induced ERK activation. Finally, HSP60 induced IL-8 secretion in VSMCs. Together these results suggest that HSP60 is involved in the stimulation of VSMC migration, via TLR4 and ERK MAPK activation. Meanwhile, activation of HSP60 is one of the most powerful methods of sending a 'danger signal' to the immune system to generate IL-8, which assists in the management of an infection or disease.
2016Endotoxin Tolerance Inhibits Lyn and c-Src Phosphorylation and Association with Toll-Like Receptor 4 but Increases Expression and Activity of Protein Phosphatases.J Innate ImmunEndotoxin tolerance protects the host by limiting excessive 'cytokine storm' during sepsis, but compromises the ability to counteract infections in septic shock survivors. It reprograms Toll-like receptor (TLR) 4 responses by attenuating the expression of proinflammatory cytokines without suppressing anti-inflammatory and antimicrobial mediators, but the mechanisms of reprogramming remain unclear. In this study, we demonstrate that the induction of endotoxin tolerance in human monocytes, THP-1 and MonoMac-6 cells inhibited lipopolysaccharide (LPS)-mediated phosphorylation of Lyn, c-Src and their recruitment to TLR4, but increased total protein phosphatase (PP) activity and the expression of protein tyrosine phosphatase (PTP) 1B, PP2A, PTP nonreceptor type (PTPN) 22 and mitogen-activated protein kinase phosphatase (MKP)-1. Chemical PP inhibitors, okadaic acid, dephostatin and cantharidic acid markedly decreased or completely abolished LPS tolerance, indicating the importance of phosphatases in endotoxin tolerization. Overexpression of PTPN22 decreased LPS-mediated nuclear factor (NF)-x03BA;B activation, p38 phosphorylation and CXCL8 gene expression, while PTPN22 ablation upregulated LPS-induced p65 NF-x03BA;B and p38 phosphorylation and the expression of TNF-α and pro-IL-1β mRNA, indicating PTPN22 as an inhibitor of TLR4 signaling. Thus, LPS tolerance interferes with TLR4 signaling by inhibiting Lyn and c-Src phosphorylation and their recruitment to TLR4, while increasing the phosphatase activity and expression of PP2A, PTPN22, PTP1B and MKP1.
2015Heat Shock Protein 60 in Eggs Specifically Induces Tregs and Reduces Liver Immunopathology in Mice with Schistosomiasis Japonica.PLoS OneParasitic helminths need to suppress the host immune system to establish chronic infections. Paradoxically, immunosuppression induced by the worm also benefits the host by limiting excessive inflammation and tissue damage, which remains the major cause leading to serious morbidity and mortality. Regulatory T cells (Tregs) are key immune regulators of this mutualism. The successive rise in Tregs during schistosome infection plays a critical role in immunoregulation. We and others previously showed that Schistosoma japonicum (S. japonicum) egg antigens (SEA) induce Tregs both in vitro and in vivo. In addition, we identified that SjHSP60 derived from SEA significantly induces Tregs in vivo and in vitro. However, the contribution of SjHSP60 in SEA to Treg induction and the related mechanisms of the Treg induction have not yet been identified.In this study, we showed that S. japonicum stress protein HSP60 (SjHSP60) was constitutively and extensively expressed in eggs of S. japonicum. SjHSP60 specially induced Tregs in vivo and in vitro without inducing other CD4+ T sub-populations including Th1, Th2 and Th17 cells. Furthermore, we showed that the SjHSP60-depleted SEA almost lost the ability in vitro and displayed a significant impaired ability to induce Tregs in vivo. Finally, our study illustrated that the mechanisms of SjHSP60-mediated induction of Tregs are through both conversion of CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs and expansion of preexisting CD4+CD25+Foxp3+ Tregs in a TLR4-dependent manner.Collectively, our findings identify SjHSP60 as a major parasitic contributor of Treg induction in S. japonicum egg antigens, which not only contributes to the better understanding of the mechanism of immunoregulation during helminth infection, but also suggests its potential as a therapeutic target for control of immunopathology, allergic and autoimmune diseases.
2015Diphenyldifluoroketone EF24 Suppresses Pro-inflammatory Interleukin-1 receptor 1 and Toll-like Receptor 4 in lipopolysaccharide-stimulated dendritic cells.J Inflamm (Lond)Unresolved and prolonged inflammation is a pathological basis of many disorders such as cancer and multiple organ failure in shock. Interleukin-1 receptor (IL-1R) superfamily consists of IL-1R1 and pathogen pattern recognition receptor toll-like receptor-4 (TLR4) which, upon ligand binding, initiate pro-inflammatory signaling. The study objective was to investigate the effect of a diphenyldifluoroketone EF24 on the expression of IL-1R1 and TLR4 in lipopolysaccharide (LPS)-stimulated dendritic cells (DCs).Immortalized murine bone marrow-derived JAWS II dendritic cells (DC) were challenged with LPS (100 ng/ml) for 4 h. The LPS-stimulated DCs were treated with 10 μM of EF24 for 1 h. The expression levels of IL-1R1 and TLR4 were monitored by RT-PCR, immunoblotting, and confocal microscopy. The effect of EF24 on the viability and cell cycle of DCs was examined by lactate dehydrogenase assay and flow cytometry, respectively.EF24 treatment suppressed the LPS-induced TLR4 and IL-1R1 expression in DCs. However, the expression levels of IL-1RA and IL-1R2 were not influenced by either LPS or EF24 treatments. These effects of EF24 were associated with a decrease in LPS-induced expression of phospho-NF-kB p65, indicative of its role in the transcriptional control of IL-1R superfamily members. We did not find any significant effect of EF24 on the proliferation or cell cycle of DCs.The results suggest that EF24 influences IL-1R superfamily signaling pathway in ways that could have salutary effects in inflammation. The pluripotent anti-inflammatory actions of EF24 warrant further investigation of EF24 in inflammatory conditions of systemic nature.
2015Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy.Dis Model MechIncreased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4(-/-) mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN.
2015Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity.Sci Transl MedComplications arising from dengue virus infection include potentially fatal vascular leak, and severe disease has been linked with excessive immune cell activation. An understanding of the triggers of this activation is critical for the development of appropriately targeted disease control strategies. We show here that the secreted form of the dengue virus nonstructural protein 1 (NS1) is a pathogen-associated molecular pattern (PAMP). Highly purified NS1 devoid of bacterial endotoxin activity directly activated mouse macrophages and human peripheral blood mononuclear cells (PBMCs) via Toll-like receptor 4 (TLR4), leading to the induction and release of proinflammatory cytokines and chemokines. In an in vitro model of vascular leak, treatment with NS1 alone resulted in the disruption of endothelial cell monolayer integrity. Both NS1-mediated activation of PBMCs and NS1-induced vascular leak in vitro were inhibited by a TLR4 antagonist and by anti-TLR4 antibody treatment. The importance of TLR4 activation in vivo was confirmed by the reduction in capillary leak by a TLR4 antagonist in a mouse model of dengue virus infection. These results pinpoint NS1 as a viral toxin counterpart of the bacterial endotoxin lipopolysaccharide (LPS). Similar to the role of LPS in septic shock, NS1 might contribute to vascular leak in dengue patients, which highlights TLR4 antagonists as a possible therapeutic option.
2015EGFR kinase activity is required for TLR4 signaling and the septic shock response.EMBO RepMammalian Toll-like receptors (TLR) recognize microbial products and elicit transient immune responses that protect the infected host from disease. TLR4--which signals from both plasma and endosomal membranes--is activated by bacterial lipopolysaccharides (LPS) and induces many cytokine genes, the prolonged expression of which causes septic shock in mice. We report here that the expression of some TLR4-induced genes in myeloid cells requires the protein kinase activity of the epidermal growth factor receptor (EGFR). EGFR inhibition affects TLR4-induced responses differently depending on the target gene. The induction of interferon-β (IFN-β) and IFN-inducible genes is strongly inhibited, whereas TNF-α induction is enhanced. Inhibition is specific to the IFN-regulatory factor (IRF)-driven genes because EGFR is required for IRF activation downstream of TLR--as is IRF co-activator β-catenin--through the PI3 kinase/AKT pathway. Administration of an EGFR inhibitor to mice protects them from LPS-induced septic shock and death by selectively blocking the IFN branch of TLR4 signaling. These results demonstrate a selective regulation of TLR4 signaling by EGFR and highlight the potential use of EGFR inhibitors to treat septic shock syndrome.
2015Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction.J Cell Mol MedIt remains unclear whether and how cardiomyocytes contribute to the inflammation in chronic heart failure (CHF). We recently reviewed the capacity of cardiomyocytes to initiate inflammation, by means of expressing certain immune receptors such as toll-like receptors (TLRs) that respond to pathogen- and damage-associated molecular patterns (PAMP and DAMP). Previous studies observed TLR4-mediated inflammation within days of myocardial infarction (MI). This study examined TLR4 expression and function in cardiomyocytes of failing hearts after 4 weeks of MI in rats. The increases of TLR4 mRNA and proteins, as well as inflammatory cytokine production, were observed in both the infarct and remote myocardium. Enhanced immunostaining for TLR4 was observed in cardiomyocytes but not infiltrating leucocytes. The injection of lentivirus shRNA against TLR4 into the infarcted heart decreased inflammatory cytokine production and improved heart function in vivo. Accordingly, in cardiomyocytes isolated from CHF hearts, increases of TLR4 mRNA and proteins were detected. More robust binding of TLR4 with lipopolysaccharide (LPS), a PAMP ligand for TLR4, and heat shock protein 60 (HSP60), a DAMP ligand for TLR4, was observed in CHF cardiomyocytes under a confocal microscope. The maximum binding capacity (Bmax ) of TLR4 was increased for LPS and HSP60, whereas the binding affinity (Kd) was not significantly changed. Furthermore, both LPS and HSP60 induced more robust production of inflammatory cytokines in CHF cardiomyocytes, which was reduced by TLR4-blocking antibodies. We conclude that the expression, ligand-binding capacity and pro-inflammatory function of cardiomyocyte TLR4 are up-regulated after long-term MI, which promote inflammation and exacerbate heart failure.
2016An in silico approach towards the identification of novel inhibitors of the TLR-4 signaling pathway.J Biomol Struct DynPrecise functioning and fine-tuning of Toll-like receptor 4 (TLR4) signaling is a critical requirement for the smooth functioning of the innate immune system, since aberrant TLR4 activation causes excessive production of pro-inflammatory cytokines and interferons. This can result in life threatening conditions such as septic shock and other inflammatory disorders. The TRIF-related adaptor molecule (TRAM) adaptor protein is unique to the TLR4 signaling pathway and abrogation of TRAM-mediated TLR4 signaling is a promising strategy for developing therapeutics aimed at disrupting TRAM interactions with other components of the TLR4 signaling complex. The VIPER motif from the vaccinia virus-producing protein, A46 has been reported to disrupt TRAM-TLR4 interactions. We have exploited this information, in combination with homology modeling and docking approaches, to identify a potential binding site on TRAM lined by the BB loop and αC helix. Virtual screening of commercially available small molecules targeting the binding site enabled to short-list 12 small molecules to abrogate TRAM-mediated TLR4 signaling. Molecular dynamics and molecular mechanics calculations have been performed for the analysis of these receptor-ligand interactions.
2015Whole-body vibration improves the anti-inflammatory status in elderly subjects through toll-like receptor 2 and 4 signaling pathways.Mech Ageing DevRegular physical exercise has anti-inflammatory effects in elderly subjects. Yet, the inflammatory responses after whole body vibration (WBV) training, a popular exercise paradigm for the elderly, remain to be elucidated. This study assessed the effects of WBV training on the inflammatory response associated with toll-like receptors (TLRs) signaling pathways. Twenty-eight subjects were randomized to a training group (TG) or a control group (CG). TG followed an 8-week WBV training program. Blood samples were obtained before and after the training period in both groups. Peripheral blood mononuclear cells were isolated, and mRNA and protein levels of makers involved in the TLR2/TLR4 myeloid differentiation primary response gen 88 (MyD88) and TIR domain-containing adaptor inducing interferon (TRIF)-dependent pathways were analyzed. Plasma TNFα and C-reactive protein levels were also assessed. The WBV program reduced protein expression of TLR2, TLR4, MyD88, p65, TRIF and heat shock protein (HSP) 60, while HSP70 content increased. IL-10 mRNA level and protein concentration were upregulated, and TNFα protein content decreased, after WBV training. Plasma concentration of C-reactive protein and TNFα decreased in the TG. The current data suggest WBV may improve the anti-inflammatory status of elderly subjects through an attenuation of MyD88- and TRIF-dependent TLRs signaling pathways.
2015Heat shock protein 90 inhibition abrogates TLR4-mediated NF-κB activity and reduces renal ischemia-reperfusion injury.Sci RepRenal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury. Toll-like receptor 4 (TLR4) mediates sterile inflammation following renal IRI. Heat shock protein 90 (Hsp90) inhibition is a potential strategy to reduce IRI, and AT13387 is a novel Hsp90 inhibitor with low toxicity. This study assessed if pre-treatment with AT13387 could reduce renal IRI and established if the mechanism of protection involved a reduction in inflammatory signalling. Mice were pre-treated with AT13387 prior to renal IRI. 24 h later, renal function was determined by serum creatinine, kidney damage by tubular necrosis score, renal TLR4 expression by PCR and inflammation by cytokine array. In vitro, human embryonic kidney cells were co-transfected to express TLR4 and a secreted alkaline phosphatase NF-κB reporter. Cells were pre-treated with AT13387 and exposed to endotoxin-free hyaluronan to stimulate sterile TLR4-specific NF-κB inflammatory activation. Following renal IRI, AT13387 significantly reduced serum creatinine, tubular necrosis, TLR4 expression and NF-κB-dependent chemokines. In vitro, AT13387-treatment resulted in breakdown of IκB kinase, which abolished TLR4-mediated NF-κB activation by hyaluronan. AT13387 is a new agent with translational potential that reduces renal IRI. The mechanism of protection may involve breakdown of IκB kinase and repression of TLR4-mediated NF-κB inflammatory activity.
2015Suppressor of Cytokine Signaling 3 Is an Inducible Host Factor That Regulates Virus Egress during Ebola Virus Infection.J VirolEbola virus (EBOV) initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal EBOV infections. The VP40 matrix protein is a key viral structural protein that is critical for virion egress. Physical and functional interactions between VP40 and host proteins such as Tsg101 and Nedd4 facilitate efficient release of VP40-driven virus-like particles (VLPs) and infectious virus. Here, we show that host suppressor of cytokine signaling 3 (SOCS3) can also bind to EBOV VP40, leading to enhanced ubiquitinylation and egress of VP40. Indeed, titers of infectious EBOV derived from SOCS3 knockout mouse embryonic fibroblasts (MEFs) were significantly reduced compared to those from wild-type (WT) MEFs at 24 and 48 h postinfection. Importantly, this reduced virus yield could be rescued back to WT levels by exogenously expressing SOCS3. Lastly, we show that SOCS3 expression is induced by EBOV glycoprotein (GP) expression and that VLPs containing EBOV VP40 and GP induced production of proinflammatory cytokines, which induced SOCS3 for negative-feedback regulation. These data indicate that host innate immune protein SOCS3 may play an important role in budding and pathogenesis of EBOV.The VP40 matrix protein is a key structural protein critical for Ebola virus budding. Physical and functional interactions between VP40 and host proteins such as Tsg101 and Nedd4 facilitate efficient release of VLPs and infectious virus. We reported that host TLR4 is a sensor for Ebola GP on VLPs and that the resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines. Host SOCS3 regulates the innate immune response by controlling and limiting the proinflammatory response through negative-feedback inhibition of cytokine receptors. We present evidence that Ebola virus VLPs stimulate induction of SOCS3 as well as proinflammatory cytokines, and that expression of human SOCS3 enhances budding of Ebola VLPs and infectious virus via a mechanism linked to the host ubiquitinylation machinery.
2015Red cabbage anthocyanins as inhibitors of lipopolysaccharide-induced oxidative stress in blood platelets.Int J Biol MacromolLPS is a Gram-negative bacteria endotoxin, which is an important pro-inflammatory agent. Blood platelets take part both in inflammatory processes and in pathogenesis of septic shock following accumulation of LPS. As a platelet agonist LPS causes the intraplatelet overproduction of ROS/RNS that are responsible for adverse modifications in the structure of platelet compounds being associated with a development of platelet-dependent diseases. Existing evidence suggests that anthocyanins (ATH) are able to protect the circulatory system. The antioxidative properties of ATH are believed to be mainly responsible for their positive health effects. The main goal of the present in vitro study was to investigate the potential protective properties of red cabbage ATH against oxidative damage induced by LPS in blood platelets. Exposure of platelets to LPS resulted in carbonyl group increase, 3-nitrotyrosine formation, lipid peroxidation and O2(•-) generation. We have shown that ATH extract effectively decreased oxidative stress induced by LPSs. The in silico analysis demonstrated that both cyanin and LPS were located at the same region of human TLR4-MD-2 complex. Our findings suggest that there could be two-way ATH platelet protection mechanism, by their antioxidant properties and directly by binding with TLRs.
2015Toll-like receptor 4 confers inflammatory response to Suilysin.Front MicrobiolStreptococcus suis serotype 2 (SS2) is an emerging human pathogen worldwide. A large outbreak occurred in the summer of 2005 in China. Serum samples from this outbreak revealed that levels of the main proinflammatory cytokines were significantly higher in patients with streptococcal toxic-shock-like syndrome (STSLS) than in patients with meningitis only. However, the mechanism underlying the cytokine storm in STSLS caused by SS2 remained unclear. In this study, we found that suilysin (SLY) is the main protein inflammatory stimulus of SS2 and that native SLY (nSLY) stimulated cytokines independently of its haemolytic ability. Interestingly, a small amount of SLY (Å Mol/L) induced strong, long-term TNF-α release from human PBMCs. We also found that nSLY stimulated TNF-α in wild-type macrophages but not in macrophages from mice that carried a spontaneous mutation in TLR4 (P712H). We demonstrated for the first time that SLY stimulates immune cells through TLR4. In addition, the Myd88 adaptor-p38-MAPK pathway was involved in this process. The present study suggested that the TLR4-dependent inflammatory responses induced by SLY in host might contribute to the STSLS caused by SS2 and that p38-MAPK could be used as a target to control the release of excess TNF-α induced by SS2.
2015Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia.J Biol ChemLung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium.
2015DLK1 is a novel inflammatory inhibitor which interferes with NOTCH1 signaling in TLR-activated murine macrophages.Eur J ImmunolDelta-like protein 1 (DLK1) is a noncanonical ligand that inhibits NOTCH1 receptor activity and regulates multiple differentiation processes. In macrophages, NOTCH signaling increases TLR-induced expression of key pro-inflammatory mediators. We have investigated the role of DLK1 in macrophage activation and inflammation using Dlk1-deficient mice and Raw 264.7 cells overexpressing Dlk1. In the absence of Dlk1, NOTCH1 expression is increased and the activation of macrophages with TLR3 or TLR4 agonists leads to higher production of IFN-β and other pro-inflammatory cytokines, including TNF-α, IL-12, and IL-23. The expression of key proteins involved in IFN-β signaling, such as IRF3, IRF7, IRF1, or STAT1, as well as cRel, or RelB, which are responsible for the generation of IL-12 and IL-23, is enhanced in Dlk1 KO macrophages. Consistently, Dlk1 KO mice are more sensitive to LPS-induced endotoxic shock. These effects seem to be mediated through the modulation of NOTCH1 signaling. TLR4 activation reduces DLK1 expression, whereas increases NOTCH1 levels. In addition, DLK1 expression diminishes during differentiation of human U937 cells to macrophages. Overall, these results reveal a novel role for DLK1 as a regulator of NOTCH-mediated, pro-inflammatory macrophage activation, which could help to ensure a baseline level preventing constant tissue inflammation.
2015MPLA shows attenuated pro-inflammatory properties and diminished capacity to activate mast cells in comparison with LPS.AllergyMonophosphoryl lipid A (MPLA), a nontoxic TLR4 ligand derived from lipopolysaccharide (LPS), is used clinically as an adjuvant in cancer, hepatitis, and malaria vaccines and in allergen-specific immunotherapy. Nevertheless, its cell-activating effects have not been analyzed in a comprehensive direct comparison including a wide range of different immune cells. Therefore, the objective of this study was the side-by-side comparison of the immune-modulating properties of MPLA and LPS on different immune cells.Immune-activating properties of MPLA and LPS were compared in human monocytes and mast cells (MCs), a mouse endotoxin shock model (ESM), and mouse bone marrow (BM)-derived myeloid dendritic cells (mDCs), T cells (TCs), B cells, and MCs.In a mouse in vivo ESM and a human ex vivo monocyte activation test (MAT), MPLA induced the same cytokine secretion pattern as LPS (ESM: IL-6, IL-12, TNF-α; MAT: IL-1β, IL-6, TNF-α), albeit at lower levels. Mouse mDCs and ex vivo isolated B cells stimulated with MPLA required a higher threshold to induce TRIF-dependent cytokine secretion (IL-1β, IL-6, IL-10, and TNF-α) than did LPS-stimulated cells. In mDC:DO11.10 CD4 TC cocultures, stimulation with MPLA, but not with LPS, resulted in enhanced OVA-specific IL-4 and IL-5 secretion from DO11.10 CD4 TCs. Unexpectedly, in both human and mouse MCs, MPLA, unlike LPS, did not elicit secretion of pro-inflammatory cytokines.Compared to LPS, MPLA induced a qualitatively similar, but less potent pro-inflammatory immune response, but was unable to activate human or mouse MCs.
2015Asparagine attenuates hepatic injury caused by lipopolysaccharide in weaned piglets associated with modulation of Toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling and their negative regulators.Br J NutrPro-inflammatory cytokines play a key role in many models of hepatic damage. In addition, asparagine (Asn) plays an important role in immune function. We aimed to investigate whether Asn could attenuate lipopolysaccharide (LPS)-induced liver damage. Forty-eight castrated barrows were allotted to four groups including: (1) non-challenged control; (2) LPS-challenged control; (3) LPS + 0.5% Asn; and (4) LPS + 1.0% Asn. After 19 d feeding with control, 0.5 or 1.0% Asn diets, pigs were injected with LPS or saline. Blood and liver samples were obtained at 4 h (early stage) and 24 h (late stage) post-injection. Asn alleviated liver injury, indicated by reduced serum aspartate aminotransferase and alkaline phosphatase activities linearly and quadratically; it increased claudin-1 protein expression linearly and quadratically at 24 h, and less severe liver morphological impairment at 4 or 24 h. In addition, Asn decreased mRNA expression of TNF-α and heat shock protein 70 (HSP70) linearly and quadratically at 4 h; it increased TNF-α mRNA expression, and HSP70 protein expression linearly and quadratically at 24 h. Moreover, Asn increased inducible NO synthase activity linearly and quadratically. Finally, Asn down-regulated the mRNA expression of Toll-like receptor 4 (TLR4) signalling molecules (TLR4, IL-1 receptor-associated kinase 1 (IRAK1), TNF-α receptor-associated factor 6), nucleotide-binding oligomerisation domain protein (NOD) signalling molecules (NOD1, NOD2 and their adaptor molecule receptor-interacting serine/threonine-protein kinase 2 (RIPK2)), and NF-κB p65 linearly or quadratically at 4 h. Oppositely, Asn up-regulated mRNA expressions of TLR4 and NOD signalling molecules (TLR4, myeloid differentiation factor 88, IRAK1, NOD2 and RIPK2), and their negative regulators (radioprotective 105, single Ig IL-1R-related molecule, Erbb2 interacting protein and centaurin β1) linearly or quadratically at 24 h. These results indicate that, in early and late stages of LPS challenge, Asn improves liver integrity and exerts different regulatory effects on mRNA expression of TLR4 and NOD signalling molecules.
2015MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis.Br J PharmacolMyeloid differentiation 2 (MD-2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS-induced overexpression of TNF-α and IL-6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD-2 and inhibits the interaction and signalling transduction of LPS-TLR4/MD-2.The binding affinity of L6H21 to MD-2 protein was analysed using computer docking, surface plasmon resonance analysis, elisa, fluorescence measurements and flow cytometric analysis. The effects of L6H21 on MAPK and NF-κB signalling were determined using EMSA, fluorescence staining, Western blotting and immunoprecipitation. The anti-inflammatory effects of L6H21 were confirmed using elisa and RT-qPCR in vitro. The anti-inflammatory effects of L6H21 were also evaluated in septic C57BL/6 mice.Compound L6H21 inserted into the hydrophobic region of the MD-2 pocket, forming hydrogen bonds with Arg(90) and Tyr(102) in the MD-2 pocket. In vitro, L6H21 subsequently suppressed MAPK phosphorylation, NF-κB activation and cytokine expression in macrophages stimulated by LPS. In vivo, L6H21 pretreatment improved survival, prevented lung injury, decreased serum and hepatic cytokine levels in mice subjected to LPS. In addition, mice with MD-2 gene knockout were universally protected from the effects of LPS-induced septic shock.Overall, this work demonstrated that the new chalcone derivative, L6H21, is a potential candidate for the treatment of sepsis. More importantly, the data confirmed that MD-2 is an important therapeutic target for inflammatory disorders.
2015[Pneumococcal HSP40 induces the immune response in mouse macrophages via p38MAPK and JNK signaling pathways].Xi Bao Yu Fen Zi Mian Yi Xue Za ZhiTo investigate the mechanism of immune response in mouse macrophage induced by Pneumococcal heat shock protein 40 (HSP40).After recombinant HSP40 (rHSP40) underwent expression detection and purification, lipopolysaccharide (LPS) was removed from it. Then rHSP40 was used to stimulate bone marrow derived macrophages (BMDMs) derived from C57BL/6 wild-type mice. The mRNA levels of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), IL-1β, IL-23p19, IL-12p40, IL-12p35 and IL-10 in BMDMs were determined by reverse transcription PCR; the expressions of TNF-α, IL-6 and IL-12p40 were measured by ELISA. After stimulated by rHSP40, the levels of TNF-α and IL-6 expressed by wide-type, TLR2-/- and TLR4-/- BMDMs were detected by ELISA. The effects of the pretreatment of mitogen-activated protein kinases (MAPK) inhibitors on the secretion of TNF-α and IL-6 induced by rHSP40 were also evaluated by ELISA in BMDMs. The phosphorylation levels of p38MAPK and c-Jun N-terminal kinase (JNK) were determined by Western blotting.The rHSP40 protein reached a purity of more than 90%. It significantly enhanced the phosphorylation levels of p38MAPK and JNK as well as the expressions of TNF-α and IL-6. The p38MAPK and JNK inhibitors significantly suppressed the expressions of TNF-α and IL-6. The expressions of TNF-α and IL-6 in TLR4-/- BMDMs significantly decreased compared with wide-type BMDMs.HSP40-induced immune response of mouse macrophages is regulated by p38MAPK and JNK signaling pathways, and this induction process depends on TLR4.
2015HMGB1 Neutralizing Antibody Attenuates Cardiac Injury and Apoptosis Induced by Hemorrhagic Shock/Resuscitation in Rats.Biol Pharm BullHigh-mobility group box 1 (HMGB1) and its natural receptor, Toll-like receptor-4 (TLR4), are involved in various infectious or noninfectious diseases including hemorrhagic shock. HMGB1 neutralizing antibody (anti-HMGB1 monoclonal antibody (mAb)) treatment was shown to alleviate ischemia-reperfusion injury effectively. The aim of this study was to explore whether and by what mechanisms anti-HMGB1 mAb attenuates hemorrhagic shock and resuscitation (HS/R)-induced cardiac injury. Employing rat HS/R models, we found that anti-HMGB1 mAb treatment improved HS/R-induced cardiac function deterioration, attenuated cardiac enzyme elevation, improved ATP loss, and protected cardiac tissue. Anti-HMGB1 mAb also inhibited the production of inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Moreover, anti-HMGB1 mAb reduced apoptotic responses by suppressing activated caspase-3 and reversing apoptotic gene expression of capase-3, Bax, and Bcl-2 in rat cardiac tissue. Moreover, anti-HMGB1 mAb decreased HS/R-induced HMGB1 and TLR4 expression elevation. We further confirmed that anti-HMGB1 mAb inhibited lipopolysaccharide-activated HGMB1 and TLR4 expression and decreased inflammatory factors IL-1β, IL-6, and TNF-α at the cellular level. It was concluded that anti-HMGB1 mAb treatment protects rats from cardiac injury induced by HS/R, and the beneficial effects may be related to its inhibitory effects on the HMGB1-TLR4 axis.
2015Effect of BML-111 on the intestinal mucosal barrier in sepsis and its mechanism of action.Mol Med Rep5(S),6(R)-7-trihydroxymethyl heptanoate (BML-111) is an lipoxin A4 receptor agonist, which modulates the immune response and attenuates hemorrhagic shock-induced acute lung injury. However, the role of BML-111 in sepsis and in the intestinal mucosal barrier are not well understood. Therefore, the present study was designed to investigate the effect of BML-111 on the intestinal mucosal barrier in a rat model of sepsis. Furthermore, the molecular mechanism of action of BML-111 was evaluated. The cecal ligation and puncture-induced rat model of sepsis was constructed, and BML-111 was administered at three different doses. The results revealed that BML-111 suppressed the elevation of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6, while enhancing the elevation of the anti-inflammatory cytokine transforming growth factor-β in the intestine. In addition, BML-111 significantly upregulated rat defensin-5 mRNA expression levels and downregulated the induction of cell apoptosis as well as caspase-3 activity in the intestine. All these results demonstrated that BML-111 exerted protective effects on the intestinal mucosal barrier in sepsis. Further, it was indicated that alterations in the expression of toll-like receptor (TLR)2 and TLR4 may be one of the molecular mechanisms underlying the protective effect of BML-111. The present study therefore suggested that BML-111 may be a novel therapeutic agent for sepsis.
2015Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats.Braz J Med Biol ResPosthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.
2015Oxidative Stress Increases Surface Toll-Like Receptor 4 Expression in Murine Macrophages Via Ceramide Generation.ShockMultiorgan failure is a major cause of late mortality following trauma. Oxidative stress generated during shock/resuscitation contributes to tissue injury by priming the immune system for an exaggerated response to subsequent inflammatory stimuli, such as lipopolysaccharide (LPS). We recently reported that oxidative stress causes rapid recruitment of the LPS receptor Toll-like receptor 4 (TLR4) to membrane lipid rafts, thus increasing LPS responsiveness and cellular priming. We hypothesized that activation of Src family kinases by oxidants might contribute to these events. We utilized microscopy, flow cytometry, Western blotting, and thin-layer chromatography methods. Using hydrogen peroxide in vitro and hemorrhagic shock/resuscitation in vivo, oxidant-induced TLR4 translocation in macrophages occurred in an Src-dependent manner. Approaches supporting this conclusion included pharmacologic inhibition of the Src family kinases by PP2, Src inhibition by a molecular approach of cell transfection with Csk, and genetic inhibition of all Src kinases relevant to the monocyte/macrophage lineage in hckfgrlyn triple knockout mice. To evaluate the upstream molecules involved in Src activation, we evaluated the ability of oxidative stress to activate the bioactive lipid molecule ceramide. Oxidants induced ceramide generation in macrophages both in vitro and in vivo, an effect that appears to be due to activation of the acid sphingomyelinase. Using pharmacological approaches, ceramide was shown to be both necessary and sufficient to mediate TLR4 translocation to the plasma membrane in an Src-dependent manner. This study identifies a hierarchy of signaling molecules following oxidative stress that might represent novel targets for therapy in critical illness and organ injury.
2015Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway.Mol NeurodegenerToll-like receptors (TLR) constitute a highly conserved class of receptors through which the innate immune system responds to both pathogen- and host-derived factors. Although TLRs are involved in a wide range of central nervous system (CNS) disorders including neurodegenerative diseases, the molecular events leading from CNS injury to activation of these innate immune receptors remain elusive. The stress protein heat shock protein 60 (HSP60) released from injured cells is considered an endogenous danger signal of the immune system. In this context, the main objective of the present study was to investigate the impact of extracellular HSP60 on the brain in vivo.We show here that HSP60 injected intrathecally causes neuronal and oligodendrocyte injury in the CNS in vivo through TLR4-dependent signaling. Intrathecal HSP60 results in neuronal cell death, axonal injury, loss of oligodendrocytes, and demyelination in the cerebral cortex of wild-type mice. In contrast both mice lacking TLR4 and the TLR adaptor molecule MyD88 are protected against deleterious effects induced by HSP60. In contrast to the exogenous TLR4 ligand, lipopolysaccharide, intrathecal HSP60 does not induce such a considerable inflammatory response in the brain. In the CNS, endogenous HSP60 is predominantly expressed in neurons and released during brain injury, since the cerebrospinal fluid (CSF) from animals of a mouse stroke model contains elevated levels of this stress protein compared to the CSF of sham-operated mice.Our data show a direct toxic effect of HSP60 towards neurons and oligodendrocytes in the CNS. The fact that these harmful effects involve TLR4 and MyD88 confirms a molecular pathway mediated by the release of endogenous TLR ligands from injured CNS cells common to many forms of brain diseases that bi-directionally links CNS injury and activation of the innate immune system to neurodegeneration and demyelination in vivo.
2015Plasma exosomes protect the myocardium from ischemia-reperfusion injury.J Am Coll CardiolExosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury.This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved.The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors.Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection.Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.
2015Caspase-11: arming the guards against bacterial infection.Immunol RevAs a front line of defense against pathogenic microbes, our body employs a primitive, yet highly sophisticated and potent innate immune response pathway collectively referred to as the inflammasome. Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury and mounting a coordinated molecular defense. For example, Gram-negative bacteria are specifically detected via a surveillance mechanism that involves activation of extracellular receptors such as Toll-like receptors (TLRs) followed by intracellular recognition and activation of pathways such as caspase-11 (caspase-4/5 in humans). Importantly, lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a strong trigger of these pathways. Extracellular LPS primarily stimulates TLR4, which can serve as a priming signal for expression of inflammasome components. Intracellular LPS can then trigger caspase-11-dependent inflammasome activation in the cytoplasm. Here, we briefly review the burgeoning caspase-11-dependent non-canonical inflammasome field, focusing mainly on the innate sensing of LPS.
2016Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus.J Oral Pathol MedThe objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP).Initially, immunohistochemistry was used to determine TLR expression in 12 formalin-fixed archival OLP tissues with 12 non-specifically inflamed oral tissues as controls. RNA was isolated from further fresh samples of OLP and non-specifically inflamed oral tissue controls (n = 6 for both groups) and used in qRT(2)-PCR focused arrays to determine the expression of TLRs and associated signalling pathway genes. Genes with a statistical significance of ±two-fold regulation (FR) and a P-value < 0.05 were considered as significantly regulated.Significantly more TLR4(+) cells were present in the inflammatory infiltrate in OLP compared with the control tissues (P < 0.05). There was no statistically significant difference in the numbers of TLR2(+) and TLR8(+) cells between the groups. TLR3 was significantly downregulated in OLP (P < 0.01). TLR8 was upregulated in OLP, but the difference between the groups was not statistically significant. The TLR-mediated signalling-associated protein genes MyD88 and TIRAP were significantly downregulated (P < 0.01 and P < 0.05), as were IRAK1 (P < 0.05), MAPK8 (P < 0.01), MAP3K1 (P < 0.05), MAP4K4 (P < 0.05), REL (P < 0.01) and RELA (P < 0.01). Stress proteins HMGB1 and the heat shock protein D1 were significantly downregulated in OLP (P < 0.01).These findings suggest a downregulation of TLR-mediated signalling pathways in OLP lesions.
2015Intestinal Epithelial TLR-4 Activation Is Required for the Development of Acute Lung Injury after Trauma/Hemorrhagic Shock via the Release of HMGB1 from the Gut.J ImmunolThe mechanisms that lead to the development of remote lung injury after trauma remain unknown, although a central role for the gut in the induction of lung injury has been postulated. We hypothesized that the development of remote lung injury after trauma/hemorrhagic shock requires activation of TLR4 in the intestinal epithelium, and we sought to determine the mechanisms involved. We show that trauma/hemorrhagic shock caused lung injury in wild-type mice, but not in mice that lack TLR4 in the intestinal epithelium, confirming the importance of intestinal TLR4 activation in the process. Activation of intestinal TLR4 after trauma led to increased endoplasmic reticulum (ER) stress, enterocyte apoptosis, and the release of circulating HMGB1, whereas inhibition of ER stress attenuated apoptosis, reduced circulating HMGB1, and decreased lung injury severity. Neutralization of circulating HMGB1 led to reduced severity of lung injury after trauma, and mice that lack HMGB1 in the intestinal epithelium were protected from the development of lung injury, confirming the importance of the intestine as the source of HMGB1, whose release of HMGB1 induced a rapid protein kinase C ζ-mediated internalization of surface tight junctions in the pulmonary epithelium. Strikingly, the use of a novel small-molecule TLR4 inhibitor reduced intestinal ER stress, decreased circulating HMGB1, and preserved lung architecture after trauma. Thus, intestinal epithelial TLR4 activation leads to HMGB1 release from the gut and the development of lung injury, whereas strategies that block upstream TLR4 signaling may offer pulmonary protective strategies after trauma.
2015Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury.Tissue BarriersEndothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review.
2015Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by lipopolysaccharide in vitro and in vivo.J ImmunolTLR4, the innate immunity receptor for bacterial endotoxins, plays a pivotal role in the induction of inflammatory responses. There is a need to develop molecules that block either activation through TLR4 or the downstream signaling pathways to inhibit the storm of inflammation typically elicited by bacterial LPS, which is a major cause of the high mortality associated with bacterial sepsis. We report in this article that a single i.p. injection of 15 μg fatty acid binding protein from Fasciola hepatica (Fh12) 1 h before exposure to LPS suppressed significantly the expression of serum inflammatory cytokines in a model of septic shock using C57BL/6 mice. Because macrophages are a good source of IL-12p70 and TNF-α, and are critical in driving adaptive immunity, we investigated the effect of Fh12 on the function of mouse bone marrow-derived macrophages (bmMΦs). Although Fh12 alone did not induce cytokine expression, it significantly suppressed the expression of IL-12, TNF-α, IL-6, and IL-1β cytokines, as well as inducible NO synthase-2 in bmMΦs, and also impaired the phagocytic capacity of bmMΦs. Fh12 had a limited effect on the expression of inflammatory cytokines induced in response to other TLR ligands. One mechanism used by Fh12 to exert its anti-inflammatory effect is binding to the CD14 coreceptor. Moreover, it suppresses phosphorylation of ERK, p38, and JNK. The potent anti-inflammatory properties of Fh12 demonstrated in this study open doors to further studies directed at exploring the potential of this molecule as a new class of drug against septic shock or other inflammatory diseases.
Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients.J Diabetes ComplicationsHeat shock proteins (HSPs) are inducible stress proteins expressed in cells exposed to stress. HSPs promote wound healing by recruitment of dermal fibroblasts to the site of injury and bring about protein homeostasis. Diabetic wounds are hard to heal and inadequate HSPs may be important contributors in the etiology of diabetic foot ulcers (DFU).To analyze the differential expression of HSPs and their downstream molecules in human diabetic wounds compared to control wounds.Expressional levels of HSP27, HSP47 and HSP70 and their downstream molecules like TLR4, p38-MAPK were seen in biopsies from 101 human diabetic wounds compared to 8 control subjects without diabetes using RT-PCR, western blot and immunohistochemistry.Our study suggested a significant down regulation of HSP70, HSP47 and HSP27 (p value=<0.001 for HSP70; p value=0.007 for HSP47; p value=0.007 for HSP27) in DFU along with their downstream molecules TLR4 and p38-MAPK (p value=0.006 for p38-MAPK; p value=0.02 for TLR4). HSP70 levels were significantly lower in male subjects and their levels increased significantly with the grades of wound on Wagner's scale. Infection status of the wounds was found to be significantly associated with the increased levels of HSP70 and HSP27 in infected diabetic wounds.Our study demonstrates that the down regulation of HSPs in diabetic wounds is associated with wound healing impairment in T2DM subjects.
2015Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain.Prog Mol Biol Transl SciDamage-associated molecular pattern molecules (DAMPs) are endogenous molecules that are constitutively expressed and released upon tissue damage, resulting in activation of the immune system. In the absence of injury or infection, DAMPs play important intracellular roles. However, once released subsequent to cell damage or cell stress, DAMPs promote activation of innate immune cells and recruitment and activation of antigen-presenting cells engaged in host defense and tissue repair. This process involves pattern recognition receptors, such as the Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE). Several of the TLRs and RAGE have been implicated to play key roles not only in the detection of injury but also in pain signaling. Pain-like behavior is reduced in TLR2- and TLR4-deficient mice, and after injection of TLR2-, TLR4-, and RAGE antagonists in experimental models of nerve injury, arthritis, and bone cancer pain. This suggests that the pathological processes in these models are associated with release of endogenous TLR and RAGE ligands, and further that DAMPs play an important role in persistent pain. There is now a rapidly growing list of DAMPs in the literature and here we give an overview of DAMPs that have been associated with nociceptive signaling.
2015Heat-Shock Proteins 70 Induce Pro-Inflammatory Maturation Program in Decidual CD1a(+) Dendritic Cells.Am J Reprod ImmunolThe aim of the study was to assess possible binding of a mixture of constitutive Hsc70 and inducible Hsp70 forms (HSP70) to Toll-like receptor (TLR) 4 and CD91 receptors on decidual CD1a(+) dendritic cells (DCs) and their influence on DCs maturation status.Immunohistology and immunofluorescence of paraffin-embedded first trimetester and term pregnancy decidua were performed together with flow cytometry detection of antigens in DCs after stimulation of decidual mononuclear cells with HSP70.Hsc70 and Hsp70 labeling revealed intracellular and nuclear staining in trophoblast cells. The numbers of Hsc70(+) and Hsp70(+) cells of decidual tissue were higher in early pregnancy decidua than in decidua at term. HSP70 binds CD91 and TLR4 receptors on CD1a(+) DCs and increased the expression of CD83, HLA-DR, CD80, and CD86, but decreased CC receptor (CCR) 5. HSP70 increased CC ligand (CCL) 3 and CCL22. HSP70 in the concentration of 1 μg/mL increased the percentage of interferon-γ and interleukin (IL)-15-expressing cells over the cells expressing IL-4.HSP70 binds CD91 and TLR4 on decidual CD1a(+) DCs, causes their maturation, and increases IL-15 in the context of Th1 cytokine/chemokine domination, which could support immune response harmful for ongoing pregnancy.
2015LPS stimulates and Hsp70 down-regulates TLR4 to orchestrate differential cytokine response of culture-differentiated innate memory CD8(+) T cells.CytokineNonconventional innate memory CD8(+) T cells characteristically expressing CD44, CD122, eomesodermin (Eomes) and promyelocytic leukemia zinc finger (PLZF) were derived in culture from CD4(+)CD8(+) double positive (DP) thymocytes of normal BALB/c and C57BL/6 mice. These culture-differentiated cells constitutively express toll-like receptor (TLR)4 and release interferon (IFN)-γ and interleukin (IL)-10. We show the TLR4-ligand lipopolysaccharide (LPS) stimulate the TLR and up-regulate IFN-γ skewing the cells towards type 1 polarization. In presence of LPS these cells also express suppressor of cytokine signaling (SOCS)1 and thus suppress IL-10 expression. In contrast, heat shock protein (Hsp)70 down-regulated TLR4 augmenting the anti-inflammatory cytokine IL-10. In association with IL-10 release IFN-γ was abrogated. The programmed cell death (PD)-1 mostly present in regulatory T cells was stimulated in these IL-10 producing cells by Hsp70 and not LPS indicating the cells can be driven to two contrast outcomes by the two TLR4 ligands. Our work provides a scope for in vitro monitoring of CD8(+) T cells to decipher important immune therapeutic option during infection or sepsis.
2015Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.PLoS OneElevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms.
2015Cross-Presentation of the Oncofetal Tumor Antigen 5T4 from Irradiated Prostate Cancer Cells--A Key Role for Heat-Shock Protein 70 and Receptor CD91.Cancer Immunol ResImmune responses contribute to the success of radiotherapy of solid tumors; however, the mechanism of triggering CD8(+) T-cell responses is poorly understood. Antigen cross-presentation from tumor cells by dendritic cells (DC) is a likely dominant mechanism to achieve CD8(+) T-cell stimulation. We established a cross-presentation model in which DCs present a naturally expressed oncofetal tumor antigen (5T4) from irradiated DU145 prostate cancer cells to 5T4-specific T cells. The aim was to establish which immunogenic signals are important in radiation-induced cross-presentation. Radiation (12 Gy) caused G2-M cell-cycle arrest and cell death, increased cellular 5T4 levels, high-mobility protein group-B1 (HMGB1) release, and surface calreticulin and heat-shock protein-70 (Hsp70) expression in DU145 cells. DCs phagocytosed irradiated tumor cells efficiently, followed by upregulation of CD86 on phagocytic DCs. CD8(+) 5T4-specific T cells, stimulated with these DCs, proliferated and produced IFNγ. Inhibition of HMGB1 or the TRIF/MyD88 pathway only had a partial effect on T-cell stimulation. Unlike previous investigators, we found no evidence that DCs carrying Asp299Gly Toll-like receptor-4 (TLR4) single-nucleotide polymorphism had impaired ability to cross-present tumor antigen. However, pretreatment of tumor cells with Hsp70 inhibitors resulted in a highly statistically significant and robust prevention of antigen cross-presentation and CD86 upregulation on DCs cocultured with irradiated tumor cells. Blocking the Hsp70 receptor CD91 also abolished cross-presentation. Together, the results from our study demonstrate that irradiation induces immunologically relevant changes in tumor cells, which can trigger CD8(+) T-cell responses via a predominantly Hsp70-dependent antigen cross-presentation process.
2015Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells.PLoS OneSepsis, a devastating and often lethal complication of severe infection, is characterized by fever and dysregulated inflammation. While infections activate the inflammatory response in part through Toll-like receptors (TLRs), fever can partially activate the heat shock response with generation of heat shock proteins (HSPs). Since extracellular HSPs, especially HSP70 (eHSP70), are proinflammatory TLR agonists, we investigated how exposure to the TLR4 agonist, bacterial lipopolysaccharide (LPS) and febrile range hyperthermia (FRH; 39.5°C) modify HSP70 expression and extracellular release. Using differentiated THP1 cells, we found that concurrent exposure to FRH and LPS as well as TLR2 and TLR3 agonists synergized to activate expression of inducible HSP72 (HSPA1A) mRNA and protein via a p38 MAP kinase-requiring mechanism. Treatment with LPS for 6 h stimulated eHSP70 release; levels of eHSP70 released at 39.5°C were higher than at 37°C roughly paralleling the increase in intracellular HSP72 in the 39.5°C cells. By contrast, 6 h exposure to FRH in the absence of LPS failed to promote eHSP70 release. Release of eHSP70 by LPS-treated THP1 cells was inhibited by glibenclamide, but not brefeldin, indicating that eHSP70 secretion occurred via a non-classical protein secretory mechanism. Analysis of eHSP70 levels in exosomes and exosome-depleted culture supernatants from LPS-treated THP1 cells using ELISA demonstrated similar eHSP70 levels in unfractionated and exosome-depleted culture supernatants, indicating that LPS-stimulated eHSP70 release did not occur via the exosome pathway. Immunoblot analysis of the exosome fraction of culture supernatants from these cells showed constitutive HSC70 (HSPA8) to be the predominant HSP70 family member present in exosomes. In summary, we have shown that LPS stimulates macrophages to secrete inducible HSP72 via a non-classical non-exosomal pathway while synergizing with FRH exposure to increase both intracellular and secreted levels of inducible HSP72. The impact of increased macrophage intracellular HSP70 levels and augmented secretion of proinflammatory eHSP70 in the febrile, infected patient remains to be elucidated.
2015Expression of NK cell and monocyte receptors in critically ill patients--potential biomarkers of sepsis.Scand J ImmunolSepsis is characterized by activation of both the innate and adaptive immune systems as a response to infection. During sepsis, the expression of surface receptors expressed on immune competent cells, such as NKG2D and NKp30 on NK cells and TLR4 and CD14 on monocytes, is partly regulated by pro- and anti-inflammatory mediators. In this observational study, we aimed to explore whether the expression of these receptors could be used as diagnostic and/or prognostic biomarkers in sepsis. Patients with severe sepsis or septic shock (n = 21) were compared with critically ill non-septic patients (n = 15). Healthy volunteers (n = 15) served as controls. To elucidate variations over time, all patients were followed for 4 days. Cell surface expression of NKG2D, NKp30, TLR4 and CD14 and serum levels of IL-1β, IL-6, IFN-γ, TNF-α, IL-4 and IL-10 was estimated by flow cytometry. We found that NK cell expression of NKG2D and monocyte expression of CD14 were lower in the septic patients compared with the non-septic patients, both at ICU admission and during the observation period (P < 0.01 for all comparisons). Both at ICU admission, and during the observation period, levels of IL-6 and IL-10 were higher in the septic patients compared with the non-septic patients (P < 0.001 for all comparisons).As both NKG2D and CD14 levels appear to distinguish between septic and non-septic patients, both NKG2D and CD14 may be considered potential diagnostic biomarkers of severe sepsis and septic shock.
2015Protective effects of Sparstolonin B, a selective TLR2 and TLR4 antagonist, on mouse endotoxin shock.CytokineSepsis is characterized by an overwhelming systemic inflammation and multiple organ injury. Toll-like receptors (TLRs) 2 and 4 mediate these inflammatory responses. Sparstolonin B (SsnB), isolated from Chinese herb Scirpus yagara, is a new selective TLR2/4 antagonist. Herein, we report that SsnB inhibited the expression of various inflammatory mediators such as tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-6, and chemokine (C-C motif) ligand 2 (CCL-2) in lipopolysaccharide (LPS)- or Pam3csk4-stimulated macrophages. Moreover, in LPS-stimulated macrophages, the downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) was reversed by SsnB dose-dependently; and SsnB had synergistic inhibitory effects with rosiglitazone, a PPAR-γ agonist, on TNF-α and IL-6 expression in LPS-stimulated macrophages. The effects of SsnB were further evaluated in a mouse endotoxin shock model. When intraperitoneal injected in mice 2 days before or 1-2h after LPS challenge, SsnB attenuated the body temperature reduction and decreased the mortality. SsnB pre-treatment significantly suppressed LPS-induced increase of TNF-α and IL-6 in serum, lungs and livers, and substantially attenuated lung dysfunction in mice. In vivo toxicity test showed that at doses as high as 500 mg/kg, SsnB did not cause death of mice. These results suggest that SsnB protects mice against endotoxin shock by inhibiting production of multiple cytokines and lung dysfunction. In conclusion, our findings indicate that SsnB may be used in the prevention and treatment of endotoxin shock.
2015Novel perspectives on non-canonical inflammasome activation.Immunotargets TherInflammasomes are cytosolic multi-protein complexes that regulate the secretion of the proinflammatory cytokines, IL-1β and IL-18, and induce pyroptosis, an inflammatory form of cell death. The NLRP3 inflammasome is the most well-characterized member of this family and functions by sensing intracellular pathogen- and damage-associated molecular patterns and activating caspase-1, which processes the biologically inactive IL-1β and IL-18 precursors into active cytokines. Recent studies have identified an alternative mechanism of inflammasome activation, termed the non-canonical inflammasome, which is triggered by cytosolic sensing of lipopolysaccharide (LPS) derived from bacteria that have escaped phagolysosomes. This pathway is independent of Toll-like receptor 4 (TLR4), the well-known extracellular receptor for LPS, but instead depends on the inflammatory protease, caspase-11. Although our understanding of caspase-11 activation is still in its infancy, it appears to be an essential mediator of septic shock and attenuates intestinal inflammation. In this review, we bring together the latest data on the roles of caspase-11 and the mechanisms underlying caspase-11-mediated activation of the non-canonical inflammasome, and consider the implications of this pathway on TLR4-independent immune responses to LPS.
2014Alarmins MRP8 and MRP14 induce stress tolerance in phagocytes under sterile inflammatory conditions.Cell RepHyporesponsiveness by phagocytes is a well-known phenomenon in sepsis that is frequently induced by low-dose endotoxin stimulation of Toll-like receptor 4 (TLR4) but can also be found under sterile inflammatory conditions. We now demonstrate that the endogenous alarmins MRP8 and MRP14 induce phagocyte hyporesponsiveness via chromatin modifications in a TLR4-dependent manner that results in enhanced survival to septic shock in mice. During sterile inflammation, polytrauma and burn trauma patients initially present with high serum concentrations of myeloid-related proteins (MRPs). Human neonatal phagocytes are primed for hyporesponsiveness by increased peripartal MRP concentrations, which was confirmed in murine neonatal endotoxinemia in wild-type and MRP14(-/-) mice. Our data therefore indicate that alarmin-triggered phagocyte tolerance represents a regulatory mechanism for the susceptibility of neonates during systemic infections and sterile inflammation.
2015Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space.ImmunobiologyTo explore the effect of the spaceflight environment on immunity in animals, C57/BL6 mice flown on a 30-day space high-orbit satellite mission (BION-M1) were analyzed. Cytokine response in mice was measured in tandem with the following parameters: the synthesis of inducible forms of the heat shock proteins HSP72 and HSP90α; activity of the NF-κB, IFR3, and SAPK/JNK signalling pathways; and TLR4 expression. In addition, apoptosis in the thymus was measured by caspase-3 and ph-p53/p53 ratio testing. In response to flight environment exposure, mice had a reduction in spleen and thymus masses and decreased splenic and thymic lymphocyte counts. Plasma concentration of IL-6 and IFN-γ but not TNF-α was decreased in C57BL6 mice. The NF-κB activity in splenic lymphocytes through the canonical pathway involving IκB degradation was significantly increased at 12h after landing. One week after landing, however, the activity of NF-κB was markedly decreased below even the control values. Non-canonical NF-κB activity increased during the whole observation period. The activities of SAPK/JNK and IRF-3 were invariable at 12h but significantly increased 7 days after landing. The expression of Hsp72 and Hsp90α was somewhat increased 12h (Hsp72) and 7 days (Hsp90α). TLR4 expression in splenic cells was significantly increased only at 12h, returning to normal 7 days after landing. To assess the apoptosis in thymus lymphocytes, caspase-3 and levels of p53 protein along with its phosphorylated form were measured in thymic lymphocytes. The results indicated that the high-orbit spaceflight environment caused an increase in the level of p53 but more notably in the activated, phosphorylated form of the p53 protein. The calculated ratio of the active to inactive forms of the protein (ph-53/p53) 12h after landing increased by more than twofold, indicating the apparent induction of apoptosis in thymus cells. Interestingly, 7 days after the landing, this ratio was not restored, but rather increased: the specified ratio was four times higher compared to the ground-based control. Measurements of caspase-3 in thymic cells indicated more expressive increase in apoptosis. Taken together, the results of the present study indicate that spaceflight induces an imbalance in the immunity of mice, showing variation in signalling, apoptosis and stress response that are not restored by 7 days after landing. These changes are distinguished from classic stress-related alterations usually caused by conventional stressors.
2015Genetic polymorphisms of innate and adaptive immunity as predictors of outcome in critically ill patients.ImmunobiologySepsis and septic shock frequently cause the admission or complicate the clinical course of critically ill patients admitted in the intensive care units (ICU). Genetic variations disrupting the immune sensing of infectious organisms, could affect the ability of the immune system to respond to infection, and may influence both the genetic predisposition to infection and the diversity of the clinical presentation of sepsis. The aim of this study was to uncover possible associations between common functional immune gene polymorphisms (of both innate and adaptive immunity) and ICU-acquired sepsis and mortality. The TLR4-D299G (rs4986790), TLR4-T399I (rs4986791), C2-c.841_849+19del28 (rs9332736), TACI-C104R (rs34557412), BAFFR-P21R (rs77874543), and BAFFR-H159Y (rs61756766) polymorphisms were detected in a cohort of 215 critically ill patients, admitted in an 8-bed medical/surgical ICU. Interestingly, TLR4-D299G, TLR4-T399I and BAFFR-P21R carriage was associated with a lower risk of ICU-acquired sepsis. This association applied particularly in medical patients, while in trauma and surgical patients no significant associations were observed. Moreover, carriers of TACI-C104R displayed an undiagnosed mild to moderate hypogammaglobulinemia along with a significantly lower survival rate in the ICU, although lethal events were not attributed to sepsis. These findings further elucidate the role that host immune genetic variations may play in the susceptibility to ICU-acquired sepsis and ICU mortality.
2015Chemistry of lipid A: at the heart of innate immunity.ChemistryIn many Gram-negative bacteria, lipopolysaccharide (LPS) and its lipid A moiety are pivotal for bacterial survival. Depending on its structure, lipid A carries the toxic properties of the LPS and acts as a potent elicitor of the host innate immune system via the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) receptor complex. It often causes a wide variety of biological effects ranging from a remarkable enhancement of the resistance to the infection to an uncontrolled and massive immune response resulting in sepsis and septic shock. Since the bioactivity of lipid A is strongly influenced by its primary structure, a broad range of chemical syntheses of lipid A derivatives have made an enormous contribution to the characterization of lipid A bioactivity, providing novel pharmacological targets for the development of new biomedical therapies. Here, we describe and discuss the chemical aspects regarding lipid A and its role in innate immunity, from the (bio)synthesis, isolation and characterization to the molecular recognition at the atomic level.
2014Interruption of macrophage-derived IL-27(p28) production by IL-10 during sepsis requires STAT3 but not SOCS3.J ImmunolSevere sepsis and septic shock are leading causes of morbidity and mortality worldwide. Infection-associated inflammation promotes the development and progression of adverse outcomes in sepsis. The effects of heterodimeric IL-27 (p28/EBI3) have been implicated in the natural course of sepsis, whereas the molecular mechanisms underlying the regulation of gene expression and release of IL-27 in sepsis are poorly understood. We studied the events regulating the p28 subunit of IL-27 in endotoxic shock and polymicrobial sepsis following cecal ligation and puncture. Neutralizing Abs to IL-27(p28) improved survival rates, restricted cytokine release, and reduced bacterial burden in C57BL/6 mice during sepsis. Genetic disruption of IL-27 signaling enhanced the respiratory burst of macrophages. Experiments using splenectomized mice or treatment with clodronate liposomes suggested that macrophages in the spleen may be a significant source of IL-27(p28) during sepsis. In cultures of TLR4-activated macrophages, the frequency of F4/80(+)CD11b(+)IL-27(p28)(+) cells was reduced by the addition of IL-10. IL-10 antagonized both MyD88-dependent and TRIF-dependent release of IL-27(p28). Genetic deletion of STAT3 in Tie2-Cre/STAT3flox macrophages completely interrupted the inhibition of IL-27(p28) by IL-10 after TLR4 activation. In contrast, IL-10 remained fully active to suppress IL-27(p28) with deletion of SOCS3 in Tie2-Cre/SOCS3flox macrophages. Blockade of IL-10R by Ab or genetic deficiency of IL-10 resulted in 3-5-fold higher concentrations of IL-27(p28) in endotoxic shock and polymicrobial sepsis. Our studies identify IL-10 as a critical suppressing factor for IL-27(p28) production during infection-associated inflammation. These findings may be helpful for a beneficial manipulation of adverse IL-27(p28) release during sepsis.
2014[Serumimmunological study of moxibustion on helicobacter pylori gastritis in rats].Zhongguo Zhen JiuTo explore the immune mechanism of moxibustion on protecting gastric mucosa injury.Forty healthy SD rats were randomly divided into four groups: a blank group, a model group, a moxibustion acupoint group and a moxibustion non-acupoint group, 10 rats in each one. Eight days before model establishment, moxibustion at "Zusanli" (ST 36), "Zhongwan" (CV 12), "Guanyuan" (CV 4), "Pishu" (BL 20) and "Weishu" (BL 21) was applied in the moxibustion acupoint group while these acupoints' controlled points were selected in the moxibustion non-acupoint group, and no treatment was given in the model group, once a day in three groups for continuous 16 days. The helicobacter pylori (Hp) model was established by intragastric administration of Hp. HE staining microscopic examination was used to observe inflammation severity in gastric mucosa, and enzyme-linked immunosorbent assay (ELISA) was adapted to measure content of heat shock protein (HSP) 72, TNF-alpha and IL-1beta, and real-time quantitative PCR was used to measure the expression of TLR2 mRNA, TLR4 mRNA, CD14 mRNA and MyD88 mRNA in peripheral blood mononuclear cells, and western blot method was used to measure content of NFkappaB and IkappaBalpha in peripheral blood mononuclear cells.Compared with the blank group, the expression of HP could be seen in the smear of gastric mucosa by Gram's staining in the model group; the inflammation severity score was obviously increased as well as content of serum HSP 72 and TNF-alpha and IL-1beta in gastric tissue; and expression of TLR2, 4 mRNA, CD14 mRNA, MyD88 mRNA, NFkappaB was increased (P < 0.01), but the expression of IkappaBalpha was reduced (P < 0.05). After the moxibustion, the inflammation severity score was reduced in the moxibustion acupoint group, and the content of serum HSP 72 was increased, and the expression of TNF-alpha and IL-1beta in gastric tissue and expression of TLR2 mRNA, TLR4 mRNA, CD14 mRNA, MyD88 mRNA and NFkappaB were reduced (P < 0.01), but the expression of IkappaBalpha was increased (P < 0.05). The differences between the moxibustion non-acupoint group and the model group were not significant (P > 0.05).The pretreatment of moxibustion at acupoints could induce the over expression of serum HSP 72. By combining TLR 2 and 4 receptors to trigger receptor signal transduction pathways, the releases of downstream signal substances are regulated; as a result, the releases of related immune substances are regulated to relieve the gastric mucosa injury of rats with HP gastritis.
2014Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes.Nat CommunToll-like receptors (TLRs) play a key role in innate immunity. Apart from their function in host defense, dysregulation in TLR signalling can confer risk to autoimmune diseases, septic shock or cancer. Here we report genetic variants and transcripts that are active only during TLR signalling and contribute to interindividual differences in immune response. Comparing unstimulated versus TLR4-stimulated monocytes reveals 1,471 expression quantitative trait loci (eQTLs) that are unique to TLR4 stimulation. Among these we find functional SNPs for the expression of NEU4, CCL14, CBX3 and IRF5 on TLR4 activation. Furthermore, we show that SNPs conferring risk to primary biliary cirrhosis (PBC), inflammatory bowel disease (IBD) and celiac disease are immune response eQTLs for PDGFB and IL18R1. Thus, PDGFB and IL18R1 represent plausible candidates for studying the pathophysiology of these disorders in the context of TLR4 activation. In summary, this study presents novel insights into the genetic basis of the innate immune response and exemplifies the value of eQTL studies in the context of exogenous cell stimulation.
2014Induction of acute lung inflammation in mice with hemorrhagic shock and resuscitation: role of HMGB1.J Inflamm (Lond)Hemorrhagic shock and resuscitation (HS/R) can induce multiple organ failure which is associated with high mortality. The lung is an organ commonly affected by the HS/R. Acute lung injury is a major cause of dysfunction in other organ systems. The objective of this study is to test the hypothesis that HS/R causes increased gut permeability which results in induction of high mobility group box1 protein (HMGB1) and further leads to the development of acute lung inflammation.A mouse model of HS/R was employed in this study. Gut permeability and bacterial translocation were assessed with circulating FD4 and lipopolysaccharide (LPS). Circulating HMGB1 was determined with ELISA. Acute lung inflammation (ALI) was determined with lung myeloperoxidase (MPO) activity and pulmonary protein leakage.HS/R induced intestinal barrier dysfunction as evidenced by increased circulating FD4 and LPS at 30 min and 2 hrs after resuscitation, respectively. In addition, circulating HMGB1 levels were increased in mice with HS/R as compared with sham animals (p < 0.05). HS/R resulted in ALI (increased lung MPO activity and pulmonary protein leakage in mice with HS/R compared with sham mice, p < 0.05). Inhibition of HMGB1 (A-box and TLR4(-/-)) attenuated the ALI in mice with HS/R. However, inhibition of HMGB1 did not show protective effect on gut injury in early phase of HS/R in mice.Our results suggest that induction of HMGB1 is important in hemorrhagic shock and resuscitation-induced acute lung inflammation.
2015LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism.ImmunobiologyDendritic cells (DCs) are specialized antigen-presenting cells with a bipolar nature. Depending on environmental factors, DCs will promote either inflammatory or anti-inflammatory effects. Lipopolysaccharide (LPS), a ligand of Toll-like receptor (TLR)4 and a most potent proinflammatory stimulus, is responsible for complex signaling events in different cell types, including DCs. LPS effects range from protective inflammation-capable of counteracting growth and dissemination of gram-negative bacteria - to hyperacute detrimental responses, as it occurs in endotoxic shock. Consistent with the plasticity of TLR4 signaling, a low dosage of LPS will induce a regulatory response capable of protecting mice against a subsequent, otherwise lethal challenge ('endotoxin tolerance'). By examining CD11c(+) DCs ('conventional' DCs, or cDCs), we investigated whether DC flexibility in promoting either inflammation or tolerance can be differentially affected by single vs. repeated exposure to LPS in vitro. cDCs stimulated twice with LPS expressed high levels of indoleamine 2,3-dioxygenase 1 (IDO1) - one of the most effective mediator of anti-inflammatory activity by DCs - and of TGF-β, an immunoregulatory cytokine capable of upregulating IDO1 expression and function. In contrast, a single exposure to LPS failed to upregulate IDO1, and it was instead associated with high-level production of IL-6, a cytokine that promotes inflammation and proteolysis of IDO1. When adoptively transferred in vivo, only cDCs on double endotoxin exposure greatly improved the outcome of an otherwise lethal LPS challenge. The protective effect required that the transferred cDCs be fully competent for IDO1 and the host for TGF-β production. Thus cDCs, conditioned by LPS in vitro to mimic an endotoxin-tolerant state, can protect recipients from endotoxic shock, pointing to adoptive transfer of tolerance as a new option for controlling potentially harmful responses to TLR4 signaling.
2014Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation.J ImmunolAcute lung injury (ALI) is a major component of multiple organ dysfunction syndrome after hemorrhagic shock (HS) resulting from major surgery and trauma. The increased susceptibility in HS patients to the development of ALI suggests not yet fully elucidated mechanisms that enhance proinflammatory responses and/or suppress anti-inflammatory responses in the lung. Alveolar macrophages (AMϕ) are at the center of the pathogenesis of ALI after HS. We have previously reported that HS-activated polymorphonuclear neutrophils (PMNs) interact with macrophages to influence inflammation progress. In this study, we explore a novel function of PMNs regulating AMϕ anti-inflammatory mechanisms involving autophagy. Using a mouse "two-hit" model of HS/resuscitation followed by intratracheal injection of muramyl dipeptide, we demonstrate that HS initiates high mobility group box 1/TLR4 signaling, which upregulates NOD2 expression in AMϕ and sensitizes them to subsequent NOD2 ligand muramyl dipeptide to augment lung inflammation. In addition, upregulated NOD2 signaling induces autophagy in AMϕ, which negatively regulates lung inflammation through feedback suppression of NOD2-RIP2 signaling and inflammasome activation. Importantly, we further demonstrate that HS-activated PMNs that migrate in alveoli counteract the anti-inflammatory effect of autophagy in AMϕ, possibly through NAD(P)H oxidase-mediated signaling to enhance I-κB kinase γ phosphorylation, NF-κB activation, and nucleotide-binding oligomerization domain protein 3 inflammasome activation, and therefore augment post-HS lung inflammation. These findings explore a previously unidentified complexity in the mechanisms of ALI, which involves cell-cell interaction and receptor cross talk.
2014Impaired TLR4 and HIF expression in cystic fibrosis bronchial epithelial cells downregulates hemeoxygenase-1 and alters iron homeostasis in vitro.Am J Physiol Lung Cell Mol PhysiolHemeoxygenase-1 (HO-1), an inducible heat shock protein, is upregulated in response to multiple cellular insults via oxidative stress, lipopolysaccharides (LPS), and hypoxia. In this study, we investigated in vitro the role of Toll-like receptor 4 (TLR4), hypoxia-inducible factor 1α (HIF-1α), and iron on HO-1 expression in cystic fibrosis (CF). Immunohistochemical analysis of TLR4, HO-1, ferritin, and HIF-1α were performed on lung sections of CFTR-/- and wild-type mice. CFBE41o- and 16HBE14o- cell lines were employed for in vitro analysis via immunoblotting, immunofluorescence, real-time PCR, luciferase reporter gene analysis, and iron quantification. We observed a reduced TLR4, HIF-1α, HO-1, and ferritin in CFBE41o- cell line and CF mice. Knockdown studies using TLR4-siRNA in 16HBE14o- revealed significant decrease of HO-1, confirming the role of TLR4 in HO-1 downregulation. Inhibition of HO-1 using tin protoporphyrin in 16HBE14o- cells resulted in increased iron levels, suggesting a probable role of HO-1 in iron accumulation. Additionally, sequestration of excess iron using iron chelators resulted in increased hypoxia response element response in CFBE41o- and 16HBE14o-, implicating a role of iron in HIF-1α stabilization and HO-1. To conclude, our in vitro results demonstrate that multiple regulatory factors, such as impaired TLR4 surface expression, increased intracellular iron, and decreased HIF-1α, downregulate HO-1 expression in CFBE41o- cells.
2014Novel microRNA correlations in the severely injured.SurgerySevere injury initiates an inflammatory response that can perpetuate immunological dysfunction, uncontrolled inflammation, and subsequent multisystem organ failure. MicroRNAs (miRNAs) have recently been identified as regulators of this inflammatory response. Our study sought to identify the differential expression of unique miRNAs and their correlations with genes of the Toll-like receptor (TLR) pathways, and clinical parameters in the severely injured.Fourteen trauma patients requiring transfusion were prospectively enrolled in this institutional review board-approved study. Inclusion criteria consisted of adult patients deemed clinically to be in hemorrhagic shock necessitating transfusion in the acute phase of their injury care. Peripheral blood samples were obtained after admission to the surgical intensive care unit. Expression of circulating mature miRNA from each patient, as well as from 10 healthy, age-matched controls, was determined and compared using the HiSeq 2500 sequencing system and the R software system. Gene expression of TLR signaling pathways for each patient was examined using custom gene expression polymerase chain reaction arrays. Statistical analyses were performed using general linear models and empirical Bayes methods to determine differential expression and Spearman's nonparametric correlation analysis.Subjects were 21-77 years old (mean, 42), 80% male, Injury Severity Score 11-43 (mean, 26), with 11 blunt and 3 penetrating injuries. Three were intubated and 5 received blood products before arrival. Base deficit upon hospital admission was 3 to 20 (mean, 9). All patients required blood transfusion secondary to blood loss sustained during injury. Survival to discharge was 93%. Controls were 27-64 years old (mean, 40) and 60% male. Sequencing analysis revealed 69 differentially expressed miRNAs (P < .05) in the severely injured. Within the differentially expressed miRNAs, there were 12 direct and 6 indirect correlations with multiple genes involved in the TLR3 and TLR4 signaling pathways. The relationships between these same miRNAs and clinical parameters were also analyzed. We discovered 4 direct correlations with base deficit and HCO3, and 7 indirect correlations involving total fresh frozen plasma transfused, base deficit, HCO3, and PaCO2 levels.Differential expression and correlations between miRNAs, genes of the TLR pathways, and clinical parameters are unique findings in the severely injured and may lead to a greater understanding of the regulation of sterile inflammation after severe injury.
2015Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility.ImmunologyCarbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock.
2014Cytochalasin B modulates macrophage-mediated inflammatory responses.Biomol Ther (Seoul)The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-κB translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.
2014Reducing the bioactivity of Tannerella forsythia lipopolysaccharide by Porphyromonas gingivalis.J MicrobiolTannerella forsythia is considered a pathogen of periodontitis and forms a biofilm with multi-species bacteria in oral cavity. Lipopolysaccharide is a powerful immunostimulator and induces inflammation and shock. The purpose of this study was to investigate the characteristics of T. forsythia LPS in its co-cultivation with Fusobacterium nucleatum or Porphyromonas gingivalis. T. forsythia was co-cultured in the presence and absence of F. nucleatum and P. gingivalis and then T. forsythia LPS was extracted. The extracts were analyzed by SDS-PAGE and NF-κB reporter CHO cell lines. THP-1 cells were treated with the LPS and evaluated induction of cytokine expression by real-time RT-PCR and ELISA. For analysis of the bioactivity of T. forsythia LPS, the binding assay on LPS-binding protein (LBP) and CD14 was processed. The extracts did not contaminate other molecules except LPS and showed TLR4 agonists. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower level of induction of TNF-α, IL-1β, and IL-6 expression than single- or co-cultured T. forsythia LPS with F. nucleatum in the conditions of human serum. However, the three T. forsythia LPS did not show difference of cytokine induction in the serum free conditions. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower affinity to LBP and CD14 as binding site of O-antigen and attached at a lower level to THP-1 cells compared to single- or co-cultured T. forsythia LPS with F. nucleatum. The virulence of T. forsythia LPS was decreased by co-culturing with P. gingivalis and their affinity to LBP and CD14 was reduced, which may due to modification of O-antigen chain by P. gingivalis.
2014HSP60 is involved in the neuroprotective effects of naloxone.Mol Med RepHeat shock protein (HSP)60 is primarily a mitochondrial protein. Previous experiments have found that changes in the location of intracellular HSP60 have been associated with apoptosis. Extracellular HSP60 mediates apoptosis via its ligand, Toll‑like receptor (TLR)-4. TLR-4 is an important factor expressed on microglia, with a central role in generating neuroimmune responses in the pathogenesis of neurodegenerative disorders. Naloxone is a highly effective nonselective opioid receptor antagonist, and has been reported to be pharmacologically beneficial for the treatment of brain diseases through inhibiting microglia activation. However, the mechanisms underlying these beneficial effects of naloxone remain poorly understood. The present study aimed to investigate the role of HSP60 in the neuroprotective effects of naloxone on the production of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated BV2 murine microglial cells and the possible signaling pathways involved. The results demonstrated that naloxone significantly inhibited the expression and release of HSP60 in BV2 cells. The expression levels of heat shock factor (HSF)-1 were upregulated in LPS‑activated BV2 cells, which indicated that the increased expression of HSP60 was driven by HSF-1 activation. However, increased HSF‑1 levels may be downregulated by naloxone. The levels of TLR‑4 were elevated in activated BV2 cells, and then inhibited by naloxone. Activation of TLR‑4 is characterized by activation of nuclear factor-κB (NF-κB) followed by the production of various proinflammatory and neurotoxic factors. Data from the present study demonstrated that naloxone reduced the expression levels of NF-κB and its upstream protein caspase‑3, and reduced the LPS-induced production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor α, interleukin-1β and interleukin-6 in BV2 microglia. In light of this data, it was concluded that naloxone may exert its neuroprotective and anti‑inflammatory effects by inhibiting microglia activation through a HSP60‑TLR‑4‑NF‑κB signaling pathway.
2014Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation.Circ Cardiovasc GenetGrowing evidence indicates that the presence of toll-like receptor 4 (TLR4) on platelets is a key regulator of platelet number and function. Platelets exposed to TLR4 agonists may serve to activate other cells such as neutrophils and endothelial cells in sepsis and other inflammatory conditions. The functional significance of platelet TLR4 in hemorrhagic shock (HS), however, remains unexplored.Using thromboelastography and platelet aggregometry, we demonstrate that platelet function is impaired in a mouse model of HS with resuscitation. Further analysis using cellular-specific TLR4 deletion in mice revealed that platelet TLR4 is essential for platelet activation and function in HS with resuscitation and that platelet TLR4 regulates the development of coagulopathy after hemorrhage and resuscitation. Transfusion of TLR4-negative platelets into mice resulted in protection from coagulopathy and restored platelet function. Additionally, platelet-specific TLR4 knockout mice were protected from lung and liver injury and exhibited a marked reduction in systemic inflammation as measured by circulating interleukin-6 after HS with resuscitation.We demonstrate for the first time that platelet TLR4 is an essential mediator of the inflammatory response as well as platelet activation and function in HS and resuscitation.
2014Anti-inflammatory effects of IKK inhibitor XII, thymulin, and fat-soluble antioxidants in LPS-treated mice.Mediators InflammThe present study was designed to compare the anti-inflammatory effects of several agents applied in vivo, namely, a synthetic inhibitor of the NF-κB cascade, fat-soluble antioxidants, and the thymic peptide thymulin. Cytokine response in LPS-treated mice was analysed in tandem with the following parameters: the synthesis of inducible forms of the heat shock proteins HSP72 and HSP90α; activity of the NF-κB and SAPK/JNK signalling pathways; and TLR4 expression. Inflammation-bearing Balb/c male mice were pretreated with an inhibitor of IKK-α/β kinases (IKK Inhibitor XII); with thymulin; with dietary coenzyme Q9, α-tocopherol, and β-carotene; or with combinations of the inhibitor and peptide or antioxidants. Comparable anti-inflammatory effects were observed in inflammation-bearing mice treated separately with thymulin or with dietary antioxidants administered daily for two weeks before LPS treatment. When LPS-injected mice were treated with the inhibitor and antioxidants together, neither plasma cytokines, signal proteins, nor heat shock proteins recovered more efficiently than when mice were treated with these agents separately. In contrast to antioxidant diet, the thymulin was shown to increase the effect of IKK Inhibitor XII in preventing IKK activation in LPS-treated mice.
2014β-Arrestin 2 negatively regulates Toll-like receptor 4 (TLR4)-triggered inflammatory signaling via targeting p38 MAPK and interleukin 10.J Biol ChemThe control of IL-10 production in Toll-like receptor (TLR) signals remains to be elucidated. Here, we report that β-arrestin 2 positively regulates TLR-triggered IL-10 production in a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. In vitro studies with cells including peritoneal macrophages and HEK293/TLR4 cells have demonstrated that β-arrestin 2 forms complexes with p38 and facilitates p38 activation after lipopolysaccharide (LPS) stimulation. Deficiency of β-arrestin 2 and inhibition of p38 MAPK activity both ameliorate TLR4-stimulated IL-10 response. Additionally, in vivo experiments show that mice lacking β-arrestin 2 produce less amount of IL-10, and are more susceptible to LPS-induced septic shock which is further enhanced by blocking IL-10 signal. These results reveal a novel mechanism by which β-arrestin 2 negatively regulates TLR4-mediated inflammatory reactions.
2014Enhancement of tumor-specific T cell-mediated immunity in dendritic cell-based vaccines by Mycobacterium tuberculosis heat shock protein X.J ImmunolDespite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4(+) and CD8(+) T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)-expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors.
2014Critical role of toll-like receptor 4 in hypoxia-inducible factor 1α activation during trauma/hemorrhagic shocky induced acute lung injury after lymph infusion in mice.ShockAB The nuclear transcription factor hypoxia-inducible factor 1[alpha] (HIF-1α) is a key regulator of gene expression under hypoxic and inflammatory conditions. The germline-encoded pattern recognition receptor toll-like receptor 4 (TLR4) recognizes molecular motifs shared by large groups of microorganisms as well as by endogenous ligands released from stressed and/or injured tissues. We have previously demonstrated that local inhibition of HIF-1α ameliorates lung injury induced by trauma/hemorrhagic shock (T/HS) in rats. In the current study, we directly determined the role of TLR4 in HIF-1α activation during T/HS-induced acute lung injury in mice. C3H/HeJ mice that harbor a TLR4 mutation and wild-type (WT) mice were infused T/HS or trauma/sham shock (T/SS) lymph from Sprague-Dawley rats. Evans blue dye lung permeability, lung water content, myeloperoxidase levels, and lung histological analysis confirmed that TLR4-deficient mice are resistant to lung injury after T/HS lymph infusion. Lungs from WT and TLR4mut mice after T/SS lymph infusion expressed negligible levels of HIF-1α. The induction of HIF-1α in lung homogenates from TLR4mut mice after T/HS or T/HS lymph infusion was markedly reduced as compared with their WT counterparts but remained elevated as compared with TLR4mut mice after T/SS lymph infusion. Endothelial cells from TLR4mut mice and silence of TLR4 in cells from WT mice showed a remarkable reduction of HIF-1α on T/HS lymph stimulation. Blocking of nuclear factor-κB activity by SN50 or Bay 11-7085 in WT cells diminished T/HS lymph-induced HIF-1α accumulation when compared with T/SS lymph incubation. Thus, our data suggest that TLR4 activation by T/HS is necessary for T/HS-induced lung injury and an augmented pulmonary HIF-1α response, which will provide more insights into the pathogenesis of shock-induced acute lung injury and identify potential therapeutic targets.
2014Toll-like receptor 4 is essential to preserving cardiac function and survival in low-grade polymicrobial sepsis.AnesthesiologyToll-like receptor 4 (TLR4), the receptor for endotoxin, mediates hyperinflammatory response and contributes to high mortality during both endotoxin shock and severe sepsis. However, little is known about the role of TLR4 in the pathogenesis of low-grade polymicrobial sepsis, which is often associated with immunosuppression.Low-grade polymicrobial sepsis was generated by cecum ligation and puncture. Mortality was monitored in wild- type (C57BL/10ScSn) and TLR4def (C57BL/10ScCr) mice. Ex vivo heart and individual cardiomyocyte function were assessed in Langendorff (Hugo Sachs Elektronik; Harvard Apparatus, Holliston, MA) and IonOptix systems (IonOptix, Milton, MA), respectively. Serum chemistry was tested for liver and kidney injury. Cytokines were examined using a multiplex immunoassay. Neutrophil migratory and phagocytic functions were assessed using flow cytometry. Reactive oxygen species were measured using redox-sensitive dichlorodihydrofluorescein dye.Following cecum ligation and puncture, wild-type mice developed bacterial peritonitis with mild cardiac dysfunction (n=3 in sham and n=8 in cecum ligation and puncture) and a mortality of 23% within 14 days (n=22). In comparison, septic TLR4def mice had deleterious cardiac dysfunction (n=6 in sham and n=10 in cecum ligation and puncture), kidney and liver injury (n=7), and much higher mortality at 81% (n=21). The deleterious effects observed in septic TLR4def mice were associated with increased local and systemic cytokine response, reduced neutrophil migratory and phagocytic function, increased reactive oxygen species generation in leukocytes, and impaired bacterial clearance.TLR4 plays an essential role in host defense against low-grade polymicrobial sepsis by mediating neutrophil migratory/phagocytic functions, attenuating inflammation, reducing reactive oxygen species generation, and enhanced bacterial clearance.
2014Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4.Mol MedThe myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27.
2014Giardia lamblia binding immunoglobulin protein triggers maturation of dendritic cells via activation of TLR4-MyD88-p38 and ERK1/2 MAPKs.Parasite ImmunolMuch remains unknown about the mammalian immune response to Giardia lamblia, a protozoan pathogen that causes diarrhoeal outbreaks. We fractionated protein extracts of G. lamblia trophozoites by Viva-spin centrifugation, DEAE ion exchange and gel filtration chromatography. Resultant fractions were screened for antigenic molecules by western blots analysis using anti-G. lamblia antibodies (Abs), resulting in identification of G. lamblia binding immunoglobulin protein (GlBiP). Maturation of mouse dendritic cells (DCs) in response to recombinant GlBiP (rGlBiP) was detected by increased expression of surface molecules such as CD80, CD86 and MHC class II; these mature DCs, produced pro-inflammatory cytokines (TNF-α, IL-12 and IL-6). Especially, the truncated rGlBiP containing the heat-shock protein 70 domain-induced cytokine production from mouse DCs. rGlBiP-induced DC activation was initiated by TLR4 in a MyD88-dependent way and occurred through activation of p38 and ERK1/2 MAPKs as well as increased activity of NF-κB and AP-1. Moreover, CD4(+) T cells stimulated with rGlBiP-treated DCs produced high levels of IL-2 and IFN-γ. Together, our results suggest that GlBiP contributes to maturation of DCs via activation of TLR4-MyD88-p38, ERK1/2 MAPK, NF-κB and AP-1.
2014Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers.Br J NutrGrape seed extract (GSE), a rich source of polyphenols, is reported to possess antioxidant, anti-inflammatory and immunomodulatory properties. The objective of the present study was to determine whether GSE could attenuate the heat stress-induced responses of jejunum epithelial cells (JEC) in cattle. The JEC of a steer (Simmental × Qinchuan) were exposed to heat stress for 2 h in the absence (0 μg/ml) or presence (10, 20, 40 and 80 μg/ml) of GSE in the culture medium. When cultured at 40°C, JEC supplemented with GSE exhibited increased glutathione peroxidase activity (P= 0·04), viability (P= 0·004), and mRNA expression of epidermal growth factor (EGF; P= 0·03) and EGF receptor (EGFR; P = 0·01). Under the same conditions, the cells exhibited decreased mRNA expression of IL-8 (P= 0·01) and TNF-α (P= 0·03) and decreased protein concentrations of IL-1β (P= 0·02), Toll-like receptor 4 (TLR4; P= 0·04) and heat shock protein 70 (HSP70; P< 0·001). When cultured at 43°C, JEC supplemented with GSE exhibited increased catalase activity (P= 0·04), viability (P< 0·001), and mRNA expression of EGF (P< 0·001) and EGFR (P< 0·001) and decreased protein concentrations of IL-1β (P< 0·001), TLR4 (P= 0·03) and HSP70 (P< 0·001), as well as mRNA expression of IL-8 (P< 0·001), TLR4 (P= 0·002) and TNF-α (P< 0·001). Temperature × GSE concentration interactions were also observed for the concentrations of IL-1β (P< 0·001), IL-8 (P< 0·001), TNF-α (P= 0·01) and HSP70 (P= 0·04) and viability (P< 0·001) of JEC. The results of the present study indicate that GSE can attenuate the responses of JEC induced by heat stress within a certain range of temperatures.
2014LPS preconditioning ameliorates intestinal injury in a rat model of hemorrhagic shock.Inflamm ResPrevious studies indicate that endotoxin preconditioning may decrease the inflammatory response and alleviate intestinal mucosal damage caused by sepsis. However, it is not known whether preconditioning with endotoxin might protect the intestinal mucosa after hemorrhagic shock. In this study, we investigated the effect of lipopolysaccharide (LPS) preconditioning on the intestinal mucosa following hemorrhagic shock in a rat model. Given that intestinal toll-like receptor 4 (TLR4) signaling is exaggerated in response to LPS, we further investigated the role of TLR4 signaling in endotoxin tolerance.Animals were pre-treated with intra-peritoneal Escherichia coli LPS for 5 days prior to hemorrhagic shock. Animals were bled to achieve a mean arterial pressure (MAP) of 35-40 mmHg, then resuscitated with Ringer solution and the heparinized shed blood to maintain MAP between 90 and 100 mmHg. The distal ileum was harvested after resuscitation and graded for mucosal damage. TNF-α, TLR4, cleaved caspase-3, and intestinal trefoil factor 3 (TFF3) levels were measured at different time points.Pretreatment with LPS significantly reduced intestinal mucosal damage and protein levels of cleaved caspase-3. Furthermore, animals pre-treated with LPS experienced reduction of TNF-α and increased mucosal expression of TFF3. LPS tolerance was associated with reduced TLR4 expression.Endotoxin preconditioning can lessen the effects of ischemia and reperfusion injury in intestinal mucosa of a rat model with hemorrhagic shock. It is hypothesized that this effect is mediated via inhibition of TLR4 over-expression.
2014Protective effects of ginsenoside Rb1 on septic rats and its mechanism.Biomed Environ SciThis study aims to observe the protective effects of ginsenoside Rb1 on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and puncture (CLP), and CLP with ginsenoside Rb1. Then, the survival rate, arterial blood pressure, TLR4 mRNA, and TNF-α levels were determined. The liver and lung tissues were stained with hematoxylin-eosin (HE). The overall survival rate of the Rb1 group was significantly higher than that of the CLP group. Mean arterial blood pressure went down in both the CLP and Rb1 groups after CLP, and there was a significant difference both in the sham and Rb1 groups when compared with the CLP group. The Rb1 treatment group had markedly lower TLR4 mRNA expression and TNF-α levels than the CLP group. In the CLP group, pathology showed swelling, degeneration, necrosis, and neutrophil infiltration in the liver and alveolar epithelial cells. However, in the Rb1 group, there was mild degeneration and slight neutrophil infiltration, but no obvious necrosis. Rb1 may improve the survival rate, ameliorate arterial blood pressure, and protect the liver and lung in septic shock rats by downregulating the expression of TLR4 mRNA and inhibiting the production of TNF-α.
2014Putative role of protein kinase C in neurotoxic inflammation mediated by extracellular heat shock protein 70 after ischemia-reperfusion.J NeuroinflammationSterile inflammation occurs in the absence of live pathogens and is an unavoidable consequence of ischemia-reperfusion (IR) injury in the central nervous system (CNS). It is known that toll-like receptor 4 (Tlr4) contributes to damage and sterile inflammation in the CNS mediated by IR. However, the mechanism of Tlr4 activation under sterile conditions in ischemic tissue is poorly understood. We performed this study to clarify the mechanism. To this end, we focused on the extracellular heat shock protein 70 (Hsp70), the prototypic Tlr4 ligand.Tlr4-, Myd88- and Trif-knockout animals, as well as C57BL/6 mice, were used for the wild type control. For the in vivo study, we used a mouse model of retinal IR injury. To test the role of protein kinase C (PKC) in IR injury, IR retinas were treated with the PKC inhibitors (polymyxin B and Gö6976) and retinal damage was evaluated by directly counting neurons in the ganglion cell layer of flat-mounted retinas seven days after IR. Primary retinal neurons (retinal ganglion cells) and glial cells were used for in vitro experiments. Quantitative RT-PCR, ELISA and western blot analysis were used to study the production of pro-inflammatory factors in IR retinas and in primary cell cultures.We found significant accumulation of extracellular Hsp70 in a model of retinal IR injury. We noted that PKC was involved in Tlr4 signaling, and found that PKC inhibitors promoted neuroprotection by reducing pro-inflammatory activity in ischemic tissue. To put all of the pieces in the signaling cascade together, we performed an in vitro study. We found that PKC was critical to mediate the Hsp70-dependent pro-inflammatory response. At the same time, the contamination of Hsp70 preparations with low-dose endotoxin was not critical to mediate the production of pro-inflammatory factors. We found that extracellular Hsp70 can promote neuronal death at least, by mediating production of cytotoxic levels of tumor necrosis factor alpha, predominantly due to the Tlr4/Myd88 signaling cascade.Our findings suggest that PKC acts as a switch to amplify the pro-inflammatory activity of Hsp70/Tlr4 signaling, which is sufficient to mediate neuronal death.
2014Hemorrhage-induced interleukin-1 receptor pathway in lung is suppressed by 3,5-bis(2-fluorobenzylidene)-4-piperidone in a rat model of hypovolemic shock.Artif OrgansSevere blood loss in victims of trauma creates an exaggerated inflammatory background that contributes to the development of intravascular coagulopathy and multiple organ dysfunction syndrome. We hypothesized that treatment with diphenyldifluoroketone EF24, an inhibitor of nuclear factor kappa-B, would have salutary effects in hemorrhagic shock. The objective of this study was to investigate the effect of EF24 on the expression of the interleukin-1 receptor (IL-1R) superfamily in a rat model of hypovolemic shock. Hypovolemia was induced by gradually withdrawing approximately 50% of circulating blood, and EF24 was administered intraperitoneally (0.2 mg/kg) in 50 μL of saline. After 6 h of shock, lung tissue was probed immunohistochemically and by immunoblotting to study the expression of Toll-like receptor 4 (TLR4), IL-1R, suppression of tumorigenicity 2 (ST2), and single immunoglobulin IL-1R-related (SIGIRR). The tissue-associated pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and IL-6, were measured by enzyme-linked immunosorbent assay. We observed a reduction in immunoreactive TLR4 and IL-1R1 in lung tissue of rats treated with EF24. Simultaneously, the pulmonary expression of ST2 and SIGIRR (the putative down-regulators of the pro-inflammatory IL-1R pathway) was increased in EF24-treated hemorrhaged rats. The concentration of hemorrhage-induced TNF-α and IL-6 in lung tissue homogenates was also reduced by EF24 treatment. These results confirm our previous in vitro observations in lipopolysaccharide-stimulated dendritic cells that EF24 beneficially modulates the IL-1R pathway and suggest that it could be investigated as an adjunct therapeutic in managing inflammation associated with hemorrhagic shock.
2014Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic Escherichia coli via modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants.PLoS OneInflammation derived from pathogen infection involves the activation of toll-like receptor (TLR) signaling. Despite the established immunomodulatory activities of probiotics, studies relating the ability of such bacteria to inhibit the TLR signaling pathways are limited or controversial. In a previous study we showed that Lactobacillus amylovorus DSM 16698T, a novel lactobacillus isolated from unweaned pigs, protects the intestinal cells from enterotoxigenic Escherichia coli (ETEC) K88 infection through cytokine regulation. In the present study we investigated whether the ability of L. amylovorus to counteract the inflammatory status triggered by ETEC in intestine is elicited through inhibition of the TLR4 signaling pathway. We used the human intestinal Caco-2/TC7 cells and intestinal explants isolated from 5 week-old crossbreed Pietrain/Duroc/Large-White piglets, treated with ETEC, L. amylovorus or L. amylovorus cell free supernatant, either alone or simultaneously with ETEC. Western blot analysis showed that L. amylovorus and its cell free supernatant suppress the activation of the different steps of TLR4 signaling in Caco-2/TC7 cells and pig explants, by inhibiting the ETEC induced increase in the level of TLR4 and MyD88, the phosphorylation of the IKKα, IKKβ, IκBα and NF-κB subunit p65, as well as the over-production of inflammatory cytokines IL-8 and IL-1β. The immunofluorescence analysis confirms the lack of phospho-p65 translocation into the nucleus. These anti-inflammatory effects are achieved through modulation of the negative regulators Tollip and IRAK-M. We also found that L. amylovorus blocks the up-regulation of the extracellular heat shock protein (Hsp)72 and Hsp90, that are critical for TLR4 function. By using anti-TLR2 antibody, we demonstrate that TLR2 is required for the suppression of TLR4 signaling activation. These results may contribute to develop therapeutic interventions using L. amylovorus in intestinal disorders of piglets and humans.
2014Soluble IFN receptor potentiates in vivo type I IFN signaling and exacerbates TLR4-mediated septic shock.J ImmunolCirculating levels of a soluble type I IFNR are elevated in diseases, such as chronic inflammation, infections, and cancer, but whether it functions as an antagonist, agonist, or transporter is unknown. In this study, we elucidate the in vivo importance of the soluble type I IFNAR, soluble (s)IFNAR2a, which is generated by alternative splicing of the Ifnar2 gene. A transgenic mouse model was established to mimic the 10-15-fold elevated expression of sIFNAR2a observed in some human diseases. We generated transgenic mouse lines, designated SolOX, in which the transgene mRNA and protein-expression patterns mirrored the expression patterns of the endogenous gene. SolOX were demonstrated to be more susceptible to LPS-mediated septic shock, a disease model in which type I IFN plays a crucial role. This effect was independent of "classical" proinflammatory cytokines, such as TNF-α and IL-6, whose levels were unchanged. Because the increased levels of sIFNAR2a did not affect the kinetics of the increased interferonemia, this soluble receptor does not potentiate its ligand signaling by improving IFN pharmacokinetics. Mechanistically, increased levels of sIFNAR2a are likely to facilitate IFN signaling, as demonstrated in spleen cells overexpressing sIFNAR2a, which displayed quicker, higher, and more sustained activation of STAT1 and STAT3. Thus, the soluble IFNR is an important agonist of endogenous IFN actions in pathophysiological processes and also is likely to modulate the therapeutic efficacy of clinically administered IFNs.
2014Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock.ImmunityToll-like receptors (TLRs) are critical in mediating innate immune responses against infections. However, uncontrolled TLR-triggered inflammation is associated with endotoxin shock. To better understand the homeostatic mechanisms induced by TLR4 signaling, we screened a group of key cytokines, chemokines, growth factors, and their receptors for bacteria- or LPS-induced expression. The surface vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C were upregulated in macrophages. VEGFR-3 ligation by VEGF-C significantly attenuated proinflammatory cytokine production. Notably, ablation of the ligand-binding domain or tyrosine kinase activity of VEGFR-3 rendered mice more sensitive to septic shock. VEGFR-3 restrained TLR4-NF-κB activation by regulating the PI3-kinase-Akt signaling pathway and SOCS1 expression. Aside from targeting lymphatic vessels, we suggest a key role of VEGFR-3 on macrophages to prevent infections that is complicated with lymphoedema. Thus, VEGFR-3-VEGF-C signaling represents a "self-control" mechanism during antibacterial innate immunity.
2014Tyrosine kinase 2 promotes sepsis-associated lethality by facilitating production of interleukin-27.J Leukoc BiolThe aim of this study was to test the hypothesis that gene expression and release of IL-27 may be modulated by Tyk2. Macrophages derived from the peritoneum or bone marrow of C57BL/10SnJ (WT) mice produced abundant amounts of IL-27(p28) following TLR4 activation by LPS. In contrast, production of IL-27(p28), but not EBI3, was reduced by ∼50% in TLR4-activated macrophages derived from mice with genetic deficiency of Tyk2 compared with WT macrophages. Frequencies of IL-27(p28)+F4/80+CD11b+ cells were lower in TLR4-activated macrophages derived from Tyk2-/- mice. Mechanistically, Tyk2-/- resulted in disruption of a type I IFN-dependent mechanism for production of IL-27(p28), which was induced by type I IFNs, and release of IL-27 was defective in macrophages from IFN-β-/- and IFNAR1-/- mice. In contrast, Tyk2 was not required to mediate the effects of IL-27 on target gene expression in CD4(+) T cells. In vivo, we observed that Tyk2-/- mice have improved survival following endotoxic shock or polymicrobial sepsis induced by CLP. Plasma levels of IL-27(p28) during endotoxic shock or polymicrobial sepsis were markedly reduced in Tyk2-/- mice compared with WT mice. Disruption of IL-27 signaling using IL-27RA-/- mice was protective against sepsis-associated mortality. These data suggest that Tyk2 may mediate adverse outcomes of SIRS by promoting the production of IL-27. In conclusion, this report identifies Tyk2 as a prerequisite factor in the molecular networks that are involved in generation of IL-27.
2014Toll-like receptor 4 plays a central role in cardiac dysfunction during trauma hemorrhage shock.ShockCardiac dysfunction is a major consequence that contributes to the high mortality of trauma-hemorrhage (TH) patients. Recent evidence suggests that innate immune and inflammatory responses mediated by Toll-like receptors (TLRs) play a critical role in the pathophysiologic mechanisms of acute organ dysfunction during TH. This study investigated the role of TLR4 in cardiac dysfunction following TH. Toll-like receptor 4-deficient (TLR4-/-, n = 7/group) and age-matched wild-type (WT, n = 8/group) mice were subjected to TH that was induced by soft tissue injury and blood withdrawal from the jugular vein to a mean arterial pressure of 35 ± 5 mmHg. Cardiac function and mean arterial pressure were measured with a Millar system before, during, and after blood withdrawal. Sham surgical-operated mice served as control (WT, n = 9/group; TLR4-/-, n = 10/group). Cardiac function in WT mice was significantly reduced following TH. However, cardiac function was well preserved in TLR4-/- mice. Administration of a TLR4 antagonist (3 mg/kg) to WT mice also significantly attenuated TH-induced cardiac dysfunction. Western blot showed that either TLR4-/- or TLR4 antagonist markedly attenuated TH-induced decreases in the levels of phosphorylated-Akt in myocardium. In addition, inhibition of TLR4 attenuated TH-induced myocardial nuclear factor κB-binding activity as well as lung myeloperoxidase activity and tumor necrosis factor α production. The data indicate that TLR4 plays a central role in TH-induced cardiac dysfunction. Toll-like receptor 4 deficiency or TLR4 inhibition attenuated cardiac dysfunction following TH, which may involve activation of the phosphoinositide 3-kinase/Akt signaling and decrease in nuclear factor κB-binding activity. Toll-like receptor 4 antagonism may be a new and novel approach for the treatment and management of cardiac dysfunction in TH patients.
2014Phosphatase holoenzyme PP1/GADD34 negatively regulates TLR response by inhibiting TAK1 serine 412 phosphorylation.J ImmunolThe molecular mechanisms that fine tune TLRs responses need to be fully elucidated. Protein phosphatase-1 (PP1) has been shown to be important in cell death and differentiation. However, the roles of PP1 in TLR-triggered immune response remain unclear. In this study, we demonstrate that PP1 inhibits the activation of the MAPK and NF-κB pathway and the production of TNF-α, IL-6 in macrophages triggered by TLR3, TLR4, and TLR9 in a phosphatase-dependent manner. Conversely, PP1 knockdown increases TLRs-triggered signaling and proinflammatory cytokine production. Tautomycetin, a specific inhibitor of PP1, aggravates LPS-induced endotoxin shock in mice. We further demonstrate that PP1 negatively regulates TLR-triggered signaling by targeting TGF-β-activated kinase 1 (TAK1) serine 412 (Ser412) phosphorylation, which is required for activation of TAK1-mediated IL-1R and TLR signaling. Mutation of TAK1 Serine 412 to alanine (S412A) significantly inhibits TLR/IL-1R-triggered NF-κB and MAPK activation and induction of proinflammatory cytokines in macrophage and murine embryonic fibroblast cells. DNA damage-inducible protein 34 (GADD34) specifies PP1 to dephosphorylate TAK1 at Ser412. GADD34 depletion abolished the interaction between TAK1 and PP1, and it relieved PP1 overexpression-induced inhibition of TLRs signaling and proinflammatory cytokine production. In addition, knockdown of GADD34 significantly promotes TLR-induced TAK1 Ser412 phosphorylation, downstream NF-κB and MAPK activation, and proinflammatory cytokine production. Therefore, PP1, as a physiologic inhibitor, together with its regulatory subunit GADD34, tightly controls TLR-induced TAK1 Ser412 phosphorylation, preventing excessive activation of TLRs and protecting the host from overwhelmed inflammatory immune responses.
2014TLR2 and TLR4 mediate the TNFα response to Vibrio vulnificus biotype 1.Pathog DisVibrio vulnificus (Vv) is a pathogenic bacterium that can cause life-threatening infections in humans. Most fatal cases are due to septic shock that results from dysregulation of cytokines, particularly TNFα, which plays a critical role in the outcome of Vv infection. The goal of this study was to investigate the Toll-like receptor (TLR)-mediated TNFα response to four Vv biotype 1 strains using mice deficient for TLR2, TLR4, and TLR2/TLR4. Ex vivo assays were performed with blood, splenocytes, and Kupffer cells (KC) from wild-type (WT) and TLR-knockout (KO) mice using formalin-inactivated Vv (f-Vv) as stimulant. All f-Vv biotype 1 strains elicited strong TNFα production by WT mouse blood and cells, which was TLR2 and TLR4 dependent. OxPAPC, an inhibitor of TLR2 and TLR4 signaling, effectively blunted the TLR-mediated TNFα response to f-Vv. Furthermore, TLR2 KO and TLR2/TLR4 KO mice were more resistant to lethal infection with Vv ATCC 27562 than WT mice, perhaps due to attenuation of the TNFα response. These data suggest that it may be possible to devise strategies to specifically target the harmful TLR-mediated TNFα response as an adjunct to antibiotic treatment of severe Vv infection.
HSP70 induces TLR4 signaling in oral squamous cell carcinoma: an immunohistochemical study.J Cancer Res TherToll like receptors play an important role in innate and adaptive immune responses. Heat shock proteins play a significant role in cell proliferation, differentiation and oncogenesis. HSP70 acts as one of the ligands of TLR4 and binds to it in a CD14 dependent fashion to bring about proinflammatory cytokine production leading to an anti-tumor response. On the contrary, TLR4 has been implicated in carcinogenesis by secretion of anti-apoptotic proteins. Thus the aim of this study was to compare and correlate the association of HSP70 and TLR4 in various grades of oral squamous cell carcinoma.Twenty-seven cases of oral squamous cell carcinoma were considered. Ten cases each of well-differentiated (WDSCC) and moderately differentiated (MDSCC), 7 cases of poorly differentiated carcinoma (PDSCC) were considered. Sections were stained for HSP70 and TLR4 and were evaluated for staining degree and intensity.Positive expression of both HSP70 and TLR4 was found in all cases of WDSCC and MDSCC, whereas in PDSCC out of 7 cases only 6 showed positivity for TLR4 and 4 cases showed positivity for HSP70. Those cases that were positive for TLR4, also showed positivity for HSP70. HSP70 acts as a ligand and binds to TLR4 thus activating the My88 pathway resulting in production of proinflammatory cytokines, chemokines, growth factors etc., enhancing anti-cancer immunity in the early stages of disease. In later stages, TLRs expressed on cancer cells can produce anti-apoptotic proteins contributing to carcinogenesis and cancer cell proliferation.
2014Salivary histatin 3 inhibits heat shock cognate protein 70-mediated inflammatory cytokine production through toll-like receptors in human gingival fibroblasts.J Inflamm (Lond)Salivary histatins are bioactive peptides related to the innate immune system associated with antimicrobial activities. However, very little is known about the physiological and biological functions of histatins against host cells or their role in oral cell inflammation. Histatin 3 binds to heat shock cognate protein 70 (HSC70, a constitutively expressed heat shock protein (HSP)). It is unclear whether HSC70 is involved in the inflammatory response in oral cells. Injured oral cells release some intracellular proteins including HSC70. It is possible that released HSC70 induces toll-like receptor (TLR) activation, just as extracellular HSP70 (a stress inducible HSP) does, and that histatin 3 affects this process. Therefore, we tested the hypothesis that HSC70 activates TLR signaling and histatin 3 inhibits this activation and inflammatory cytokine production.A nuclear factor (NF)-κB-dependent luciferase reporter plasmid was transfected into HEK293 cells stably expressing TLR2 with coreceptor CD14 (293-TLR2/CD14 cells) or stably expressing TLR4 with CD14 and the accessory molecule MD2 (293-TLR4/MD2-CD14 cells). The cells were stimulated with HSC70 in the presence or absence of histatin 3, and examined using luciferase assays. We also stimulated human gingival fibroblasts (HGFs) with HSC70 with or without histatin 3. Then, we analyzed the levels of inflammatory cytokines (interleukin (IL)-6 and IL-8) in the culture media. Cell proteins were analyzed using enzyme-linked immunosorbent assay and Western blotting with antibodies of mitogen-activated protein kinases and NF-κB inhibitor IκB-α, respectively. Histatin 3-bound form of HSC70 was analyzed using limited V8 protease proteolysis.HSC70 induced NF-κB activation in a dose-dependent manner in 293-TLR2/CD14 and 293-TLR4/MD2-CD14 cells, and histatin 3 inhibited this process and when histatin 3 binding to HSC70 was precluded by 15-deoxyspergualin, which augmented NF-κB-triggered activation. In HGFs, histatin 3 also inhibited HSC70-induced inflammatory cytokine production, extracellular signal-regulated protein kinase phosphorylation, and degradation of IκB-α. Moreover, HSC70 in the presence of histatin 3 was relatively resistant to digestion by V8 protease compared with HSC70 in the presence of control peptide.Histatin 3 may be an inhibitor of HSC70-triggered activation of TLR signaling and inflammatory cytokine production and may be involved in inflammation processes noted in oral cells.
2014Innate immunity and cardiomyocytes in ischemic heart disease.Life SciMyocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) respond to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially Toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury.
2013Ethyl pyruvate ameliorates hepatic ischemia-reperfusion injury by inhibiting intrinsic pathway of apoptosis and autophagy.Mediators InflammHepatic ischemia-reperfusion (I/R) injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy.Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg) were administered 1 h before a model of segmental (70%) hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h).Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg). The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg). Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6).Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.
2014Multiple gene-to-gene interactions in children with sepsis: a combination of five gene variants predicts outcome of life-threatening sepsis.Crit CareThe aim of the study was to identify the dependency structure of genetic variants that can influence the outcome for paediatric patients with sepsis.We evaluated the role of single nucleotide polymorphisms for five genes: bactericidal permeability increasing protein (BPI; rs5743507), lipopolysaccharide-binding protein (LBP; rs2232618), toll-like receptor 4 (TLR4; rs4986790), heat shock protein 70 (HSP 70; rs2227956), and interleukin 6 (IL-6; rs1800795) in 598 children aged 0 to 19 years that were admitted to a paediatric intensive care unit with fever, systemic inflammatory response syndrome, sepsis, severe sepsis, septic shock, or multiple organ dysfunction syndrome. A control group of 529 healthy individuals was included. Multi-way contingency tables were constructed and statistically evaluated using log-linear models. Typical gene combinations were found for both study groups.Detailed analyses of the five studied gene profiles revealed significant differences in sepsis survival. Stratification into high-risk, intermediate-risk, and low-risk groups of paediatric patients can predict the severity of sepsis.Analysis of single nucleotide polymorphisms for five genes can be used as a predictor of sepsis outcome in children.
2013GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.PLoS OneThe number and function of endothelial progenitor cells (EPCs) are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4) mutation) mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS) in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.
2013IL-10 is significantly involved in HSP70-regulation of experimental subretinal fibrosis.PLoS OneSubretinal fibrosis is directly related to severe visual loss, especially if occurs in the macula, and is frequently observed in advanced age-related macular degeneration and other refractory eye disorders such as diabetic retinopathy and uveitis. In this study, we analyzed the immunosuppressive mechanism of subretinal fibrosis using the novel animal model recently demonstrated. Both TLR2 and TLR4 deficient mice showed significant enlargement of subretinal fibrotic area as compared with wild-type mice. A single intraocular administration of heat shock protein 70 (HSP70), which is an endogenous ligand for TLR2 and TLR4, inhibited subretinal fibrosis in wild-type mice but not in TLR2 and TLR4-deficient mice. Additionally, HSP70 induced IL-10 production in eyes from wild-type mice but was impaired in both TLR2- and TLR4-deficient mice, indicating that HSP70-TLR2/TLR4 axis plays an immunomodulatory role in subretinal fibrosis. Thus, these results suggest that HSP70-TLR2/TLR4 axis is a new therapeutic target for subretinal fibrosis due to prognostic CNV.
2014Polymorphisms of the toll-like receptor 2 and 4 genes are associated with faster progression and a more severe course of sepsis in critically ill patients.J Int Med ResTo determine whether the Arg753Gln polymorphism of the toll-like receptor 2 (TLR2) gene and the Asp299Gly polymorphism of the TLR4 gene in critically ill patients affect their clinical outcomes.Medical and surgical patients in three intensive care units (ICU) were enrolled in this prospective study. TLR2 and TLR4 gene polymorphisms were determined using restriction fragment length polymorphism analysis.A total of 145 patients were included in this study: 28 patients carried heterozygous mutations (10 in the TLR2 gene, 19 in the TLR4 gene, and one combined) and 117 patients were wild type. Severe sepsis was observed in 33% of wild types (n = 38), 60% of the TLR2 group (n = 6), and 63% of the TLR4 group (n = 12); the difference was significant between the TLR4 and wild type groups. Both TLR groups demonstrated a shorter time-to-onset of severe sepsis or septic shock. Only the TLR4 group demonstrated significant progression towards septic shock compared with the wild type group. Length of ICU stay was significantly prolonged in the TLR4 group compared with the wild type group, but not in the TLR2 group.Two common SNPs of the TLR2 and TLR4 genes--Arg753Gln and Asp299Gly--were associated with a shorter time-to-onset of severe sepsis or septic shock in patients admitted to the ICU.
2014TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells.Cell Mol ImmunolThe combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design of more efficient protocols for cancer chemoimmunotherapy. It is well known that danger-associated molecular patterns (DAMPs) can activate immune cells, including dendritic cells (DCs), via Toll-like receptors (TLRs); however, the role of DAMPs released from chemical drug-treated tumor cells in the activation of the immune response needs to be further elucidated. Here, we found that colorectal cancer (CRC) cells treated with oxaliplatin (OXA) and/or 5-fluorouracil (5-Fu) released high levels of high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70). After OXA/5-Fu therapy, the sera of CRC patients also exhibited increased levels of HMGB1 and HSP70, both of which are well-known DAMPs. The supernatants of dying CRC cells treated with OXA/5-Fu promoted mouse and human DC maturation, with upregulation of HLA-DR, CD80 and CD86 expression and enhancement of IL-1β, TNF-α, MIP-1α, MIP-1β, RANTES and IP-10 production. Vaccines composed of DCs pulsed with the supernatants of chemically stressed CRC cells induced a more significant IFN-γ-producing Th1 response both in vitro and in vivo. However, the supernatants of chemically stressed CRC cells failed to induce phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating an essential role of TLR4 in DAMP-induced DC maturation and activation. Furthermore, pulsing with the supernatants of chemically stressed CRC cells did not efficiently induce an IFN-γ-producing Th1 response in TLR4-deficient DCs. Collectively, these results demonstrate that DAMPs released from chemically stressed cancer cells can activate DCs via TLR4 and enhance the induction of an anti-tumor T-cell immune response, delineating a clinically relevant immuno-adjuvant pathway triggered by DAMPs.
2013GSK-3β inhibition attenuates LPS-induced death but aggravates radiation-induced death via down-regulation of IL-6.Cell Physiol BiochemExposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS), the ligands of Toll-like receptor 4(TLR4), could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β) promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation.WT or IL-6(-/-)mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA.SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6(-/-) mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice.Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.
2013Acanthopanax koreanum Nakai modulates the immune response by inhibiting TLR 4-dependent cytokine production in rat model of endotoxic shock.Nutr Res PractThe hepatoprotective activity of Acanthopanax koreanum Nakai extract (AE) was investigated against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced liver failure rats compared with that of acanthoic acid (AA) isolated from AE. Although D-GalN/LPS (250 mg/kg body weight/10 µg/kg body weight, i.p.) induced hepatic damage, pretreatments with AE (1 and 3% AE/g day) and AA (0.037% AA, equivalent to 3% AE/g day) alleviated the hepatic damage. This effect was the result of a significant decrease in the activity of alanine transaminase. Concomitantly, both the nitric oxide and IL-6 levels in the plasma were significantly decreased by high-dose AE (AE3) treatment compared to the GalN/LPS control (AE0). This response resulted from the regulation of pro-inflammatory signaling via a decrease in TLR4 and CD14 mRNA levels in the liver. While a high degree of necrosis and hemorrhage were observed in the AE0, pretreatment with AE3 and AA reduced the extent of hepatocyte degeneration, necrosis, hemorrhage and inflammatory cell infiltrates compared to the AE0. In conclusion, these results suggest that especially high-dose AE are capable of alleviating D-GalN/LPS-induced hepatic injury by decreasing hepatic toxicity, thereby mitigating the TLR 4-dependent cytokine release. The anti-inflammatory effect of AE could be contributing to that of AA and AE is better than AA.
2014Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance in vivo and cause pancreatic β-cell dysfunction and death in vitro.Clin Sci (Lond)eHSP72 (extracellular heat-shock protein 72) is increased in the plasma of both types of diabetes and is positively correlated with inflammatory markers. Since aging is associated with a low-grade inflammation and IR (insulin resistance), we aimed to: (i) analyse the concentration of eHSP72 in elderly people and determine correlation with insulin resistance, and (ii) determine the effects of eHSP72 on β-cell function and viability in human and rodent pancreatic β-cells. Fasting blood samples were collected from 50 older people [27 females and 23 males; 63.4±4.4 years of age; BMI (body mass index)=25.5±2.7 kg/m2]. Plasma samples were analysed for eHSP72, insulin, TNF (tumour necrosis factor)-α, leptin, adiponectin and cortisol, and glycaemic and lipid profile. In vitro studies were conducted using rodent islets and clonal rat and human pancreatic β-cell lines (BRIN-BD11 and 1.1B4 respectively). Cells/islets were incubated for 24 h with eHSP72 (0, 0.2, 4, 8 and 40 ng/ml). Cell viability was measured using three different methods. The impact of HSP72 on β-cell metabolic status was determined using Seahorse Bioscience XFe96 technology. To assess whether the effects of eHSP72 were mediated by Toll-like receptors (TLR2/TLR4), we co-incubated rodent islets with eHSP72 and the TLR2/TLR4 inhibitor OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; 30 μg/ml). We found a positive correlation between plasma eHSP72 and HOMA-IR (homoeostasis model assessment of IR) (r=0.528, P<0.001), TNF-α (r=0.389, P<0.014), cortisol (r=0.348, P<0.03) and leptin/adiponectin (r=0.334, P<0.03). In the in vitro studies, insulin secretion was decreased in an eHSP72 dose-dependent manner in BRIN-BD11 cells (from 257.7±33 to 84.1±10.2 μg/mg of protein per 24 h with 40 ng/ml eHSP72), and in islets in the presence of 40 ng/ml eHSP72 (from 0.48±0.07 to 0.33±0.009 μg/20 islets per 24 h). Similarly, eHSP72 reduced β-cell viability (at least 30% for BRIN-BD11 and 10% for 1.1B4 cells). Bioenergetic studies revealed that eHSP72 altered pancreatic β-cell metabolism. OxPAPC restored insulin secretion in islets incubated with 40 ng/ml eHSP72. In conclusion, we have demonstrated a positive correlation between eHSP72 and IR. In addition, we suggest that chronic eHSP72 exposure may mediate β-cell failure.
2013Recognition of lipopolysaccharide pattern by TLR4 complexes.Exp Mol MedLipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. Minute amounts of LPS released from infecting pathogens can initiate potent innate immune responses that prime the immune system against further infection. However, when the LPS response is not properly controlled it can lead to fatal septic shock syndrome. The common structural pattern of LPS in diverse bacterial species is recognized by a cascade of LPS receptors and accessory proteins, LPS binding protein (LBP), CD14 and the Toll-like receptor4 (TLR4)-MD-2 complex. The structures of these proteins account for how our immune system differentiates LPS molecules from structurally similar host molecules. They also provide insights useful for discovery of anti-sepsis drugs. In this review, we summarize these structures and describe the structural basis of LPS recognition by LPS receptors and accessory proteins.
2013Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases.Front ImmunolToll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis.
2014Mycoplasma superantigen initiates a TLR4-dependent Th17 cascade that enhances arthritis after blocking B7-1 in Mycoplasma arthritidis-infected mice.Cell MicrobiolMycoplasma arthritidis is a natural pathogen of rodents causing arthritis, toxic shock and necrotizing fasciitis. It secretes a potent superantigen (SAg), MAM, that differentially affects the immune system depending upon presence or absence of TLR4, thus potentially influencing disease outcomes. Here, we establish that antibody to co-stimulatory molecule B7-1(CD80) enhances arthritis in wild-type C3H/HeSnJ (TLR2+4+) mice but suppresses arthritis in TLR4-defect C3H/HeJ (TLR2+4-) mice. Also, blockade of the B7-1/CD28 co-stimulatory pathway in C3H/HeSnJ mice resulted in a marked increase in an alternative co-stimulatory pathway ICOS/ICOSL that was associated with elevation of the IL-17/Th17cascade with enhanced IL-23, IL-6, and the RORγt and STAT3 transcriptional factors on CD4+ T cells. Anti- B7-1 also increased inflammatory chemokines and the stress protein HMGB1 that promotes cellular infiltration to joints. Using a MAM-deficient strain of M. arthritidis, a monoclonal antibody to TLR4 and a TLR4-defective mouse strain, we established that both MAM and TLR4 are required for the systemic and local joint triggering of the Th17/IL-17 cascade in mice treated with anti-B7-1 antibody. Importantly, blocking of IL-17 with anti-IL-17 antibody suppressed the elevated arthritis in M. arthritidis-infected mice treated with anti-B7-1 antibody. Thus, this unique model of arthritis illustrates how microbial agonists can bridgeinnate and adaptive immune responses to redirect signalling pathways, thus promoting chronic inflammatory and autoimmune disease.
2014Nitric oxide production by endotoxin preparations in TLR4-deficient mice.Nitric OxideSepsis and septic shock result from an exacerbated systemic inflammatory reaction to infection. Their incidence is rising, and they have recently become the main cause of death in intensive care units. Septic shock is defined as sepsis accompanied by life-threatening refractory hypotension, for which excessive nitric oxide (NO), produced by inducible NO synthase iNOS, is thought responsible. LPS, a vital outer membrane component of Gram-negative bacteria, mimics most of the septic effects and is widely used as a model for septic shock. TLR4 is the signal-transducing receptor for LPS, evidenced by the resistance of TLR4-deficient C3H/HeJ and C57BL/10ScNJ mice. As expected, we found that TLR4 deficiency precludes LPS-induced cytokine production, independent of the purity of the LPS preparation. However, various conventional LPS preparations induced NO in TLR4-deficient mice to the same level as in control animals, while ultrapure LPS did not, indicating the presence of NO-producing contaminant(s). Nevertheless, despite identical iNOS induction pattern and systemic NO levels, the contaminant does not cause hypotension, hypothermia, or any other sign of morbidity. Using mice deficient for TLR2, TRL3, TLR4, TRL2x4, TLR9, MyD88 or TRIF, we found that the contaminant signals via TLR2 and MyD88. In conclusion, conventional LPS preparations generally used in endotoxic shock research contain TLR2 agonists that induce iNOS and high levels of systemic NO as such, and synergize with LPS towards the production of pro-inflammatory cytokines, morbidity and mortality. Surprisingly, the excessive iNOS-derived systemic NO production induced by impure LPS in TLR4⁻/⁻ is not accompanied by hypotension or morbidity.
2013Toll-like receptor 4 signaling in trigeminal ganglion neurons contributes tongue-referred pain associated with tooth pulp inflammation.J NeuroinflammationThe purpose of the present study is to evaluate the mechanisms underlying tongue-referred pain associated with tooth pulp inflammation.Using mechanical and temperature stimulation following dental surgery, we have demonstrated that dental inflammation and hyperalgesia correlates with increased immunohistochemical staining of neurons for TLR4 and HSP70.Mechanical or heat hyperalgesia significantly enhanced in the ipsilateral tongue at 1 to 9 days after complete Freund's adjuvant (CFA) application to the left lower molar tooth pulp compared with that of sham-treated or vehicle-applied rats. The number of fluorogold (FG)-labeled TLR4-immunoreactive (IR) cells was significantly larger in CFA-applied rats compared with sham-treated or vehicle-applied rats to the molar tooth. The number of heat shock protein (Hsp) 70-IR neurons in trigeminal ganglion (TG) was significantly increased on day 3 after CFA application compared with sham-treated or vehicle-applied rats to the molar tooth. About 9.2% of TG neurons were labeled with DiI applied to the molar tooth and FG injected into the tongue, and 15.4% of TG neurons were labeled with FG injected into the tongue and Alexa-labeled Hsp70-IR applied to the tooth. Three days after Hsp70 or lipopolysaccharide (LPS) application to the tooth in naive rats, mechanical or heat hyperalgesia was significantly enhanced compared with that of saline-applied rats. Following successive LPS-RS, an antagonist of TLR4, administration to the TG for 3 days, the enhanced mechanical or heat hyperalgesia was significantly reversed compared with that of saline-injected rats. Noxious mechanical responses of TG neurons innervating the tongue were significantly higher in CFA-applied rats compare with sham rats to the tooth. Hsp70 mRNA levels of the tooth pulp and TG were not different between CFA-applied rats and sham rats.The present findings indicate that Hsp70 transported from the tooth pulp to TG neurons or expressed in TG neurons is released from TG neurons innervating inflamed tooth pulp, and is taken by TG neurons innervating the tongue, suggesting that the Hsp70-TLR4 signaling in TG plays a pivotal role in tongue-referred pain associated with tooth pulp inflammation.
2013Toll-like receptor-2 ligand peptidoglycan upregulates expression and ubiquitin ligase activity of CHIP through JNK pathway.Cell Physiol BiochemPeptidoglycan (PGN) is a component of cell wall in Gram-positive bacteria that stimulates inflammatory responses through Toll-like receptor 2 (TLR2). The carboxyl terminus of constitutive heat shock cognate 70 (HSC70)-interacting protein (CHIP, also known as Stub1) is a U-box-type E3 ubiquitin ligase, which plays an important role in protein quality control and inflammation through ubquitin-mediated proteasomal degradation. However, it is unclear whether TLR2 agonist PGN regulates the expression and activation of CHIP.In this study, we showed that PGN significantly up-regulated the expression of CHIP in both mRNA and protein levels in RAW264.7 cells in a time-dependant manner, and the expression of CHIP induced by PGN was abolished in TLR2 knockout macrophages. No significant change in CHIP was observed after lipopolysaccharide (LPS, TLR4 agonist) and cytosine-phosphorous-guanine oligonucleotide (CpG ODN, TLR9 agonist) treatment. Moreover, PGN markedly induced the expression and activity of CHIP in macrophages, whereas this effect was attenuated by SP600125, a selective inhibitor of JNK.Our study for the first time demonstrates that TLR2 activation enhances the expression and activity of CHIP through JNK signaling pathway.
2013Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation.AlcoholGenetically engineered mice are a valuable resource for studies of the behavioral effects of ethanol. However, for some behavioral tests of ethanol action, the rat is a superior model organism. Production of genetically engineered rats has been severely hampered due to technical limitations. Here we utilized a promising new technique for efficient site-specific gene modification to create a novel gene knockout rat line. This approach is based on transcriptional activator-like effector nucleases (TALENs). TALENs function in pairs and bind DNA in a sequence-specific manner. Upon binding to the target sequence, a functional nuclease is reconstituted that creates double-stranded breaks in the DNA that are efficiently repaired by non-homologous end joining. This error-prone process often results in deletions of varying lengths at the targeted locus. The toll-like receptor 4 (Tlr4) gene was selected for TALEN-mediated gene inactivation. Tlr4 has been implicated in ethanol-induced neuroinflammation and neurodegeneration, as well as multiple ethanol-induced behavioral effects. To generate Tlr4 knockout rats, a pair of TALEN constructs was created that specifically target Exon 1 immediately downstream of the start of translation. TALEN mRNAs were microinjected into the cytoplasm of one-cell Wistar rat embryos. Of 13 live-born pups that resulted, one harbored a mutation in Exon 1 of Tlr4. The mutated allele consisted of a 13 base-pair deletion that was predicted to create a frameshift mutation after amino acid 25. This founder rat successfully transmitted the mutation to F1 offspring. Heterozygous F1 offspring were interbred to produce homozygous F2 animals. Homozygous mutants expressed the 13-bp deletion in Tlr4 mRNA. In contrast to control rats that produced a robust increase in plasma tumor necrosis factor alpha in response to a lipopolysaccharide challenge, homozygous rats had a markedly attenuated response. Thus, the mutant Tlr4 allele generated by TALEN-mediated gene inactivation represents a null allele. This knockout rat line will be valuable for studies of ethanol action as well as more general inflammatory conditions including septic shock. In conclusion, TALEN-mediated gene targeting in rat zygotes represents an inexpensive, efficient, and rapid method for creating genetically engineered rats.
2014Resveratrol and desferoxamine protect human OxLDL-treated granulosa cell subtypes from degeneration.J Clin Endocrinol MetabObese women suffer from anovulation and infertility, which are driven by oxidative stress caused by increased levels of lipid peroxides and circulating oxidized low-density lipoprotein (oxLDL). OxLDL binds to lectin-like oxLDL receptor 1 (LOX-1), cluster of differentiation 36 (CD36), and toll-like receptor 4 (TLR4) and causes cell death in human granulosa cells (GCs).Our objective was to reveal whether treatment with antioxidants resveratrol (RES) and/or desferoxamine (DFO) protect GCs from oxLDL-induced damage.This basic research study was performed at the Institute of Anatomy and the Clinic of Reproductive Medicine.Patients were women undergoing in vitro fertilization therapy.GC cultures were treated with oxLDL alone or with RES or DFO under serum-free conditions for up to 36 hours. Dead cells were determined by propidium iodide uptake, cleaved caspase-3 expression, and electron microscopy. Mitosis was detected by Ki-67 immunostaining. LOX-1, TLR4, CD36, and heat-shock protein 60 were examined by Western blot. Measurement of oxidative stress markers (8-iso-prostaglandin F2α, advanced glycation end products, and protein carbonyl content) was conducted with ELISA kits.Different subtypes of human GCs exposed to RES or DFO were protected as evidenced by the lack of cell death, enhanced mitosis, induction of protective autophagy, reduction of oxidative stress markers, and reduced expression of LOX-1, TLR4, CD36, and heat-shock protein 60. Importantly, RES could restore steroid biosynthesis in cytokeratin-positive GCs, which exhibited significant induction of steroidogenic acute regulatory protein.RES and DFO exert a protective effect on human GCs. Thus, RES and DFO may help improve the treatment of obese women or polycystic ovarian syndrome patients undergoing in vitro fertilization therapy.
2014Immunopathogenesis of abdominal sepsis.Langenbecks Arch SurgSepsis is an unsolved problem worldwide, with a 30-50 % mortality rate. The recent failures of anti-TLR4, recombinant activated protein C, and anti-TNF in clinical trials indicate a need to rethink our current understanding of sepsis’s pathophysiology. While the initial immune response is crucial for effective clearance of invading pathogens, an overly exuberant host response to infection can cause septic shock, tissue damage, and death. Profuse inflammation in sepsis is frequently followed by global immunosuppression that increases susceptibility to viral and bacterial infections. Despite the dangers of immune over-response, the immune system’s anti-inflammatory activities are likely necessary to reduce the initial over-activation of the immune system.With this review, we want to illuminate the different aspects of immune response to sepsis and provide insight to the ongoing difficulties currently present within sepsis research.Future treatment strategies for sepsis should focus on maintaining balance between pro- and anti-inflammatory immune actions in a timely manner.
2013Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis.Nat MedA systemic inflammatory response is observed in patients undergoing hemorrhagic shock and sepsis. Here we report increased levels of cold-inducible RNA-binding protein (CIRP) in the blood of individuals admitted to the surgical intensive care unit with hemorrhagic shock. In animal models of hemorrhage and sepsis, CIRP is upregulated in the heart and liver and released into the circulation. In macrophages under hypoxic stress, CIRP translocates from the nucleus to the cytosol and is released. Recombinant CIRP stimulates the release of tumor necrosis factor-α (TNF-α) and HMGB1 from macrophages and induces inflammatory responses and causes tissue injury when injected in vivo. Hemorrhage-induced TNF-α and HMGB1 release and lethality were reduced in CIRP-deficient mice. Blockade of CIRP using antisera to CIRP attenuated inflammatory cytokine release and mortality after hemorrhage and sepsis. The activity of extracellular CIRP is mediated through the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex. Surface plasmon resonance analysis indicated that CIRP binds to the TLR4-MD2 complex, as well as to TLR4 and MD2 individually. In particular, human CIRP amino acid residues 106-125 bind to MD2 with high affinity. Thus, CIRP is a damage-associated molecular pattern molecule that promotes inflammatory responses in shock and sepsis.
2013Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock.ScienceInflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS.
2013Single-nucleotide polymorphisms in Toll-like receptor (TLR)-2, TLR4 and heat shock protein 70 genes and susceptibility to scrub typhus.J Hum GenetScrub typhus is a highly prevalent bacterial infection in India and South Asia that is caused by Orientia tsutsugamushi. The innate immune response to infections is modulated by Toll-like receptors (TLRs) and heat shock proteins (HSPs). This study was done to assess the prevalence and possible association of TLR and HSP polymorphisms in scrub typhus. TLR4 Asp299Gly, TLR4 Thr399Ile, TLR2 Arg753Gln and HSP70-2 A1267G are single-nucleotide polymorphisms (SNPs) that may modulate their activities, and these SNPs were assessed in 137 scrub typhus patients and 134 controls by PCR restriction fragment length polymorphism. We found that the two TLR4 mutations, TLR4 D299G and TLR4T399I, were present in 19.5% and 22% of the study population, respectively, and was in significant linkage disequilibrium with a D' of 0.8. The TLR2 mutation was found to be rare, whereas the HSP A>G mutation was very common (77.5%). Compared with the controls, the prevalence of heterozygous genotype of the TLR4D299G SNP, but not any of the other SNPs, was significantly higher among scrub typhus patients. Further studies using a larger sample size and more candidate genes may better enable in determining the role of these associations in susceptibility and severity of scrub typhus.
2013Bone marrow and nonbone marrow Toll like receptor 4 regulate acute hepatic injury induced by endotoxemia.PLoS OneToll-like receptors (TLRs) are expressed in immune cells and hepatocytes. We examined whether hepatic Toll-like receptor 4 (TLR4) is involved in the acute hepatic injury caused by the administration of lipopolysaccharide (LPS) (septic shock model).Wild type (WT), TLR4-deficient and chimera mice underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the liver or in the immune-hematopoietic system. Mice were injected with LPS and sacrificed 4 hours later.Compared to TLR4 deficient mice, WT mice challenged with LPS displayed increased serum liver enzymes and hepatic cellular inflammatory infiltrate together with increased serum and hepatic levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNFα) ,Up-regulation of hepatic mRNA encoding TLR4, IκB and c-jun expressions. TLR4 mutant mice transplanted with WT bone marrow were more protected than WT chimeric mice bearing TLR4 mutant hemopoietic cells from LPS, as seen by IL-1β and TNFα levels. We then used hepatocytes (Huh7) and macrophages from monocytic cell lines to detect TLR mRNA expression. Macrophages expressed a significantly higher level of TLR4 mRNA and TLR2 (more than 3000- and 8000-fold respectively) compared with the hepatocyte cell line. LPS administration induced TLR4 activation in a hepatocyte cell line in a dose dependent manner while TLR2 mRNA hardly changed.These results suggest that TLR4 activation of hepatocytes participate in the immediate response to LPS induced hepatic injury. However, in this response, the contribution of TLR4 on bone marrow derived cells is more significant than those of the hepatocytes. The absence of the TLR4 gene plays a pivotal role in reducing hepatic LPS induced injury.
2013Toll-like receptor 4 is involved in myocardial damage following paraquat poisoning in mice.ToxicologyThe ingestion of the herbicide paraquat (PQ) can cause multiple organ injury including cardiac lesions. However, the underlying mechanism of myocardial damage is not known. Toll-like receptor 4 (TRL4) is a pattern-recognition receptor in the innate immune response to microbial pathogens. TLR4 is involved in heart dysfunction such as septic shock or myocardial ischemia. We investigated whether TLR4 would be linked to the pathogenesis of heart disease due to PQ exposure. Wild type mice (WT) and TLR4-deficient mice were injected intraperitoneally with 75mg/kg of PQ to induce myocardial damage and tested for echocardiographic assessment, histopathology, pro-inflammatory cytokine and TLR4 expression. WT mice after PQ exposure displayed deteriorate cardiac function, pathological damages, increased TLR4 mRNA and protein levels as well as myocardial TNF-α and IL-1β levels. Compared with WT mice, TLR4-deficient mice were significantly resistant to the PQ-induced injury. We concluded that the TLR4 was required as a mediator and played an important role in myocardial damage due to PQ.
2013Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer.Cancer LettEmodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal, leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer. This review summarizes reported anti-inflammatory and anti-cancer effects of emodin, and re-emphasizes its potential therapeutic role in the treatment of inflammatory diseases and cancer.
2014Zinc oxide influences intestinal integrity, the expressions of genes associated with inflammation and TLR4-myeloid differentiation factor 88 signaling pathways in weanling pigs.Innate ImmunThis study explored whether zinc oxide (ZnO) supplementation could alleviate weanling-induced intestinal injury through TLR and NOD-like receptor signaling pathways. Twelve early-weanling piglets were allotted to two dietary treatments (control vs 2200 mg Zn/kg from ZnO) for 1 wk. The results showed that supplemental ZnO improved daily gain and feed intake, decreased post weaning scour scores, increased villus height and villus height:crypt depth ratio at the jejunal mucosa, and decreased diamine oxidase activity and endotoxin concentration in plasma. The intestinal mRNA levels of TLR4 and its downstream signals, including MyD88, IL-1 receptor-associated kinase 1 and TNF-α receptor-associated factor 6, were decreased, and the expressions of intestinal pro-inflammatory cytokines and chemokines were decreased simultaneously in the ZnO-supplemented piglets. Although NF-κB p65 mRNA abundance was not affected by ZnO supplementation, NF-κB p65 protein expression was down-regulated by ZnO. However, ZnO supplementation had no effect on intestinal expressions of NOD1 and NOD2, and their adaptor molecule receptor-interacting serine/threonine-protein kinase 2, as well as protein expressions of caspase-3 and heat shock protein 70. The results indicated that the protective effects of ZnO on intestinal integrity were closely related to decreasing the expressions of genes associated with inflammation through inhibiting the TLR4-MyD88 signaling pathways.
2013(1→3)-β-D-Glucan reduces the damages caused by reactive oxygen species induced in human platelets by lipopolysaccharides.Carbohydr PolymLPS (lipopolysaccharide) induces platelet activation and is a well-known fundamental agent of septic shock and disseminated intravascular coagulation (DIC). Biological activity of (1→3)-β-D-glucan is related due to its anti-inflammatory, antioxidant, and antitumor properties. We focus our attention on the (1→3)-β-D-glucan (antiplatelet) properties. The main purpose of our study was to evaluate the influence of (1→3)-β-D-glucan from Saccharomyces cerevisiae on destructive activity of LPS (from Escherichia coli and Pseudomonas aeruginosa) on human blood platelets. We assess biochemically in vitro if (1→3)-β-D-glucan might combat the oxidative stress caused by LPS stroke associated with nitrative and oxidative damages of human platelet biomolecules. We also make an attempt by in silico molecular docking to determine the interactions between the molecules of (1→3)-β-D-glucan and LPS. Our conclusion is that protective mechanism of (1→3)-β-D-glucan against LPS action on blood platelets is due to as well: its antioxidant properties, as to its interaction with LPS-binding region of TLR4-MD-2 complex.
2013Signaling via TLR2 and TLR4 Directly Down-Regulates T Cell Effector Functions: The Regulatory Face of Danger Signals.Front ImmunolToll-like receptors (TLRs) are widely expressed and play an essential role in the activation of innate immune cells. However, certain TLRs are also expressed on T cells, and TLR ligands can directly modulate T cell functions. Here, we discuss findings indicating that T cells directly respond to Heat Shock Protein (HSP) 60, a self molecule, or to the HSP60-derived peptide, p277, via a TLR2-dependent mechanism. HSP60 has been considered to be a "danger signal" for the immune system because of its ability to induce pro-inflammatory phenotypes in innate immune cells - in this case via TLR4 activation; nevertheless, TLR2 engagement by HSP60 on T cells can lead to resolution of inflammation by up-regulating the suppression function of regulatory T cells and shifting the resulting cytokine secretion balance toward a Th2 phenotype. Moreover, T cell TLR4 engagement by LPS leads to up-regulation of suppressor of cytokine signaling 3 expression and consequently down-regulates T cell chemotaxis. Thus, TLR2 and TLR4 activation can contribute to both induction and termination of effector immune responses by controlling the activities of both innate and adaptive immune cells.
2013Discovery of high frequencies of the Gly-Ile haplotype of TLR4 in Indian populations requires reformulation of the evolutionary model of its maintenance.Infect Genet EvolThe Out-of-Africa migration of modern humans has led to the evolution of immunity genes in general, particularly those related to direct host-pathogen interactions. The Toll-like receptor 4 (TLR4) is one such cell-surface pattern recognition receptor that has been associated with susceptibility and resistance to Gram-negative infections. In this report, we have studied the genetic variation in the TLR4 gene across pre- and post-agricultural populations in India. Two non-synonymous SNPs at the loci Asp299Gly and Thr399Ile are genotyped in 266 individuals from these populations. Previous studies have shown that specific alleles at these two loci are associated with inflammatory response and also claimed the complete absence of the Gly-Ile (double-mutated) haplotype in populations from Asia and America due to some evolutionary disadvantage owing to septic shock. Contrary to such claims, our study reports for the first time, high (10%) to moderate (3-6%) frequencies of the Gly-Ile haplotype in one non-tribal and two tribal populations of India respectively. The presence of this haplotype in ancient tribal populations of India indicates the possibility of its important role in pathogen recognition or susceptibility to infections. Therefore, natural selection, not merely genetic drift, may have played an important role in shaping the frequency distribution of haplotypes at these two loci in TLR4. For a more global perspective, we have also estimated the frequency of this haplotype in all the 14 continental populations included in the 1000 Genomes Project. Our study provides direct evidence for the reformulation of existing models of evolutionary maintenance of these polymorphisms in the TLR4 gene.
2013Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation.PLoS OneImmunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg) frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A)-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT) levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6), and number of IFN-γ (+) CD4(+) and IFN-γ (+) CD8(+) T cells in the spleen and liver. In contrast, CD4(+)CD25(+)Foxp3(+) Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.
2013Genetic variations in toll-like receptor 4 in Mexican-Mestizo patients with intra-abdominal infection and/or pneumonia.Immunol LettSepsis is a leading cause of death around the world, and 73-83% of all sepsis cases requiring attention in intensive care units are linked to intra-abdominal infection (IAI) or pneumonia. The activation of innate immunity is central to the manifestation of sepsis, and toll-like receptor (TLR) 4 plays an important role in this activation process. The 299G and 399I alleles of TLR4 have been linked with an increased risk of Gram-negative bacteria (GNB) infections and septic shock in some populations. This case-control study evaluated the prevalence of D299G/T399I polymorphisms in Mexican patients with IAI and/or pneumonia and in healthy controls. Genotyping revealed that 1 in 44 patients (2.3%; CI 95%: 0.05-12.0%) and 4 in 126 controls (3.2%; CI 95%: 0.9-7.9%) were heterozygous for both the D299G and T399l polymorphisms (OR: 0.71, CI 95%: 0.01-7.44, p = NS), confirming the co-segregation of these alleles in this population. Furthermore, the patients with a GNB infection and severe sepsis were not carriers of the risk alleles. In summary, this report shows that the frequency of the D299G and T399I polymorphisms in Mexican-Mestizos is lower than anticipated in comparison with other ethnic groups, emphasizing the variable distribution of TLR4 polymorphisms among different populations. Consequently, this study was not able to detect associations between TLR4 polymorphisms and sepsis in this population.
2013Endocytosis of Mycobacterium tuberculosis heat shock protein 60 is required to induce interleukin-10 production in macrophages.J Biol ChemUnderstanding the signaling pathways involved in the regulation of anti-inflammatory and pro-inflammatory responses in tuberculosis is extremely important in tailoring a macrophage innate response to promote anti-tuberculosis immunity in the host. Although the role of toll-like receptors (TLRs) in the regulation of anti-inflammatory and pro-inflammatory responses is known, the detailed molecular mechanisms by which the Mycobacterium tuberculosis bacteria modulate these innate responses are not clearly understood. In this study, we demonstrate that M. tuberculosis heat shock protein 60 (Mtbhsp60, Cpn60.1, and Rv3417c) interacts with both TLR2 and TLR4 receptors, but its interaction with TLR2 leads to clathrin-dependent endocytosis resulting in an increased production of interleukin (IL)-10 and activated p38 MAPK. Blockage of TLR2-mediated endocytosis inhibited IL-10 production but induced production of tumor necrosis factor (TNF)-α and activated ERK1/2. In contrast, upon interaction with TLR4, Mtbhsp60 remained predominantly localized on the cell surface due to poorer endocytosis of the protein that led to decreased IL-10 production and p38 MAPK activation. The Escherichia coli homologue of hsp60 was found to be retained mainly on the macrophage surface upon interaction with either TLR2 or TLR4 that triggered predominantly a pro-inflammatory-type immune response. Our data suggest that cellular localization of Mtbhsp60 upon interaction with TLRs dictates the type of polarization in the innate immune responses in macrophages. This information is likely to help us in tailoring the host protective immune responses against M. tuberculosis.
2013Additive effects of inflammation and stress reaction on Toll-like receptor 4-mediated growth of endometriotic stromal cells.Hum ReprodIs there any combined effect between inflammation and stress reaction on Toll-like receptor 4 (TLR4)-mediated growth of endometriotic cells?A combined effect of local inflammation and stress reaction in the pelvic environment may be involved in TLR4-mediated growth of endometriotic stromal cells.In endometriosis, higher endotoxin levels in the menstrual fluid (MF) and peritoneal fluid (PF) and higher tissue concentrations of human heat shock protein 70 (HSP70) in the eutopic and ectopic endometria promote TLR4-mediated growth of endometriotic cells.This is a case-controlled research study with prospective collection and retrospective evaluation of sera, MF, PF and endometrial tissues from 43 women with and 20 women without endometriosis.PF was collected from 43 women with endometriosis and 20 control women during laparoscopy. Sera and endometrial biopsy specimens were collected from a proportion of these women. MF was collected from a separate population of 20 women with endometriosis and 15 control women. HSP70 concentrations in sera, MF, PF and in culture media were measured by ELISA. Gene expression of HSP70 by endometrial cells in response to lipopolysaccharide (LPS) was examined by qRT-PCR. The individual and combined effects of LPS and HSP70 on the secretion of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) by PF-derived macrophages (M[Symbol: see text]) were examined by ELISA, while their effects on endometrial cell proliferation were examined by bromodeoxyuridine and [(3)H]-thymidine incorporation assay.Concentrations of HSP70 were maximal in MF, intermediate in PF and the lowest in sera. In MF and PF, HSP70 levels were higher in women with endometriosis than in controls. LPS stimulated gene expression and secretion of HSP70 by eutopic endometrial stromal cells (ESCs) and this effect was abrogated after pretreatment of cells with an anti-TLR4 antibody. This effect was significantly higher for ESCs derived from women with endometriosis than for ESCs from control women. Exogenous treatment with either HSP70 or LPS significantly stimulated the production of IL-6 and TNFα by M[Symbol: see text] and promoted the proliferation of ESCs, and a significant additive effect between LPS and HSP70 was observed. While individual treatment with either polymyxin B, an LPS antagonist, or anti-HSP70 antibody was unable to suppress the combined effects of LPS and HSP70 on cytokine secretion or ESC proliferation, pretreatment of cells with the anti-TLR4 antibody was able to significantly suppress their combined effects.Further studies are needed to examine the mutual role between other secondary inflammatory mediators and endogenous stress proteins in promoting pelvic inflammation and growth of endometriotic stromal cells.Our findings suggest that endotoxin and HSP70 are mutually involved in a stress reaction and in inflammation. A combined effect between local inflammation and a stress reaction in pelvic environment may be involved in TLR4-mediated growth of endometriotic cells. Since endometriosis is a multi-factorial disease, it is difficult to explain uniformly its growth regulation by a single factor. Our findings may provide some new insights in understanding the physiopathology or pathogenesis of endometriosis and may hold new therapeutic potential.This work was supported by Grants-in-Aid for Scientific Research (grant no. 16591671 and 18591837) from the Ministry of Education, Sports, Culture, Science and Technology of Japan (to K.N.K.). There is no conflict of interest related to this study.Not applicable.
2013Invasion potential of H22 hepatocarcinoma cells is increased by HMGB1-induced tumor NF-κB signaling via initiation of HSP70.Oncol RepThe functional relationship and cross-regulation between damage-associated molecular patterns and NF‑κB in the tumor microenvironment remains unclear. In the present study, high-mobility group protein B1 (HMGB1) was secreted in response to feed second phase of NF‑κB activation from heat shock protein (HSP) 70 that may result in a higher invasion potential of hepatocarcinoma cells. HSP70 promoted the proliferation of H22 hepatocarcinoma cells through Toll-like receptor (TLR) 2 and TLR4 signaling and induced the early phosphorylation of NF-κB, which reached maximum levels within 30 min. However, HSP70 promoted the upregulation of Beclin-1 expression via Jun N-terminal kinase (JNK) activation in tumor cells and the release of HMGB1 from tumor cells. Inhibition of Beclin-1/c-JNK production prevented the second, but not the first, phase of NF-κB phosphorylation, implicating Beclin-1/c-JNK in the second phase of phosphorylation. HSP70 induced Beclin-1-derived HMGB1 production at 4 h, which occurred before the rise in the second phosphorylation that occurred at 6 h. Exogenous HMGB1 also induced the rapid phosphorylation of NF-κB and upregulated the expression of MMP-9, inhibited the rapid phosphorylation of NF-κB and reduced MMP-9 by receptor for advanced glycation end products (RAGE) inhibitor that prevented HMGB1-induced cell invasion in vitro, which demonstrated that the biological significance of HMGB1/RAGE is key to the second, but not the first, phase of NF-κB phosphorylation in tumor cells. HSP70 triggered a positive feedback loop of NF-κB activation in H22 cells. The second phase of NF-κB phosphorylation mediated by HSP70 is implicated in the increase of tumor cell malignant invasion.
2013Eritoran attenuates tissue damage and inflammation in hemorrhagic shock/trauma.J Surg ResSevere injury and associated hemorrhagic shock lead to an inflammatory response and subsequent increased tissue damage. Numerous reports have shown that injury-induced inflammation and the associated end-organ damage is driven by Toll-like receptor 4 (TLR4) activation via damage-associated molecular patterns. We examined the effectiveness of Eritoran tetrasodium (E5564), an inhibitor of TLR4 function, in reducing inflammation induced during hemorrhagic shock with resuscitation (HS/R) or after peripheral tissue injury (bilateral femur fracture, BFF).Mice underwent HS/R or BFF with or without injection of Eritoran (5 mg/kg body weight) or vehicle control given before, both before and after, or only after HS/R or BFF. Mice were sacrificed after 6 h and plasma and tissue cytokines, liver damage (histology; aspartate aminotransferase/alanine aminotransferase), and inflammation (NF-κB) and gut permeability were assessed.In HS/R Eritoran significantly reduced liver damage (values ± SEM: alanine aminotransferase 9910 ± 3680 U/L versus 1239 ± 327 U/L and aspartate aminotransferase 5863 ± 2000 U/L versus 1246 ± 243 U/L, P < 0.01) at 6 h compared with control when given just before HS and again just prior to resuscitation. Eritoran administration also led to lower IL-6 levels in plasma and liver and less NF-κB activation in liver. Increases in gut barrier permeability induced by HS/R were also prevented with Eritoran. Eritoran similarly diminished BFF-mediated systemic inflammatory responses.These data suggest Eritoran can inhibit tissue damage and inflammation induced via TLR4/myeloid differentiation factor 2 signaling from damage-associated molecular patterns released during HS/R or BFF. Eritoran may represent a promising therapeutic for trauma patients to prevent multiple organ failure.
2013Innate immune signaling in the pathogenesis of necrotizing enterocolitis.Clin Dev ImmunolNecrotizing enterocolitis (NEC) is a challenging disease to treat, and caring for patients afflicted by it remains both frustrating and difficult. While NEC may develop quickly and without warning, it may also develop slowly, insidiously, and appear to take the caregiver by surprise. In seeking to understand the molecular and cellular processes that lead to NEC development, we have identified a critical role for the receptor for bacterial lipopolysaccharide (LPS) toll like receptor 4 (TLR4) in the pathogenesis of NEC, as its activation within the intestinal epithelium of the premature infant leads to mucosal injury and reduced epithelial repair. The expression and function of TLR4 were found to be particularly elevated within the intestinal mucosa of the premature as compared with the full-term infant, predisposing to NEC development. Importantly, factors within both the enterocyte itself, such as heat shock protein 70 (Hsp70), and in the extracellular environment, such as amniotic fluid, can curtail the extent of TLR4 signaling and reduce the propensity for NEC development. This review will highlight the critical TLR4-mediated steps that lead to NEC development, with a focus on the proinflammatory responses of TLR4 signaling that have such devastating consequences in the premature host.
2013The significance of heat-shock protein gp96 and its receptors' CD91 and Toll-like receptor 4 expression at the maternal foetal interface.Am J Reprod ImmunolDifferences in the expression of gp96 and its receptors were analysed in normal and pathological human pregnancy.Immunohistology and immunofluorescence of sections from decidual part of term placenta, first trimester normal decidua, missed abortion and blighted ovum decidua were performed together with reverse transcriptase-quantitative polymerase chain reaction and flow cytometry.In missed abortion, gp96 was intensively stained, when compared to normal early pregnancy. The intensity of CD91 and TLR4 was higher in the first trimester pregnancy and blighted ovum, when compared to missed abortion. Decidual part of the term placenta is invaded with gp96⁺ , CD91⁺ and TLR4+ trophoblast. Progesterone-induced blocking factor (PIBF) decreased the frequency of TLR4⁺ T lymphocytes, CD91⁺ T, natural killer (NK) and mature dendritic cells after an 18-h culture. Decidual mononuclear cells (DMCs) treated with PIBF down-regulated CD91, TLR4 and gp96 gene expression.The presence of gp96, CD91 and TLR4 at the maternal-foetal interface provides a molecular basis for their interaction, particularly in the absence of PIBF.
2014Atrial endothelial impairment through Toll-like receptor 4 signaling causes atrial thrombogenesis.Heart VesselsLow-grade inflammation associated with heart failure (HF) is known to deteriorate cardioembolic stroke in patients with atrial fibrillation (AF). Little is known about the relationship between atrial endothelial impairment induced by innate immunity and thrombus formation. We examined whether atrial endothelial impairment through Toll-like receptor (TLR) 4 signaling causes atrial thrombogenesis. TLR4, heat shock protein 60, and vascular cell adhesion molecule (VCAM)-1 expression were higher in the atrium of AF patients who underwent valve replacement surgery with HF compared with those without it (p < 0.05). We created thoracic transverse aortic constriction (TAC) in TLR4 knock-out (KO) and wild-type (WT) mice. Atrial thrombosis was observed less frequently in TLR4 KO mice (4/15) than in WT mice (16/20) 4 weeks after TAC despite similar severity of heart failure. The decrease in endothelial nitric oxide synthase (eNOS) phosphorylation and increase in VCAM-1 and plasminogen activator inhibitor (PAI)-1 expression, observed in the atrium of WT mice following TAC, were significantly attenuated in TLR4 KO mice (p < 0.05). Nuclear factor-κB (NF-κB) activation after TAC was attenuated in TLR4 KO mice compared with WT mice. Activation of mitogen-activated protein kinase p38 (p38) after TAC was also attenuated in TLR4 KO mice (p < 0.05). Thus, increased VCAM-1 and PAI-1, and decreased eNOS phosphorylation through the TLR4/NFκB/p38 pathway, may be associated with atrial thrombogenesis in the heart failure mice model. Atrial endothelial impairment through the TLR4 signaling may play a role in atrial thrombogenesis in AF patients with HF.
2013The role of TLR4 in the pathogenesis of indirect acute lung injury.Front Biosci (Landmark Ed)Indirect acute lung injury (IALI) manifests as rapid-onset respiratory failure following secondary clinical events to the parenchyma or lung vasculature, such as hemorrhage shock, extra-pulmonary sepsis, trauma, ischemia-reperfusion, and burn injury. Accumulating evidence demonstrates the pivotal role of pattern recognition receptors (PRRs) in the innate immune system of lung diseases. Toll like receptor 4 (TLR4), one of the well characterized PRRs, recognizes not only the lipopolysaccharide (LPS) of Gram-negative bacteria, but also the endogenous ligands in IALI. In this review, we summarize a variety of reports concerning the role of TLR4 and IALI pathogenesis.
2013MAPK kinase 3 potentiates Chlamydia HSP60-induced inflammatory response through distinct activation of NF-κB.J ImmunolChlamydia pneumonia (C. pneumonia) remains one of the leading causes of bacterial pneumonia and has been implicated in the pathogenesis of some inflammation-related diseases, such as asthma, chronic obstructive pulmonary disease, and vascular diseases. Heat shock protein 60 is one of the pathogenic components of C. pneumonia that is closely associated with the inflammatory disorders. However, the molecular basis for the immunopathologic property of chlamydial heat shock protein (cHSP60) has not been elucidated. In this article, we report that MAPK kinase 3 (MKK3) is essential for cHSP60-induced lung inflammation, because MKK3-knockout mice displayed significantly reduced lung neutrophil accumulation and decreased production of proinflammatory mediators, correlating with the alleviated inflammatory response in lung tissues. Mechanistically, p38 kinase was selectively activated by MKK3 in response to cHSP60 and activated NF-κB by stimulating the nuclear kinase, mitogen- and stress-activated protein kinase 1. The specific knockdown of mitogen- and stress-activated protein kinase 1 in macrophages resulted in a defective phosphorylation of NF-κB/RelA at Ser(276) but had no apparent effect on RelA translocation. Furthermore, TGF-β-activated kinase 1 was found to relay the signal to MKK3 from TLR4, the major receptor that sensed cHSP60 in the initiation of the inflammatory response. Thus, we establish a critical role for MKK3 signaling in cHSP60 pathology and suggest a novel mechanism underlying C. pneumonia-associated inflammatory disorders.
2013TIFA upregulation after hypoxia-reoxygenation is TLR4- and MyD88-dependent and associated with HMGB1 upregulation and release.Free Radic Biol MedTRAF-interacting protein with a forkhead-associated domain (TIFA) is a tumor necrosis factor receptor-associated factor 6 (TRAF6) binding protein that mediates IL-1 signaling. We recently reported that TIFA mRNA is significantly upregulated early in the liver after trauma and hemorrhagic shock. In this study, we sought to characterize the upregulation of TIFA by hypoxia-reoxygenation and investigate its role in hypoxia-induced signaling. TIFA expression was detected by qRT-PCR and Western blotting in both mouse hemorrhagic shock with resuscitation (HS-R) and hepatocytes exposed to hypoxia-reoxygenation. Involvement of TLR4 and MyD88 was assessed using cells from TLR4(-/-) and MyD88(-/-) mice. The interaction of TIFA with TRAF6 and IRAK-1 was investigated using coimmunoprecipitation in vitro. RNAi was performed to knock down the endogenous expression of the TIFA gene in hepatocytes. High-mobility-group box 1 protein (HMGB1) expression was detected by Western blotting and ELISA, and the activation of NF-κB and MAPK was measured with EMSA and Western blotting. The results showed that TIFA expression was upregulated after HS-R in vivo and hypoxia-reoxygenation in vitro. Further analysis revealed that hypoxia-reoxygenation-induced upregulation of TIFA was TLR4- and MyD88-dependent. Moreover, TIFA was found to associate with TRAF6 constitutively, whereas its association with IRAK-1 was seen only after hypoxia-reoxygenation. Suppression of TIFA by siRNA reduced NF-κB activation and HMGB1 upregulation and release after hypoxia-reoxygenation. Taken together, these data suggest that TIFA is involved in the regulation of cell signaling in hypoxia-reoxygenation. The increase in TIFA level appears to be a feed-forward mechanism involved in TLR4/MyD88-dependent signaling, leading to NF-κB activation and HMGB1 release.
2013Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.PLoS OneThe therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.
2013Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3.Sci SignalProtein ubiquitination plays a critical role in Toll-like receptor (TLR) signaling and innate immunity. Although several E3 ubiquitin ligases have been identified downstream of TLRs, the regulation of protein deubiquitination in TLR-triggered innate immune responses is poorly understood. We identified ubiquitin-specific protease 25 (USP25) as a regulator of TLR signaling. USP25 was recruited to the TLR4 signaling complex, and it associated with the adaptor proteins tumor necrosis factor receptor-associated factor 3 (TRAF3) and TRAF6 after stimulation of TLR4 with its ligand lipopolysaccharide (LPS). USP25 specifically reversed the Lys(48)-linked ubiquitination of TRAF3 that was mediated by the E3 ubiquitin ligase cIAP2 (cellular inhibitor of apoptosis 2). Deficiency in USP25 enhanced the extent of ubiquitination of TRAF3 and accelerated its degradation after TLR4 activation, which potentiated TLR4-induced activation of NF-κB (nuclear factor κB) and MAPK (mitogen-activated protein kinase) signaling, but inhibited activation of the transcription factor IRF3 (interferon regulatory factor 3). USP25-deficient mice exhibited increased susceptibility to LPS-induced septic shock compared to their wild-type counterparts, which was associated with enhanced production of proinflammatory cytokines and decreased production of interferon-α. Thus, by inhibiting the degradation of TRAF3 during TLR4 activation, USP25 enables a balanced innate immune response.
2013Looped host defense peptide CLP-19 binds to microtubules and inhibits surface expression of TLR4 on mouse macrophages.J ImmunolThe looped host defense peptide CLP-19 is derived from a highly functional core region of the Limulus anti-LPS factor and exerts robust anti-LPS activity by directly interacting with LPS in the extracellular space. We previously showed that prophylactic administration of CLP-19 even 20 h prior to LPS challenge might significantly increase the survival rate in a lethal endotoxin shock mouse model. Such an effect may be associated with immune regulation of CLP-19. To investigate the underlying mechanisms, peptide affinity chromatography, immunofluorescence, and Western blotting procedures were used to identify α- and β-tubulin as direct and specific binding partners of CLP-19 in the mouse macrophage cell line RAW 264.7. Bioinformatic analysis using the AutoDock Vina molecular docking and PyMOL molecular graphics system predicted that CLP-19 would bind to the functional residues of both α- and β-tubulin and would be located within the groove of microtubules. Tubulin polymerization assay revealed that CLP-19 might induce polymerization of microtubules and prevent depolymerization. The immunoregulatory effect of CLP-19 involving microtubules was investigated by flow cytometry, immunofluorescence, and Western blotting, which showed that CLP-19 prophylactic treatment of RAW 264.7 cells significantly inhibited LPS-induced surface expression of TLR4. Taken together, these results suggest that CLP-19 binding to microtubules disrupts the dynamic equilibrium of microtubules, reducing the efficacy of microtubule-dependent vesicular transport that would otherwise translocate TLR4 from the endoplasmic reticulum to the cell surface.
2013CD14 contributes to warm hepatic ischemia-reperfusion injury in mice.ShockIschemia/reperfusion (I/R) of the liver contributes to the pathobiology of liver injury in transplantation, liver surgery, and hemorrhagic shock. Ischemia/reperfusion induces an inflammatory response that is driven, in part, by Toll-like receptor 4 (TLR) signaling. CD14 is known to participate in the function of TLR4. We hypothesized that CD14 would be involved in the pathobiology of warm hepatic I/R.Using a 70% liver inflow inclusion model, CD14 knockout and wild-type (WT) mice were subjected to 1-h warm ischemia followed by reperfusion. CD14 mRNA, circulating transaminase, interleukin 6, soluble CD14, and high-mobility group box 1 (HMGB1) levels were measured. CD14 neutralizing antibody or isotype control antibody was given before ischemia or reperfusion for CD14 blockade in WT mice. Recombinant HMGB1 was given before reperfusion in some experiments to test if liver injury worsens.There was an upregulation of CD14 mRNA in reperfused livers together with increased soluble CD14 levels in the circulation. Compared with WT control mice, CD14 knockout mice had much lower alanine aminotransferase and interleukin 6 levels at 6 and 24 h following I/R, and much less liver necrosis by histology. TUNEL (terminal deoxynucleotidyl-transferase dUTP nick end labeling) staining displayed less apoptosis at 24 h in the absence of CD14. CD14 blockage by neutralizing antibody also attenuated liver injury and the inflammatory response in C57BL/6 mice following I/R, but did not provide additional protection to TLR4 mutant C3H/Hej mice. CD14 deficiency did not change circulating HMGB1 levels following I/R (6 h). A dose of recombinant HMGB1, which worsened hepatic injury when given before reperfusion in WT mice, did not increase liver damage in CD14-deficient mice.CD14 is actively involved in hepatic I/R injury. Its deficiency or blockade ischemia attenuates liver injury and inflammatory response. CD14 mediates liver damage and inflammatory responses in the setting of warm hepatic I/R in mice.
2013Sulforaphane inhibits the engagement of LPS with TLR4/MD2 complex by preferential binding to Cys133 in MD2.Biochem Biophys Res CommunToll-like receptors (TLRs) are key pattern-recognition receptors that recognize invading pathogens and non-microbial endogenous molecules to induce innate and adaptive immune responses. Since activation of TLRs is deeply implicated in the pathological progress of autoimmune diseases, sepsis, metabolic diseases, and cancer, modulation of TLR activity is considered one of the most important therapeutic approaches. Lipopolysaccharide (LPS), an endotoxin of gram-negative bacteria, is a well-known agonist for TLR4 triggering inflammation and septic shock. LPS interacts with TLR4 through binding to a hydrophobic pocket in myeloid differentiation 2 (MD2), a co-receptor of TLR4. In this study, we showed that sulforaphane (SFN) interfered with the binding of LPS to MD2 as determined by in vitro binding assay and co-immunoprecipitation of MD2 and LPS in a cell system. The inhibitory effect of SFN on the interaction of LPS and MD2 was reversed by thiol supplementation with N-acetyl-L-cysteine or dithiothreitol showing that the inhibitory effect of SFN is dependent on its thiol-modifying activity. Indeed, micro LC-MS/MS analysis showed that SFN preferentially formed adducts with Cys133 in the hydrophobic pocket of MD2, but not with Cys95 and Cys105. Molecular modeling showed that SFN bound to Cys133 blocks the engagement of LPS and lipid IVa to hydrophobic pocket of MD2. Our results demonstrate that SFN interrupts LPS engagement to TLR4/MD2 complex by direct binding to Cys133 in MD2. Our data suggest a novel mechanism for the anti-inflammatory activity of SFN, and provide a novel target for the regulation of TLR4-mediated inflammatory and immune responses by phytochemicals.
2013CD137 expressed on neutrophils plays dual roles in antibacterial responses against Gram-positive and Gram-negative bacterial infections.Infect ImmunSevere sepsis and septic shock caused mainly by bacterial infections are life-threatening conditions that urge the development of novel therapies. However, host responses to and pathophysiology of sepsis have not been clearly understood, which remains a major obstacle for the development of effective therapeutics. Recently, we have shown that stimulation of a costimulatory molecule, CD137, enhanced survival of mice infected with the Gram-positive (G(+)) intracellular bacterium Listeria monocytogenes but decreased survival in a polymicrobial sepsis model. Herein, we report that CD137 deficiency or blocking of CD137 signaling decreased antibacterial responses of mice infected with G(+) bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis) but increased these responses in mice infected with Gram-negative (G(-)) bacteria (Escherichia coli, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium). Consistent with these findings, stimulation of CD137 by administration of agonistic antibody enhanced responses against G(+) bacteria, whereas it decreased these responses against G(-) bacteria. Neutrophils were responsible for CD137-mediated opposite roles in control of G(+) and G(-) bacterial infections. Stimulation of CD137 enhanced activities of neutrophils against S. aureus but decreased these activities against E. coli, while CD137 blocking produced opposite results with the stimulation of CD137 in vivo and in vitro. Furthermore, we found that combined signaling of CD137 and Toll-like receptor 2 (TLR2) induced synergistic production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) by neutrophils, but combined signaling of CD137 and TLR4 did not. Our data strongly suggest that CD137 may play a dual role in sepsis in association with TLRs.
2013Early trauma-hemorrhage-induced splenic and thymic apoptosis is gut-mediated and toll-like receptor 4-dependent.ShockImmune depression after trauma-hemorrhage has been implicated as an important factor in the pathogenesis of sepsis and septic-organ failure. Although recent studies have implicated immune-cell apoptosis as an important factor in the evolution of this posttrauma immune-suppressed state, neither the initial triggers that induce this response nor the cellular pathways through which these triggering pathways act have been fully defined. Thus, the current study tests the hypothesis that acute splenic and thymic immune-cell apoptosis developing after trauma-hemorrhagic shock (T/HS) is due to gut-derived factors carried in intestinal lymph and that this T/HS lymph-induced immune depressed state is mediated through Toll-like receptor 4 (TLR4). The first set of experiments documented that T/HS caused both thymic and splenic immune-cell apoptosis as measured by TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and caspase-3 immunohistochemistry and that this increase in apoptosis was totally abrogated by mesenteric lymph duct ligation. In subsequent experiments, mesenteric lymph collected from animals subjected to T/HS or trauma-sham shock were injected into TLR4-deficient (TLR4mut) mice or their wild-type (WT) littermates. Trauma-hemorrhagic shock, but not trauma-sham shock, lymph caused splenic apoptosis in the WT mice. However, the TLR4mut mice were resistant to T/HS lymph-induced splenic apoptosis. Furthermore, the WT, but not the TLR4mut mice developed splenic apoptosis after actual T/HS. In conclusion, gut-derived factors appear to initiate a sequence of events that leads to an acute increase in splenic and thymic immune-cell apoptosis, and this process is TLR4-dependent.
2013Inhibition of viral pathogenesis and promotion of the septic shock response to bacterial infection by IRF-3 are regulated by the acetylation and phosphorylation of its coactivators.mBioInterferon (IFN) is required for protecting mice from viral pathogenesis; reciprocally, it mediates the deleterious septic shock response to bacterial infection. The critical transcription factor for IFN induction, in both cases, is IRF-3, which is activated by TLR3 or RIG-I signaling in response to virus infection and TLR4 signaling in response to bacterial infection. Here, we report that IRF-3's transcriptional activity required its coactivators, β-catenin and CBP, to be modified by HDAC6-mediated deacetylation and protein kinase C isozyme β (PKC-β)-mediated phosphorylation, respectively, so that activated nuclear IRF-3 could form a stable transcription initiation complex at the target gene promoters. β-Catenin bridges IRF-3 and CBP, and the modifications were required specifically for the interaction between β-catenin and CBP but not β-catenin and IRF-3. Consequently, like IRF-3(-/-) mice, HDAC6(-/-) mice were resistant to bacterial lipopolysaccharide-induced septic shock. Conversely, they were highly susceptible to pathogenesis caused by Sendai virus infection. Thus, HDAC6 is an essential component of the innate immune response to microbial infection.
2013A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation.Innate ImmunThe interaction between surfactant protein-A (SP-A) and TLR4 is important for host defense. We have recently identified an SPA4 peptide region from the interface of SP-A-TLR4 complex. Here, we studied the involvement of the SPA4 peptide region in SP-A-TLR4 interaction using a two-hybrid system, and biological effects of SPA4 peptide in cell systems and a mouse model. HEK293 cells were transfected with plasmid DNAs encoding SP-A or a SP-A-mutant lacking SPA4 peptide region and TLR4. Luciferase activity was measured as the end-point of SP-A-TLR4 interaction. NF-κB activity was also assessed simultaneously. Next, the dendritic cells or mice were challenged with Escherichia coli-derived LPS and treated with SPA4 peptide. Endotoxic shock-like symptoms and inflammatory parameters (TNF-α, NF-κB, leukocyte influx) were assessed. Our results reveal that the SPA4 peptide region contributes to the SP-A-TLR4 interaction and inhibits the LPS-induced NF-κB activity and TNF-α. We also observed that the SPA4 peptide inhibits LPS-induced expression of TNF-α, nuclear localization of NF-κB-p65 and cell influx, and alleviates the endotoxic shock-like symptoms in a mouse model. Our results suggest that the anti-inflammatory activity of the SPA4 peptide through its binding to TLR4 can be of therapeutic benefit.
2013TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide.Proc Natl Acad Sci U S AAlthough endogenous ligands for Toll-like receptor (TLR)4-myeloid differentiation factor 2 (MD2) have not been well-understood, we here report that a globo-series glycosphingolipid, globotetraosylceramide (Gb4), attenuates the toxicity of lipopolysaccharides (LPSs) by binding to TLR4-MD-2. Because α1,4-galactosyltransferase (A4galt)-deficient mice lacking globo-series glycosphingolipids showed higher sensitivity to LPS than wild-type mice, we examined mechanisms by which globo-series glycosphingolipids attenuate LPS toxicity. Cultured endothelial cells lacking A4galt showed higher expression of LPS-inducible genes upon LPS treatment. In turn, introduction of A4galt cDNA resulted in the neo expression of Gb4, leading to the reduced expression of LPS-inducible genes. Exogenous Gb4 induced similar effects. As a mechanism for the suppressive effects of Gb4 on LPS signals, specific binding of Gb4 to the LPS receptor TLR4-MD-2 was demonstrated by coprecipitation of Gb4 with recombinant MD-2 and by native PAGE. A docking model also supported these data. Taken together with colocalization of TLR4-MD-2 with Gb4 in lipid rafts after LPS stimulation, it was suggested that Gb4 competes with LPS for binding to TLR4-MD-2. Finally, administration of Gb4 significantly protected mice from LPS-elicited mortality. These results suggest that Gb4 is an endogenous ligand for TLR4-MD-2 and is capable of attenuating LPS toxicity, indicating the possibility for its therapeutic application in endotoxin shock.
2013Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes.Cardiovasc ResThe molecular events leading from cardiomyocyte ischaemia to inflammatory cytokine production are not well understood. We previously found that heat shock protein 60 (HSP60) appeared in extracellular space after cardiomyocyte ischaemia. This study examined the activation and regulation of toll-like receptors (TLRs) by HSP60 in cardiomyocytes.Cytokine production and TLRs regulation mediated by TLRs signalling were examined in response to exogenous HSP60 (exHSP60) and endogenous HSP60 (enHSP60) released extracellularly under ischaemia. The results showed that exHSP60 induced inflammatory cytokine production in adult rat cardiomyocytes and H9c2 cells (a standard cardiac cell line derived from embryonic cells), through a pathway dependent on TLR4, myeloid differentiation factor 88 (MyD88), p38, and nuclear factor-κB (NF-κB). Further study revealed up-regulated expression of both TLR2 and TLR4 by exHSP60, which was dependent on the activation of TLR4, MyD88, c-Jun NH2-terminal kinase (JNK), and NF-κB, but not on p38. In myocytes exposed to ischaemia, enHSP60 was released into the media, and triggered cytokine production and TLR2/4 overexpression, through the same pathways as exHSP60. In rats subjected to LAD ligation, the released enHSP60 contributed to cytokine production and TLR2/4 overexpression in the ischaemic myocardium.Extracellular HSP60 induces cytokine production via TLR4-MyD88-p38/NF-κB pathway, and up-regulates TLR2/4 expression via TLR4-MyD88-JNK/NF-κB pathway. Both pathways contribute to myocardial inflammation induced by ischaemia.
2013Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis.Eur J PharmacolSepsis is a highly lethal disorder characterized by systemic inflammation, and Toll-like receptor 4 (TLR4) in macrophages plays a crucial role in modulating innate immune response and outcome of sepsis. During the screening of natural products against inflammation, we identified bis-N-norgliovictin, a small-molecule compound isolated from marine-derived fungus, significantly inhibited lipopolysaccharide (LPS, ligand of TLR4)-induced tumor necrosis factor-α (TNF-α) production in RAW264.7 cells. In this study, we evaluated the effect of bis-N-norgliovictin on TLR4-mediated inflammation in mouse macrophages and LPS-induced sepsis model. In RAW264.7 and mouse peritoneal macrophages, bis-N-norgliovictin dose-dependently inhibited LPS-induced production of TNF-α, interleukin-6 (IL-6), interferon-β (IFN-β) and monocyte chemoattractant protein (MCP-1), but without suppressing cell viability. The anti-inflammatory effect was attributed to the down-regulation of TLR4-triggered myeloid differentiation primary response protein 88 (MyD88)-dependent and TIR-containing adapter inducing interferon-β (TRIF)-dependent signaling pathways, including p38 and c-Jun N-terminal kinase (JNK) of mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) cascades. Importantly, bis-N-norgliovictin also protected mice against LPS-induced endotoxic shock. Intravenous injection of bis-N-norgliovictin 1h before LPS challenge dose-dependently inhibited LPS-induced increases in serum levels of TNF-α, IL-6, MCP-1 and IL-10, attenuated liver and lung injury and diminished M1 macrophage polarization in liver. Our results demonstrate that bis-N-norgliovictin exhibit potent anti-inflammatory effect both in vitro and in vivo. These findings suggest that bis-N-norgliovictin can be a useful therapeutic candidate for the treatment of sepsis and other inflammatory diseases.
2013Single-nucleotide polymorphisms in the Toll-like receptor pathway increase susceptibility to infections in severely injured trauma patients.J Trauma Acute Care SurgSepsis and subsequent multiple-organ failure are the predominant causes of late mortality in trauma patients. Susceptibility and response to infection is, in part, heritable. Single-nucleotide polymorphisms (SNPs) in Toll-like receptor (TLR) and cluster of differentiation 14 (CD14) genes of innate immunity may play a key role. The aim of this study was to assess if SNPs in TLR/CD14 predisposed trauma patients to infection.A prospective cohort of trauma patients (age 18-80 years; injury severity score [ISS] ≥ 16) admitted to a Level I trauma center between January 2008 and April 2011 was genotyped for SNPs in TLR2 (T-16934A and R753Q), TLR4 (D299G and T399I), TLR9 (T-1486C and T-1237C), and CD14 (C-159T) using high-resolution melting analysis. Association of genotype with prevalence of positive culture findings (gram positive, gram negative, fungi), systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and mortality was tested with χ(2) and logistic regression analysis.Genotyping was performed for 219 patients, of whom 51% developed positive culture findings in sputum, wounds, blood, or urine. SIRS developed in 64%, sepsis in 36%, and septic shock in 17%. The TLR2 T-16934A TA genotype increased the risk of a gram-positive infection (odds ratio, 2.816; 95% confidence interval, 1.249-6.348; p = 0.013) and SIRS (odds ratio, 2.386; 95% confidence interval, 1.011-5.632; p = 0.047). Trends were noted for TLR9 and CD14 SNPs but did not reach statistical significance. Sepsis and septic shock were unrelated to any of the SNPs studied.Aberrant functioning of the TLR/CD14 pathway of innate immunity changes the risk of infectious complications in severely injured trauma patients. Of the seven SNPs studied, the TLR2 T-16934A increased the risk, the TLR9 T-1486C SNPs may decrease the risk, and TLR4 variation seemed unrelated to outcome. Early genotyping may prove to be helpful in the future in identifying polytraumatized patients at risk for infectious outcome.Prognostic and epidemiologic study, level II.
2013MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock.Cell SignalSeptic shock is one of leading causes of morbidity and mortality in hospital patients. However, genetic factors predisposing to septic shock are not fully understood. Our previous work showed that MCP-induced protein 1 (MCPIP1) was induced by lipopolysaccharides (LPSs), which then negatively regulates LPS-induced inflammatory signaling in vitro. Here we report that although MCPIP1 was induced by various toll-like receptor (TLR) ligands in macrophages, MCPIP1-deficient mice are extremely susceptible to TLR4 ligand (LPS)-induced septic shock and death, but not to the TLR2, 3, 5 and 9 ligands-induced septic shock. Consistently, LPS induced tumor necrosis factor α (TNFα) production in MCPIP1-deficient mice was 20-fold greater than that in their wild-type littermates. Further analysis revealed that MCPIP1-deficient mice developed severe acute lung injury after LPS injection and JNK signaling was highly activated in MCPIP1-deficient lungs after LPS stimulation. Finally, macrophage-specific MCPIP1 transgenic mice were partially protected from LPS-induced septic shock, suggesting that inflammatory cytokines from sources other than macrophages may significantly contribute to the pathogenesis of LPS-induced septic shock. Taken together, these results suggest that MCPIP1 selectively suppresses TLR4 signaling pathway and protects mice from LPS-induced septic shock.
2013Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites.Biochem Biophys Res CommunEngagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.
2013Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.PLoS OneLipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+) T and CD8(+) T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.
2013Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis.Sci Total EnvironPharmaceuticals are pollutants of potential concern in the aquatic environment where they are commonly introduced as complex mixtures via municipal effluents. Many reports underline the effects of pharmaceuticals on immune system of non target species. Four drug mixtures were tested, and regrouped pharmaceuticals by main therapeutic use: psychiatric (venlafaxine, carbamazepine, diazepam), antibiotic (ciprofloxacine, erythromycin, novobiocin, oxytetracycline, sulfamethoxazole, trimethoprim), hypolipemic (atorvastatin, gemfibrozil, benzafibrate) and antihypertensive (atenolol, furosemide, hydrochlorothiazide, lisinopril). Their effects were then compared with a treated municipal effluent known for its contamination, and its effects on the immune response of Lymnaea stagnalis. Adult L. stagnalis were exposed for 3 days to an environmentally relevant concentration of the four mixtures individually and as a global mixture. Effects on immunocompetence (hemocyte viability and count, ROS and thiol levels, phagocytosis) and gene expression were related to the immune response and oxidative stress: catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), Selenium-dependent glutathione peroxidase (SeGPx), two isoforms of the nitric oxide synthetase gene (NOS1 and NOS2), molluscan defensive molecule (MDM), Toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF) and heat-shock protein 70 (HSP70). Immunocompetence was differently affected by the therapeutic class mixtures compared to the global mixture, which increased hemocyte count, ROS levels and phagocytosis, and decreased intracellular thiol levels. TLR4 gene expression was the most strongly increased, especially by psychiatric mixture (19-fold), while AIF-1, GR and CAT genes were downregulated. A decision tree analysis revealed that the immunotoxic responses caused by the municipal effluent were comparable to those obtained with the global pharmaceutical mixture, and the latter shared similarity with the antibiotic mixture. This suggests that pharmaceutical mixtures in municipal effluents represent a risk for gastropods at the immunocompetence levels and the antibiotic group could represent a model therapeutic class for municipal effluent toxicity studies in L. stagnalis.
2013Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release.J Biol ChemHeat shock protein (Hsp) 70 expression can be stimulated by febrile range temperature (FRT). Hsp70 has been shown to be elevated in serum of patients with sepsis, and when released from cells, extracellular Hsp70 exerts endotoxin-like effects through Toll-like receptor 4 (TLR4) receptors. Circulating TLR agonists and fever both persist for the first several days of sepsis, and each can activate Hsp70 expression; however, the effect of combined exposure to FRT and TLR agonists on Hsp70 expression is unknown. We found that concurrent exposure to FRT (39.5 °C) and agonists for TLR4 (LPS), TLR2 (Pam3Cys), or TLR3 (poly(IC)) synergized to increase Hsp70 expression and extracellular release in RAW264.7 macrophages. The increase in Hsp70 expression was associated with activation of p38 and ERK MAP kinases, phosphorylation of histone H3, and increased recruitment of HSF1 to the Hsp70 promoter. Pretreatment with the p38 MAPK inhibitor SB283580 but not the ERK pathway inhibitor UO126 significantly reduced Hsp70 gene modification and Hsp70 expression in RAW cells co-exposed to LPS and FRT. In mice challenged with intratracheal LPS and then exposed to febrile range hyperthermia (core temperature, ∼39.5 °C), Hsp70 levels in lung tissue and in cell-free lung lavage were increased compared with mice exposed to either hyperthermia or LPS alone. We propose a model of how enhanced Hsp70 expression and extracellular release in patients concurrently exposed to fever and TLR agonists may contribute to the pathogenesis of sepsis.
2012Prevalence and clinical course in invasive infections with meningococcal endotoxin variants.PLoS OneMeningococci produce a penta-acylated instead of hexa-acylated lipid A when their lpxL1 gene is inactivated. Meningococcal strains with such lipid A endotoxin variants have been found previously in adult meningitis patients, where they caused less blood coagulopathy because of decreased TLR4 activation.A cohort of 448 isolates from patients with invasive meningococcal disease in the Netherlands were screened for the ability to induce IL-6 in monocytic cell Mono Mac 6 cells. The lpxL1 gene was sequenced of isolates, which show poor capacity to induce IL-6.. Clinical characteristics of patients were retrieved from hospital records.Of 448 patients, 29 (6.5%) were infected with meningococci expressing a lipid A variant strain. Lipid A variation was not associated with a specific serogroup or genotype. Infections with lipid A variants were associated with older age (19.3 vs. 5.9 (median) years, p = 0.007) and higher prevalence of underlying comorbidities (39% vs. 17%; p = 0.004) compared to wild-type strains. Patients infected with lipid A variant strains had less severe infections like meningitis or shock (OR 0.23; 95%CI 0.09-0.58) and were less often admitted to intensive care (OR 0.21; 95%CI 0.07-0.60) compared to wild-type strains, independent of age, underlying comorbidities or strain characteristics.In adults with meningococcal disease lipid A variation is rather common. Infection with penta-acylated lipid A variant meningococci is associated with a less severe disease course.
2013HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.Int J Biochem Cell BiolThe circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.
2012Scavenger receptor class a plays a central role in mediating mortality and the development of the pro-inflammatory phenotype in polymicrobial sepsis.PLoS PathogSepsis is a frequent complication in critical illness. The mechanisms that are involved in initiation and propagation of the disease are not well understood. Scavenger receptor A (SRA) is a membrane receptor that binds multiple polyanions such as oxidized LDL and endotoxin. Recent studies suggest that SRA acts as a pattern recognition receptor in the innate immune response. The goal of the present study was to determine the role of SRA in polymicrobial sepsis. SRA deficient (SRA(-/-)) and C57BL/6JB/6J (WT) male mice were subjected to cecal ligation and puncture (CLP) to induce polymicrobial sepsis. NFκB activity, myeloperoxidase activity, and co-association of SRA with toll like receptor (TLR) 4 and TLR2 was analyzed in the lungs. Spleens were analyzed for apoptosis. Serum cytokines and chemokines were assayed. Blood and peritoneal fluid were cultured for aerobic and anaerobic bacterial burdens. Long-term survival was significantly increased in SRA(-/-) septic mice (53.6% vs. 3.6%, p < 0.05) when compared to WT mice. NFκB activity was 45.5% lower in the lungs of SRA(-/-) septic mice versus WT septic mice (p < 0.05). Serum levels of interleukin (IL)-5, IL-6, IL-10 and monocyte chemoattractant protein -1 were significantly lower in septic SRA(-/-) mice when compared to septic WT mice (p < 0.05). We found that SRA immuno-precipitated with TLR4, but not TLR2, in the lungs of WT septic mice. We also found that septic SRA(-/-) mice had lower bacterial burdens than WT septic mice. SRA deficiency had no effect on pulmonary neutrophil infiltration or splenocyte apoptosis during sepsis. We conclude that SRA plays a pivotal, and previously unknown, role in mediating the pathophysiology of sepsis/septic shock in a murine model of polymicrobial sepsis. Mechanistically, SRA interacts with TLR4 to enhance the development of the pro-inflammatory phenotype and mediate the morbidity and mortality of sepsis/septic shock.
2013TLR4 signaling-induced heme oxygenase upregulation in the acute lung injury: role in hemorrhagic shock and two-hit induced lung inflammation.Mol Biol RepResuscitated hemorrhagic shock is believed to promote the development of acute lung injury (ALI) by priming the immune system for an exaggerated inflammatory response to a second trivial stimulus. This work explored effects of TLR4 on hemorrhage-induced ALI and "second-hit" responses, and further explore the mechanisms involved in "second-hit" responses. Expression of HO-1, IL-10, lung W/D and MPO markedly increased at nearly all time-points examined in HSR/LPS group as compared with sham/LPS group in WT mice. In HSR/LPS mice, the induced amount of IL-10 and the expressions of HO-1 of WT mice were significantly higher compared with TLR-4d/d. This study provides in vivo evidence that pulmonary infections after LPS instillation contribute to local tissue release of pro-inflammatory mediators after HSR systemic. Activation of TLR4 might induce HO-1 expression and HO-1 modulates proinflammatory responses that are triggered via TLR4 signaling.
2013Positive feedback regulation of heat shock protein 70 (Hsp70) is mediated through Toll-like receptor 4-PI3K/Akt-glycogen synthase kinase-3β pathway.Exp Cell ResAlarmins, the endogenous molecules that recruit and activate innate immune cells, are considered as subgroups of damage-associated molecular patterns. Heat shock protein 70 (Hsp70) is one of putative alarmins together with high mobility group box 1, S100s, interleukin-1α, and annexins. It has cytokine-like functions as well as molecular chaperone functions. However, the cytokine function of Hsp70 has not been clear. Here, we demonstrated that there exists the positive feedback regulation of Hsp70 induction in innate immune cells. Heat stress (HS) increased intracellular Hsp70 (iHsp70) and it was actively released into extracellular space through the Golgi complex. Human recombinant Hsp70 (rhHsp70) up-regulated iHsp70 expression and induced pro-inflammatory cytokine secretion via Toll-like receptor 4 (TLR4). rhHsp70 rapidly activated Akt, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Moreover, glycogen synthase kinase-3β (GSK-3β) was inactivated by rhHsp70-induced Akt activation. Knockdown of TLR4 and overexpression of dominant negative TLR4 (DN-TLR4) suppressed the above effects of rhHsp70. The effects of rhHsp70 were not due to endotoxin contamination. Akt-dependent GSK-3β inactivation was responsible for iHsp70 induction by rhHsp70. Overexpression of DN-Akt or constitutively active GSK-3β or pretreatment of LY294002 inhibited rhHsp70-induced iHsp70 up-regulation, which was similar to the mechanism of HS-mediated induction of Hsp70. Thus, these data suggest the positive feedback regulatory mechanism of iHsp70 induction.
2012Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis.mBioNew treatments are needed for extensively drug-resistant (XDR) Gram-negative bacilli (GNB), such as Acinetobacter baumannii. Toll-like receptor 4 (TLR4) was previously reported to enhance bacterial clearance of GNB, including A. baumannii. However, here we have shown that 100% of wild-type mice versus 0% of TLR4-deficient mice died of septic shock due to A. baumannii infection, despite having similar tissue bacterial burdens. The strain lipopolysaccharide (LPS) content and TLR4 activation by extracted LPS did not correlate with in vivo virulence, nor did colistin resistance due to LPS phosphoethanolamine modification. However, more-virulent strains shed more LPS during growth than less-virulent strains, resulting in enhanced TLR4 activation. Due to the role of LPS in A. baumannii virulence, an LpxC inhibitor (which affects lipid A biosynthesis) antibiotic was tested. The LpxC inhibitor did not inhibit growth of the bacterium (MIC>512 µg/ml) but suppressed A. baumannii LPS-mediated activation of TLR4. Treatment of infected mice with the LpxC inhibitor enhanced clearance of the bacteria by enhancing opsonophagocytic killing, reduced serum LPS concentrations and inflammation, and completely protected the mice from lethal infection. These results identify a previously unappreciated potential for the new class of LpxC inhibitor antibiotics to treat XDR A. baumannii infections. Furthermore, they have far-reaching implications for pathogenesis and treatment of infections caused by GNB and for the discovery of novel antibiotics not detected by standard in vitro screens.Novel treatments are needed for infections caused by Acinetobacter baumannii, a Gram-negative bacterium that is extremely antibiotic resistant. The current study was undertaken to understand the immunopathogenesis of these infections, as a basis for defining novel treatments. The primary strain characteristic that differentiated virulent from less-virulent strains was shedding of Gram-negative lipopolysaccharide (LPS) during growth. A novel class of antibiotics, called LpxC inhibitors, block LPS synthesis, but these drugs do not demonstrate the ability to kill A. baumannii in vitro. We found that an LpxC inhibitor blocked the ability of bacteria to activate the sepsis cascade, enhanced opsonophagocytic killing of the bacteria, and protected mice from lethal infection. Thus, an entire new class of antibiotics which is already in development has heretofore-unrecognized potential to treat A. baumannii infections. Furthermore, standard antibiotic screens based on in vitro killing failed to detect this treatment potential of LpxC inhibitors for A. baumannii infections.
2012The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock.Nat ImmunolLipopolysaccharide activates plasma-membrane signaling and endosomal signaling by Toll-like receptor 4 (TLR4) through the TIRAP-MyD88 and TRAM-TRIF adaptor complexes, respectively, but it is unclear how the signaling switch between these cell compartments is coordinated. In dendritic cells, we found that the p110δ isoform of phosphatidylinositol-3-OH kinase (PI(3)K) induced internalization of TLR4 and dissociation of TIRAP from the plasma membrane, followed by calpain-mediated degradation of TIRAP. Accordingly, inactivation of p110δ prolonged TIRAP-mediated signaling from the plasma membrane, which augmented proinflammatory cytokine production while decreasing TRAM-dependent endosomal signaling that generated anti-inflammatory cytokines (interleukin 10 and interferon-β). In line with that altered signaling output, p110δ-deficient mice showed enhanced endotoxin-induced death. Thus, by controlling the 'topology' of TLR4 signaling complexes, p110δ balances overall homeostasis in the TLR4 pathway.
2013Immunotoxicity of surface waters contaminated by municipal effluents to the snail Lymnaea stagnalis.Aquat ToxicolThe immunotoxic effects of surface waters contaminated by a municipal effluent dispersion plume were examined in the snail Lymnaea stagnalis. Snails were exposed to surface waters where changes in hemocyte counts, viability, levels of reactive oxygen species (ROS), reduced thiols and phagocytic activity were tracked following exposure periods of 3h and 3 and 7d. Changes in mRNA expression of some genes in the hemocytes were also assessed after 7d of exposure, as follows: genes coding for catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSR), selenium-dependent glutathione peroxidase (SeGPX), two isoforms of the nitric oxide synthetase (NOS1 and NOS2), molluscan defensive molecule (MDM), toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF), and heat-shock protein 70 (HSP70). At the sites closest to the discharge point, exposure led to impaired hemocyte viability and intracellular thiol levels and also an increase of hemocyte count, ROS levels and phagocytosis. Phagocytosis and ROS levels in hemocytes were correlated with heterotrophic bacterial counts in snails. We found four genes with increased mRNA expression as a response to exposure of municipal wastewaters: TLR4 (6-fold), HSP70 (2-fold), SeGPx (4-fold) and CAT (2-fold). Immunocompetence responses were analyzed by canonical analysis to seek out relationships with mRNA expression of the genes involved in stress, pattern recognition, cellular and humoral responses. The data revealed that genes involved in oxidative stress were strongly involved with immunocompetence and that the resulting immune responses were influenced both by the bacterial and pollutant loadings of the effluent.
2012Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components.J Biol ChemThe innate immune system serves as the first line of defense by detecting microbes and initiating inflammatory responses. Although both Toll-like receptor (TLR) and nucleotide binding domain and leucine-rich repeat (NLR) proteins are important for this process, their excessive activation is hazardous to hosts; thus, tight regulation is required. Endotoxin tolerance is refractory to repeated lipopolysaccharide (LPS) stimulation and serves as a host defense mechanism against septic shock caused by an excessive TLR4 response during gram-negative bacterial infection. Gram-positive bacteria as well as their cell wall components also induce shock. However, the mechanism underlying tolerance is not understood. Here, we show that activation of Nod2 by its ligand, muramyl dipeptide (MDP) in the bacterial cell wall, induces rapid degradation of Nod2, which confers MDP tolerance in vitro and in vivo. Nod2 is constitutively associated with a chaperone protein, Hsp90, which is required for Nod2 stability and protects Nod2 from degradation. Upon MDP stimulation, Hsp90 rapidly dissociates from Nod2, which subsequently undergoes ubiquitination and proteasomal degradation. The SOCS-3 protein induced by Nod2 activation further facilitates this degradation process. Therefore, Nod2 protein stability is a key factor in determining responsiveness to MDP stimulation. This indicates that TLRs and NLRs induce a tolerant state through distinct molecular mechanisms that protect the host from septic shock.
2012Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge.J NutrLong-chain (n-3) PUFA exert beneficial effects on inflammatory bowel diseases in animal models and clinical trials. In addition, pattern recognition receptors such as toll-like receptors (TLR) and nucleotide-binding oligomerization domain proteins (NOD) play a critical role in intestinal inflammation. We hypothesized that fish oil could alleviate Escherichia coli LPS-induced intestinal injury via modulation of TLR4 and NOD signaling pathways. Twenty-four weaned piglets were used in a 2 × 2 factorial design and the main factors included a dietary treatment (5% corn oil or 5% fish oil) and immunological challenge (LPS or saline). After feeding fish oil or corn oil diets for 21 d, pigs were injected with LPS or saline. At 4 h postinjection, blood samples were collected and pigs were killed. EPA, DHA, and total (n-3) PUFA were enriched in intestinal mucosa through fish supplementation. Fish oil improved intestinal morphology, indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, indicated by decreased plasma diamine oxidase (DAO) activity and increased mucosal DAO activity as well as enhanced protein expression of intestinal tight junction proteins including occludin and claudin-1. Moreover, fish oil decreased intestinal TNFα and PGE(2) concentrations and caspase-3 and heat shock protein 70 protein expression. Finally, fish oil downregulated the mRNA expression of intestinal TLR4 and its downstream signals myeloid differentiation factor 88, IL-1 receptor-associated kinase 1, TNFα receptor-associated factor 6, and NOD2, and its adaptor molecule, receptor-interacting serine/threonine-protein kinase 2. Fish oil decreased the protein expression of intestinal NFκB p65. These results indicate that fish oil supplementation is associated with inhibition of TLR4 and NOD2 signaling pathways and concomitant improvement of intestinal integrity under an inflammatory condition.
2012The role of heat shock protein 90 in modulating ischemia-reperfusion injury in the kidney.Expert Opin Investig DrugsKidney transplantation is the gold standard treatment for end-stage renal disease. Ischemia-reperfusion injury (IRI) is an unavoidable consequence of the transplantation procedure and is responsible for delayed graft function and poorer long-term outcomes.Pharmacological induction of heat shock protein (Hsp) expression is an emerging pre-conditioning strategy aimed at reducing IRI following renal transplantation. Hsp90 inhibition up-regulates protective Hsps (especially Hsp70) and potentially down-regulates NF-κB by disruption of the IκB kinase (IKK) complex. However, the clinical application of Hsp90 inhibitors is currently limited by their toxicity profile and the exact mechanism of protection conferred is unknown. Toll-like receptor 4 (TLR4) is a further regulator of NF-κB and recent studies suggest TLR4 plays a dominant role in mediating kidney damage following IRI. The full interaction of Hsps with TLRs is yet to be delineated and whether TLR4 signalling can be targeted by Hsp90 inhibition in IRI remains uncertain.Pharmacological pre-conditioning by Hsp90 inhibition involves direct treatment to the kidney donor and/or organ, which aims to reduce injury prior to the onset of ischemia. The major challenges going forward are to establish the exact mechanism of protection offered by these drugs and the investgiation of less toxic analogues that could be safely translated into human studies.
2012A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses.PLoS OneUnderstanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.
2012Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides.J Biomed SciLipopolysaccharide (LPS) is recognized as the most potent microbial mediator presaging the threat of invasion of Gram-negative bacteria that implicated in the pathogenesis of sepsis and septic shock. This study was designed to examine the microRNA (miRNA) expression in whole blood from mice injected with intraperitoneal LPS.C57BL/6 mice received intraperitoneal injections of varying concentrations (range, 10-1000 μg) of LPS from different bacteria, including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens and were killed 2, 6, 24, and 72 h after LPS injection. Whole blood samples were obtained and tissues, including lung, brain, liver, and spleen, were harvested for miRNA expression analysis using an miRNA array (Phalanx miRNA OneArray® 1.0). Upregulated expression of miRNA targets in the whole blood of C57BL/6 and Tlr4(-/-) mice injected with LPS was quantified using real-time RT-PCR and compared with that in the whole blood of C57BL/6 mice injected with lipoteichoic acid (LTA) from Staphylococcus aureus.Following LPS injection, a significant increase of 15 miRNAs was observed in the whole blood. Among them, only 3 miRNAs showed up-regulated expression in the lung, but no miRNAs showed a high expression level in the other examined tissues. Upregulated expression of the miRNA targets (let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107 and miR-451) following LPS injection on real-time RT-PCR was dose- and time-dependent. miRNA induction occurred after 2 h and persisted for at least 6 h. Exposure to LPS from different bacteria did not induce significantly different expression of these miRNA targets. Additionally, significantly lower expression levels of let-7d, miR-25, miR-92a, miR-103, and miR-107 were observed in whole blood of Tlr4(-/-) mice. In contrast, LTA exposure induced moderate expression of miR-451 but not of the other 7 miRNA targets.We identified a specific whole blood-derived miRNA signature in mice exposed to LPS, but not to LTA, from different gram-negative bacteria. These whole blood-derived miRNAs are promising as biomarkers for LPS exposure.
2013Effects of alanyl-glutamine dipeptide on the expression of colon-inflammatory mediators during the recovery phase of colitis induced by dextran sulfate sodium.Eur J NutrGlutamine (Gln) is a nutrient with immunomodulatory effects in metabolic stressed conditions. This study investigated the effects of Gln on colonic-inflammatory-mediator expression and mucosal repair in mice with dextran sulfate sodium (DSS)-induced colitis.C57BL/6 mice received distilled water containing 3 % DSS for 5 d to induce colitis. One of the DSS-treated groups was intraperitoneally injected with an alanyl (Ala)-Gln solution 3 days before (G-DSS) while the other group was administered Ala-Gln 3 days after colitis (DSS-G) was induced. The Ala-Gln solution provided 0.5 g Gln/kg/d. The saline-DSS group (S-DSS) received an identical amount of saline before and after colitis was induced to serve as a positive control.The S-DSS group had a shorter colon length, higher plasma haptoglobin level, and more-severe colon inflammation. Also, the toll-like receptor (TLR)4 level, nuclear factor (NF)-κB activation, and inflammatory cytokine gene expression in the colon were higher than those of the normal control group. Gln administration either before or after colitis suppressed TLR4 protein levels, decreased plasma haptoglobin, and reduced colon inflammation. Histological inflammatory scores were also lowered. Compared to the post-colitis Gln group, preventive use of Gln had higher colon length, expressions of mucin 2, trefoil factor 3, and heat shock protein 72 genes were also upregulated in the colon.These results suggest that Gln administered either before or after the colitis mitigated inflammation of colitis that was not observed in group without Gln injection. Prophylactic treatment with Gln had more-beneficial effects on reducing inflammatory markers and enhancing the recovery of mucosa in DSS-induced colitis.
Inhibitors of TLR-4, NF-κB, and SAPK/JNK signaling reduce the toxic effect of lipopolysaccharide on RAW 264.7 cells.J ImmunotoxicolThe present study was designed to examine and compare the effects of three suppressors on the cytokine response in tandem with examining: the synthesis of inducible forms of heat shock proteins; HSP72 and HSP90α; activities of NF-κB and SAPK/JNK signaling pathways; and TLR4 expression. Pre-treatment with inhibitors offers promise as protective means to lower the activity of these cascades, thereby circumventing the formation of excessive amounts of pro-inflammatory molecules. Three inhibitors of TLR4, SAPK/JNK, and NF-κB signaling, namely CLI-095, SP600125, and IKK Inhibitor XII, respectively, were added to cultured RAW 264.7 macrophages before the Escherichia coli lipopolysaccharide (LPS) application. Treatments of RAW 264.7 cells with each of the inhibitors resulted in a reduced response to LPS as was visualized by a decrease of TNF-α, IL-1, and IFN-γ production. In addition, inhibitors of the NF-κB and SAPK/JNK signaling reduced IL-6 production in LPS-treated cells, whereas the IKK inhibitor XII also decreased IL-10 production. Further, the NO production in LPS-stimulated macrophages was significantly reduced following application of CLI-095 or IKK inhibitor XII. The results also showed that the inhibitors suppressed TLR4 production and decreased phosphorylation of NF-κB and SAPK/JNK proteins, thereby preventing the activation NF-κB and SAPK/JNK signaling pathways in LPS-activated cells. In addition, the production of inducible heat shock proteins, HSP72 and HSP90-α, was reduced in LPS-stimulated RAW 264.7 cells pre-treated with inhibitors. These results suggest that inhibitors CLI-095, SP600125, and IKK inhibitor XII demonstrate potential effectiveness in the reduction of the inflammatory response by mechanisms involving both the cellular defense system and cellular signaling. In conclusion, suppressor of NF-κB cascade, IKK inhibitor XII, seems to be the most effective anti-toxic agent among studied inhibitors.
2013Deletion of scavenger receptor A gene in mice resulted in protection from septic shock and modulation of TLR4 signaling in isolated peritoneal macrophages.Innate ImmunScavenger receptor A (Sra), also known as macrophage scavenger receptor 1 (Msr1), is a surface glycoprotein preferentially present in macrophages that plays a primary role in innate immunity. Previous studies have shown that Sra is a modifier gene for the response to bacterial LPS in mice at the level of IL-10 production, in particular. In the present study, we found that Sra(-/-) mice are more resistant to septic shock induced by cecal ligation and puncture than wild-type C57BL/6 J (B6) mice. In addition, Sra(-/-) mice displayed initial elevated high density lipoprotein (HDL) circulating levels. Naïve peritoneal macrophages (PMs) were isolated from Sra(-/-) mice to understand the possible protective mechanism. Incubation of these cells with LPS was found to modulate TLR4 signaling, leading to a reduction in IL-10 and IL-6 mRNA levels, but not TNF-α expression, at low concentrations of LPS in comparison with PMs isolated from B6 mice. No differences were found in LPS binding between PMs derived from Sra(-/-) or B6 mice. The lack of Sra binding to LPS was confirmed after transfection of Chinese hamster ovary (CHO) cells with the Sra gene. The contribution of Sra to the outcome of sepsis may be a combination of changes in TLR4 signaling pathway and elevated levels of HDL in circulation, but also LPS toxicity.
2012p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation.Proc Natl Acad Sci U S AOn the basis mainly of pharmacological experiments, the p38α MAP kinase isoform has been established as an important regulator of immune and inflammatory responses. However, the role of the related p38γ and p38δ kinases has remained unclear. Here, we show that deletion of p38γ and p38δ impaired the innate immune response to lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) ligand, by blocking the extracellular signal-regulated kinase 1/2 (ERK1/2) activation in macrophages and dendritic cells. p38γ and p38δ were necessary to maintain steady-state levels of tumor progression locus 2 (TPL2), the MKK kinase that mediates ERK1/2 activation after TLR4 stimulation. TNFα, IL-1β, and IL-10 production were reduced in LPS-stimulated macrophages from p38γ/δ-null mice, whereas IL-12 and IFNβ production increased, in accordance with the known effects of TPL2/ERK1/2 signaling on the induction of these cytokines. Furthermore, p38γ/δ-deficient mice were less sensitive than controls to LPS-induced septic shock, showing lower TNFα and IL-1β levels after challenge. Together, our results establish p38γ and p38δ as key components in innate immune responses.
2012A novel chromone derivative with anti-inflammatory property via inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway.PLoS OneThe p38 MAPK signaling pathway plays a pivotal role in inflammation. Targeting p38 MAPK may be a potential strategy for the treatment of inflammatory diseases. In the present study, we show that a novel chromone derivative, DCO-6, significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide, IL-1β and IL-6, decreased the levels of iNOS, IL-1β and IL-6 mRNA expression in both RAW264.7 cells and mouse primary peritoneal macrophages, and inhibited LPS-induced activation of p38 MAPK but not of JNK, ERK. Moreover, DCO-6 specifically inhibited TLR4-dependent p38 activation without directly inhibiting its kinase activity. LPS-induced production of intracellular reactive oxygen species (ROS) was remarkably impaired by DCO-6, which disrupted the formation of the TRAF6-ASK1 complex. Administering DCO-6 significantly protected mice from LPS-induced septic shock in parallel with the inhibition of p38 activation and ROS production. Our results indicate that DCO-6 showed anti-inflammatory properties through inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway. Blockade of the upstream events required for p38 MAPK action by DCO-6 may provide a new therapeutic option in the treatment of inflammatory diseases.
2012Long-lasting effect of infant rats endotoxemia on heat shock protein 60 in the pancreatic acinar cells: involvement of toll-like receptor 4.Int J InflamIntroduction. Lipopolysaccharide endotoxin (LPS) is responsible for septic shock and multiorgan failure, but pretreatment of rats with low doses of LPS reduced pancreatic acute damage. Aim. We investigated the effects of the endotoxemia induced in the early period of life on Toll-like receptor 4 (TLR4), heat shock protein 60 (HSP60) and proapoptotic Bax, caspase-9 and -3 or antiapoptotic Bcl-2 protein expression in the pancreatic acinar cells of adult animals. Material and Methods. Newborn rats (25 g) were injected with endotoxin (Escherichia coli) for 5 consecutive days. Two months later, pancreatic acinar cells were isolated from all groups of animals and subjected to caerulein stimulation (10(-8) M). Protein expression was assessed employing Western blot. For detection of apoptosis we have employed DNA fragmentation ladder assay. Results. Preconditioning of newborn rats with LPS increased TLR4, Caspase-9 and -3 levels, but failed to affect basal expression of HSP60, Bax, and Bcl-2. Subsequent caerulein stimulation increased TLR4, Bcl-2, and caspases, but diminished HSP60 and Bax proteins in pancreatic acinar cells. Endotoxemia dose-dependently increased TLR4, Bax, HSP60, and both caspases protein signals in the pancreatic acini, further inhibiting antiapoptotic Bcl-2. Conclusions. Endotoxemia promoted the induction of HSP60 via TLR4 in the infant rats and participated in the LPS-dependent pancreatic tissue protection against acute damage.
2012Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis.Crit Care MedTo determine the role of Toll-like receptor 3 in cardiac dysfunction during polymicrobial sepsis.Controlled animal study.University research laboratory.Male C57BL/6, wild-type, Toll-like receptor 3-/-.Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. Toll-like receptors (TLRs) play a critical role in the pathophysiology of sepsis/septic shock. TLR3 is located in intracellular endosomes, and recognizes double-stranded RNA. This study examined the role of TLR3 in cardiac dysfunction following cecal ligation and puncture (CLP)-induced sepsis. TLR3 knockout (TLR3-/-, n=12) and age-matched wild-type (n=12) mice were subjected to CLP. Cardiac function was measured by echocardiography before and 6 hrs after CLP.CLP resulted in significant cardiac dysfunction as evidenced by decreased ejection fraction by 25.7% and fractional shortening by 29.8%, respectively. However, TLR3-/- mice showed a maintenance of cardiac function at pre-CLP levels. Wild-type mice showed 50% mortality at 58 hrs and 100% mortality at 154 hrs after CLP. In striking contrast, 70% of TLR3-/- mice survived indefinitely, that is, >200 hrs. TLR3 deficiency significantly decreased CLP-induced cardiac-myocyte apoptosis and attenuated CLP-induced Fas and Fas ligand expression in the myocardium. CLP-activation of TLR4-mediated nuclear factor-κB and Toll/IL-1 receptor-domain-containing adapter-inducing interferon-β-dependant interferon signaling pathways was prevented by TLR3 deficiency. In addition, CLP-increased vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression, and neutrophil and macrophage sequestration in the myocardium were also attenuated in septic TLR3-/- mice. More significantly, adoptive transfer of wild-type bone-marrow stromal cells to TLR3-/- mice abolished the cardioprotective effect in sepsis.These data indicate that TLR3 plays a deleterious role in mediating cardiac dysfunction in sepsis. Thus, modulation of the TLR3 activity may be useful in preventing cardiac dysfunction in sepsis.
2012Toll-like receptor 4 knockout protects against anthrax lethal toxin-induced cardiac contractile dysfunction: role of autophagy.Br J PharmacolAnthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction.Wild-type (WT) and TLR4 knockout (TLR⁻/⁻) mice were challenged with lethal toxin (2 µg·g⁻¹, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP-LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin).In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca²⁺ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells.Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications.
2012Toll-like receptor-induced inflammatory cytokines are suppressed by gain of function or overexpression of Gα(i2) protein.InflammationPrevious studies have implicated a role of Gα(i) proteins as co-regulators of Toll-like receptor (TLR) activation. These studies largely derived from examining the effect of Gα(i) protein inhibitors or genetic deletion of Gα(i) proteins. However, the effect of increased Gα(i) protein function or Gα(i) protein expression on TLR activation has not been investigated. We hypothesized that gain of function or increased expression of Gα(i) proteins suppresses TLR2- and TLR4-induced inflammatory cytokines. Novel transgenic mice with genomic "knock-in" of a regulator of G protein signaling (RGS)-insensitive Gnai2 allele (Gα(i2)(G184S/G184S) ; GS/GS) were employed. These mice express essentially normal levels of Gα(i2) protein; however, the Gα(i2) is insensitive to its negative regulator RGS thus rendering more sustained Gα(i2) protein activation following ligand/receptor binding. In subsequent studies, we generated Raw 264.7 cells that stably overexpress Gα(i2) protein (Raw Gα(i2)). Peritoneal macrophages, splenocytes, and mouse embryonic fibroblasts (MEF) were isolated from WT and GS/GS mice and were stimulated with LPS, Pam3CSK4, or Poly (I:C). We also subjected WT and GS/GS mice to endotoxic shock (LPS, 25 mg/kg i.p.) and plasma tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 production were determined. We found that in vitro LPS and Pam3CSK4-induced TNF-α, and IL-6 production are decreased in macrophages from GS/GS mice compared with WT mice (p < 0.05). In vitro, LPS and Pam3CSK4 induced IL-6 production in splenocytes, and in vivo, LPS-induced IL-6 were suppressed in GS/GS mice. Poly (I:C)-induced TNF-α, and IL-6 in vitro demonstrated no difference between GS/GS mice and WT mice. LPS-induced IL-6 production was inhibited in MEFs from GS/GS mice similarly to macrophage and splenocytes. In parallel studies, Raw Gα(i2) cells also exhibit decreased TNF-α and IL-6 production in response to LPS and Pam3CSK4. These studies support our hypothesis that Gα(i2) proteins are novel negative regulators of TLR activation.
2012Genetic variants of the MBL2 gene are associated with mortality in pneumococcal sepsis.Diagn Microbiol Infect DisStudies evaluating associations between polymorphisms of innate immunity genes and prognosis of infectious diseases have yielded conflicting results. Our aim was to assess the impact on mortality of different genotypic variants of the innate immunity in patients with pneumococcal sepsis. All adults admitted to the hospital with diagnosis of sepsis caused by Streptococcus pneumoniae were enrolled and single-nucleotide polymorphisms (SNP) in mannose-binding lectin 2 (MBL2), toll-like receptor (TLR) 2, TLR4, and Fcγ receptor IIa genes were genotyped. Underlying diseases, severity of illness, and antibiotic management were also recorded. We included 117 patients: 98 pneumonias (83.6%), 17 meningitis (14.5%), and 2 patients (1.9%) with primary pneumococcal bacteremia. Allelic variants of the MBL2 gene (individuals heterozygous or homozygous for one of the 3 allelic variants B, C, and D: AO/OO) were present in 37 patients (32%), T399I polymorphism in TLR4 in 19 (16.2%), TLR4 D299G/T399I in 11 (9.4%), TLR2 R753Q in 3 (2.5%), and FcγRIIa-R/R131 in 26 patients (23%). Factors associated independently with in-hospital mortality were SNP MBL2 AO/OO (adjusted hazard ratios [aHR] 3.2, 95% confidence interval [CI] 1.01-9.8) and septic shock (aHR 15.3, 95% CI 3.5-36.5), whereas first adequate antibiotic dose ≤ 4 h was a protective factor (aHR 0.2, 95% CI 0.06-0.8). SNP MBL2 AO/OO (aHR 2.2, 95% CI 1.1-8.1) remained as a variable independently associated with 90-day mortality. In conclusion, variant alleles in the MBL2 gene are independently associated with in-hospital and medium-term mortalities in patients admitted to the hospital with pneumococcal sepsis.
2012Activation of toll-like receptor 4 is necessary for trauma hemorrhagic shock-induced gut injury and polymorphonuclear neutrophil priming.ShockInteractions of toll-like receptors (TLRs) with nonmicrobial factors play a major role in the pathogenesis of early trauma-hemorrhagic shock (T/HS)-induced organ injury and inflammation. Thus, we tested the hypothesis that TLR4 mutant (TLR4 mut) mice would be more resistant to T/HS-induced gut injury and polymorphonuclear neutrophil (PMN) priming than their wild-type littermates and found that both were significantly reduced in the TLR4 mut mice. In addition, the in vivo and ex vivo PMN priming effect of T/HS intestinal lymph observed in the wild-type mice was abrogated in TLR4 mut mice as well the TRIF mut-deficient mice and partially attenuated in Myd88 mice, suggesting that TRIF activation played a more predominant role than MyD88 in T/HS lymph-induced PMN priming. Polymorphonuclear neutrophil depletion studies showed that T/HS lymph-induced acute lung injury was PMN dependent, because lung injury was totally abrogated in PMN-depleted animals. Because the lymph samples were sterile and devoid of endotoxin or bacterial DNA, we investigated whether the effects of T/HS lymph was related to endogenous nonmicrobial TLR4 ligands. High-mobility group box 1 protein 1, heat shock protein 70, heat shock protein 27, and hyaluronic acid all have been implicated in ischemia-reperfusion-induced tissue injury. None of these "danger" proteins appeared to be involved, because their levels were similar between the sham and shock lymph samples. In conclusion, TLR4 activation is important in T/HS-induced gut injury and in T/HS lymph-induced PMN priming and lung injury. However, the T/HS-associated effects of TLR4 on gut barrier dysfunction can be uncoupled from the T/HS lymph-associated effects of TLR4 on PMN priming.
2012microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-κB1 in murine macrophages.FEBS LettLigation of TLR4 with LPS in macrophages leads to the production of proinflammatory cytokines, which are central to eliminate viral and bacterial infection. However, uncontrolled TLR4 activation may contribute to pathogenesis of inflammatory diseases such as septic shock. In this study, we found microRNA-210 was induced in murine macrophages by LPS. Transfection of miR-210 mimics significantly inhibited LPS-induced production of inflammatory cytokines. In contrast, transfection of anti-miR-210 inhibitors increased LPS-induced expression of proinflammatory cytokines. Furthermore, we demonstrated that miR-210 targets NF-κB1. Therefore, our data identify miR-210 as a very important feedback negative regulator for LPS-induced production of proinflammatory cytokines.
2012Lipopolysaccharide binding protein inhibitory peptide alters hepatic inflammatory response post-hemorrhagic shock.Innate ImmunTranslocation of microorganisms and endotoxin (LPS) across the gastrointestinal mucosa may exacerbate the inflammatory response and potentiate hepatic injury associated with hemorrhagic shock. Lipopolysaccharide binding protein (LBP) augments LPS signaling through TLR4. In addition, evidence suggests that TLR4-mediated injury in liver ischemia/reperfusion occurs through the IRF-3/MyD88 independent pathway. We hypothesized that administration of LBP inhibiting peptide, LBPK95A, given at the time of resuscitation would reduce liver inflammation and injury in a murine model of hemorrhagic shock by limiting LPS-induced activation of the MyD88 independent pathway. Hemorrhagic shock was induced in male, C57BL/6 mice; a mean arterial blood pressure of 35 mmHg was maintained for 2.5 h. LBPK95A peptide or equal volume Lactated Ringer's solution was administered followed by fluid resuscitation. Mice were sacrificed at 2 and 6 h post-resuscitation. At 2 h, liver mRNA levels revealed a significant reduction in IFN-β, a cytokine produced via the MyD88 independent pathway, with LBPK95A treatment. However, mRNA levels of TNF-α, a cytokine associated with the MyD88 dependent pathway, were unaffected by treatment. The LBP inhibitory peptide did selectively reduce activation of TLR4 signaling via the IRF-3/MyD88 independent pathway. These results suggest that LBP promotes cytokine production through the MyD88 independent pathway during hemorrhagic shock.
2012The interaction of HspA1A with TLR2 and TLR4 in the response of neutrophils induced by ovarian cancer cells in vitro.Cell Stress ChaperonesInducible heat shock protein (HspA1A) promotes tumor cell growth and survival. It also interacts with effector cells of the innate immune system and affects their activity. Recently, we showed that the direct contact of ovarian cancer cells, isolated from tumor specimens, with neutrophils intensified their biological functions. Our current experiments demonstrate that the activation of neutrophils, followed by an increased production of reactive oxygen species, by cancer cells involves the interaction of HspA1A from cancer cells with Toll-like receptors 2 and 4 expressed on the neutrophils' surface. Our data may have a practical implication for targeted anticancer therapies based, among other factors, on the inhibition of HspA1A expression in the cancer cells.
2012High susceptibility to lipopolysaccharide-induced lethal shock in encephalomyocarditis virus-infected mice.Sci RepSecondary bacterial infection in humans is one of the pathological conditions requiring clinical attention. In this study, we examined the effect of lipopolysaccharide (LPS) on encephalomyocarditis virus (EMCV) infected mice. All mice inoculated with EMCV at 5 days before LPS challenge died within 24 h. LPS-induced TNF-α mRNA expression was significantly increased in the brain and heart at 5 days after EMCV infection. CD11b(+)/TLR4(+) cell population in the heart was remarkably elevated at 5 days after EMCV infection, and sorted CD11b(+) cells at 5 days after EMCV infection produced a large amount of TNF-α on LPS stimulation in vivo and in vitro. In conclusion, we found that the infiltration of CD11b(+) cells into infected organs is involved in the subsequent LPS-induced lethal shock in viral encephalomyocarditis. This new experimental model can help define the mechanism by which secondary bacterial infection causes a lethal shock in viral encephalomyocarditis.
2012Multiple potential regulatory sites of TLR4 activation induced by LPS as revealed by novel inhibitory human TLR4 mAbs.Int ImmunolRecognition of LPS by the toll-like receptor 4 (TLR4)/MD-2 complex is a trigger of innate immune defense against bacterial invasion. However, excessive immune activation by this receptor complex causes septic shock and autoimmunity. Manipulation of TLR4 signaling represents a potential therapy that would avoid the detrimental consequences of unnecessary immune responses. In this study, we established two novel mAbs that inhibit LPS-induced human TLR4 activation. HT52 and HT4 mAbs inhibited LPS-induced nuclear factor-κB activation in TLR4/MD-2-expressing Ba/F3-transfected cells and cytokine production and up-regulation of CD86 in the human cell line U373 and PBMCs. These inhibitory activities were stronger than that of HTA125 mAb, which we previously reported. Immunofluorescent and biochemical studies using TLR4 deletion mutants revealed that HT52 and HT4 recognized spatially distinct regions on TLR4 irrespective of MD-2 association. The HT52 and HTA125 epitopes were localized within aa 50-190, while the HT4 epitope was formed only by the full length of TLR4. In addition, we demonstrated that HT52 and HT4 failed to compete with LPS for binding to TLR4/MD-2 but inhibited LPS-induced TLR4 internalization. Inhibitory activities were not due to the interaction with the Fcγ receptor CD32. Our finding that binding of mAbs to at least two distinct regions on TLR4 inhibits LPS-dependent activation provides a novel method for manipulating TLR4 activation and also a rationale for designing drugs targeted to TLR4.
2012Eimeria tenella heat shock protein 70 enhances protection of recombinant microneme protein MIC2 subunit antigen vaccination against E. tenella challenge.Vet ParasitolHeat shock proteins have been reported to stimulate the immune system via innate receptors. Our study found that the novel immunopotentiator, Eimeria tenella (E. tenella) heat shock protein 70 (HSP70), enhanced protective immunity elicited by E. tenella antigen microneme protein 2 (EtMIC2) against avian coccidiosis. It demonstrated that the expression of TLR2 and TLR4 were strongly upregulated in EtHSP70 and EtMIC2 plus EtHSP70 stimulated chicken embryo fibroblasts (CEF) compared with untreated controls and EtMIC2 alone. In addition, the same treatment induced high levels of interleukin (IL)-12 and interferon (IFN)-γ that are critical cytokines of innate immunity. In vivo experiments involved using broiler chickens subcutaneously immunized with EtMIC2 alone or EtMIC2 plus EtHSP70 at 7 and 14 days post-hatch, which were then orally challenged with live E. tenella at 7 days following secondary immunization. Body weight gains, cecal lesion scores, fecal oocyst shedding, serum antibody responses against MIC2, and intestinal cytokine transcript levels were assessed as measures of protective immunity. Chickens immunized with EtMIC2 plus EtHSP70 showed increased body weight gains, decreased oocyst shedding, increased serum antibody responses, and high levels of IL-12, IFN-γ, and IL-17 compared with the EtMIC2 only or control groups. Moreover, chickens immunized with EtHSP70 alone showed significantly protective effect against E. tenella infection. In summary, this study provides the first evidence of the immunoenhancing activities of EtHSP70 in poultry.
2012Role of interleukin-6 in hemopoietic and non-hemopoietic synergy mediating TLR4-triggered late murine ileus and endotoxic shock.Neurogastroenterol MotilEarly murine endotoxin-induced ileus at 6 h is exclusively mediated by non-hemopoietic TLR4/MyD88 signaling despite molecular activation of hemopoietic cells which included a significant IL-6 mRNA induction. Our objective was to define the role of hemopoietic cells in LPS/TLR4-triggered ileus and inflammation over time, and identify mechanisms of ileus.CSF-1(-/-) , TLR4 non-chimera and TLR4 chimera mice were single-shot intraperitoneal injected with ultrapure lipopolysaccharide (UP-LPS) and studied up to 4 days. Subgroups of TLR4(WT) mice were additionally intravenously injected with exogenous recombinant IL-6 (rmIL-6) or murine soluble IL-6 receptor blocking antibody (anti-sIL-6R mAB).Hemopoietic TLR4 signaling independently mediated UP-LPS-induced ileus at 24 h, but chemotactic muscularis neutrophil extravasation was not causatively involved and mice lacking CSF-1-dependent macrophages died prematurely. Synergy of hemopoietic and non-hemopoietic cells determined ileus severity and mortality which correlated with synergistic cell lineage specific transcription of inflammatory mediators like IL-6 within the intestinal muscularis. Circulating IL-6 levels were LPS dose dependent, but exogenous rmIL-6 did not spark off a self-perpetuating inflammatory response triggering ileus. Sustained therapeutic inhibition of functional IL-6 signaling efficiently ameliorated late ileus while preemptive antibody-mediated IL-6R blockade was marginally effective in mitigating ileus. However, IL-6R blockade did not prevent endotoxin-associated mortality nor did it alter circulating IL-6 levels.A time-delayed bone marrow-driven mechanism of murine endotoxin-induced ileus exists, and hemopoietic cells synergize with non-hemopoietic cells thereby prolonging ileus and fueling intestinal inflammation. Importantly, IL-6 signaling via IL-6R/gp130 drives late ileus, yet it did not regulate mortality in endotoxic shock.
2012Intracellular heat shock protein-70 negatively regulates TLR4 signaling in the newborn intestinal epithelium.J ImmunolNecrotizing enterocolitis (NEC) is the leading cause of gastrointestinal-related mortality in premature infants, and it develops under conditions of exaggerated TLR4 signaling in the newborn intestinal epithelium. Because NEC does not develop spontaneously, despite the presence of seemingly tonic stimulation of intestinal TLR4, we hypothesized that mechanisms must exist to constrain TLR4 signaling that become diminished during NEC pathogenesis and focused on the intracellular stress response protein and chaperone heat shock protein-70 (Hsp70). We demonstrate that the induction of intracellular Hsp70 in enterocytes dramatically reduced TLR4 signaling, as assessed by LPS-induced NF-κB translocation, cytokine expression, and apoptosis. These findings were confirmed in vivo, using mice that either globally lacked Hsp70 or overexpressed Hsp70 within the intestinal epithelium. TLR4 activation itself significantly increased Hsp70 expression in enterocytes, which provided a mechanism of autoinhibition of TLR4 signaling in enterocytes. In seeking to define the mechanisms involved, intracellular Hsp70-mediated inhibition of TLR4 signaling required both its substrate-binding EEVD domain and association with the cochaperone CHIP, resulting in ubiquitination and proteasomal degradation of TLR4. The expression of Hsp70 in the intestinal epithelium was significantly decreased in murine and human NEC compared with healthy controls, suggesting that loss of Hsp70 protection from TLR4 could lead to NEC. In support of this, intestinal Hsp70 overexpression in mice and pharmacologic upregulation of Hsp70 reversed TLR4-induced cytokines and enterocyte apoptosis, as well as prevented and treated experimental NEC. Thus, a novel TLR4 regulatory pathway exists within the newborn gut involving Hsp70 that may be pharmacologically activated to limit NEC severity.
2012Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself.J Inflamm (Lond)Toll-like receptor 4 (TLR4) is activated by bacterial endotoxin, a prototypical pathogen-associated molecular pattern (PAMP). It has been suggested that TLR4 can also be activated by damage-associated molecular pattern (DAMP) proteins such as HSP70. It remains a challenge to provide unequivocal evidence that DAMP proteins themselves play a role in TLR4 activation, as the DAMP proteins used are often contaminated with endotoxin and other TLR ligands introduced during protein expression and/or purification.Here we report that the activation of TLR4 on primary human macrophage cultures by recombinant HSP70 is not solely due to contaminating endotoxin. Polymyxin B pretreatment of HSP70 preparations to neutralize contaminating endotoxin caused significant reductions in the amount of TNF-α induced by the recombinant protein as determined by ELISA. However, digestion of HSP70 with Proteinase K-agarose beads also dramatically reduced the TNF-α response of macrophages to HSP70, while leaving levels of contaminating endotoxin largely unchanged relative to controls.These results indicate that the stimulatory effect of recombinant HSP70 requires both the presence of endotoxin and structural integrity of the heat shock protein itself.
2012Ephedrine hydrochloride protects mice from LPS challenge by promoting IL-10 secretion and inhibiting proinflammatory cytokines.Int ImmunopharmacolSepsis and its derivative endotoxic shock are still serious conditions with high mortality in the intensive care unit. The mechanisms that ensure the balance of proinflammatory cytokines and anti-inflammatory cytokine production are of particular importance. As an active α- and β-adrenergic agonist, ephedrine hydrochloride (EH) is a widely used agent for cardiovascular diseases, especially boosting blood pressure. Here we demonstrate that EH increased Toll-like receptor 4 (TLR4)-mediated production of interleukin 10 (IL-10) through p38 MAPK activation. Simultaneously, EH negatively regulated the production of proinflammatory cytokines. Consistently, EH increased lipopolysaccharide (LPS)-induced serum IL-10 and inhibited tumor necrotic factor-α (TNFα) production in vivo. As a result, EH treatment protected mice from endotoxic shock by lethal LPS challenge. In brief, our data demonstrated that EH could contribute to immune homeostasis by balancing the production of proinflammatory cytokines and anti-inflammatory cytokine in TLR4 signaling. This study provides a potential usage of EH in autoimmunologic diseases or other severe inflammations.
2012Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses.J Biol ChemCalcium/calmodulin-dependent kinase kinase 2 (CaMKK2) plays a key role in regulating food intake and energy expenditure at least in part by its actions in hypothalamic neurons. Previously, we showed that loss of CaMKK2 protected mice from high-fat diet (HFD)-induced obesity and glucose intolerance. However, although pair feeding HFD to WT mice to match food consumption of CAMKK2-null mice slowed weight gain, it failed to protect from glucose intolerance. Here we show that relative to WT mice, HFD-fed CaMKK2-null mice are protected from inflammation in adipose and remain glucose-tolerant. Moreover, loss of CaMKK2 also protected mice from endotoxin shock and fulminant hepatitis. We explored the expression of CaMKK2 in immune cells and found it to be restricted to those of the monocyte/macrophage lineage. CaMKK2-null macrophages exhibited a remarkable deficiency to spread, phagocytose bacteria, and synthesize cytokines in response to the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS). Mechanistically, loss of CaMKK2 uncoupled the TLR4 cascade from activation of protein tyrosine kinase 2 (PYK2; also known as PTK2B). Our findings uncover an important function for CaMKK2 in mediating mechanisms that control the amplitude of macrophage inflammatory responses to excess nutrients or pathogen derivatives.
2011Salvianolic acid B inhibits the TLR4-NFκB-TNFα pathway and attenuates neonatal rat cardiomyocyte injury induced by lipopolysaccharide.Chin J Integr MedTo investigate the role of the TLR4-NFκB-TNFα inflammation pathway on: lipopolysaccharide (LPS)-induced neonatal rat cardiomyocyte injury and the possible protective effects of salvianolic acid B (Sal B).Wistar rat (1-2 days old) cardiomyocytes were isolated and cultured. Sal B 10(-5)mol/L, 10(-6)mol/L and 10(-7)mol/L were pre-treated for 6 h in the culture medium. LPS (1 μg/mL) was added to mol/the culture medium and kept for 6 h to induce inflammation injury. The concentration of lactate dehydrogenase (LDH) in the supernatant was detected by spectrophotometry. The concentrations of tumor necrosis factor α (TNFα) and heat shock protein 70 (HSP70) in the supernatant were detected by enzyme linked immunosorbent assay. The protein expressions of toll, such as receptor 4 (TLR4) and nuclear factor kappa B (NFκB) were detected by immunohistochemistry. The mRNA expressions of TLR4 and NFκB were detected by real-realtime reverse transcription polymerase chain reaction (RT-PCR).(1) The concentrations of LDH and: TNFα in the LPS control group were significantly higher than those in the control group (561.41±67.39 U/L and 77.94±15.08 pg/mL, versus 292.13±26.02 U/L and 25.39±16.53 pg/mL, respectively, P<0.01, P<0.05). Compared with the LPS control group, the concentrations of LDH and TNFα were significantly decreased in the Sal B 10(-5)mol/L pre-treated group (451.76±83.96 U/L and 34.00±10.38 pg/mL, respectively, P<0.05). (2) The TLR4 and NFκB protein expression area in the LPS control group were significantly higher than those in the control group (1712.41±410.12 μm(2) and 2378.15±175.29 μm(2), versus 418.62±24.42 μm(2) and 1721.74±202.87 μm(2), respectively, P<0.01). The TLR4 and NFκB protein expression internal optical density (IOD) values in the LPS control group were also significantly higher than those in the control group (3.06±0.33 and 7.20±1.04, versus 0.91±0.21 and 4.24±0.48, respectively, P<0.05 and P<0.01). Compared with the LPS control group, the TLR4 and NFκB protein expression areas were significantly decreased in the Sal B 10(-5)mol/L pre-treated group (1251.54±133.82 μm(2) and 1996.37±256.67 μm(2), respectively, P<0.05), the TLR4 and NFκB protein expression IOD values were also significantly decreased in the Sal B 10(-5)mol/L pre- mol/pretreated group (1.92±0.28 and 5.17±0.77, respectively, treated P<0.05). (3) The TLR4 and NFκB mRNA expressions (2(-ΔΔ)CT value) in the LPS control group were significantly higher than those in the control group (3.16±0.38 and 5.03±0.43 versus 1.04±0.19 and 1.08±0.21, respectively, P<0.01). Compared with the LPS control group, the TLR4 and NFκB mRNA expressions (2(-ΔΔ) -CT value) were significantly decreased in the Sal B 10(-5)mol/L pre- mol/pretreated group (1.34±0.22 and 1.74±0.26, respectively, treated P<0.05). The concentration of HSP70 did not show any 0.05).The TLR4-NFκB-TNFα pathway was quickly activated: and was independent of HSP70 in the early phase of neonatal cardiomyocyte injury induced by LPS. The protective effects of Sal B may be through inhibiting the TLR4-NFκB-TNFα pathway and are dose-dependent.
2011The tumor suppressor ARF regulates innate immune responses in mice.J ImmunolThe innate immune system is the first line of defense against invading organisms, and TLRs are the main sensors of microbial components, initiating signaling pathways that induce the production of proinflammatory cytokines and type I IFNs. An antiviral action for the tumor suppressor alternative reading frame (ARF) has been reported; however, the precise role of ARF in innate immunity is unknown. In this study, we show that ARF plays an important role in regulation of inflammatory responses. In peritoneal macrophages and bone marrow-derived macrophages from ARF-deficient animals, the induction of proinflammatory cytokines and chemokines by TLR ligands was severely impaired. The altered responses of ARF(-/-) cells to TLR ligands result from aberrant activation of intracellular signaling molecules including MAPKs, IκBα degradation, and NF-κB activation. Additionally, animals lacking ARF were resistant to LPS-induced endotoxic shock. This impaired activation of inflammation in ARF(-/-) mice was not restricted to TLRs, as it was also shown in response to non-TLR signaling pathways. Thus, ARF(-/-) mice were also unable to trigger a proper inflammatory response in experimental peritonitis or in 12-O-tetradecanoylphorbol-13-acetate-induced edema. Overexpression of ARF, but not its downstream target p53, rescued the ARF-deficient phenotype, increasing TLR4 levels and restoring inflammatory reaction. An increase in the E2F1 protein levels observed in ARF(-/-) macrophages at basal condition and after LPS stimulation may be involved in the impaired response in this system, as E2F1 has been described as an inflammatory suppressor. These results indicate that tumor suppressor ARF is a new regulator of inflammatory cell signaling.
2011In vivo Toll-like receptor 4 antagonism restores cardiac function during endotoxemia.ShockSevere sepsis and septic shock are often accompanied by acute cardiovascular depression. Lipopolysaccharide (LPS) signaling via Toll-like receptor 4 (TLR4) can induce septic organ dysfunction. The aim of this study was to elucidate the in vivo impact of pharmacological TLR4 antagonism on LPS-induced cardiovascular depression using eritoran tetrasodium (E5564). To simulate sepsis, C3H/HeN mice were challenged i.p. with 2 mg/kg body weight LPS. With the intent to antagonize the LPS effects, eritoran was administered i.v. (4 mg/kg body weight). Physical activity, peripheral blood pressure, and heart frequency were recorded before and after LPS and eritoran injection. In addition, intracardiac hemodynamic parameters were analyzed with a pressure conductance catheter. After 2 and 6 h of LPS stimulation ± eritoran treatment, the hearts and aortae were harvested, and TLR as well as inflammatory mediator expression was measured using reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Lipopolysaccharide significantly decreased arterial blood pressure over time. Administration of eritoran partially prevented the LPS-dependent reduction in blood pressure and preserved cardiac function. In addition, LPS increased the expression of CD14 and TLR2 in cardiac and aortic tissue. In aortic tissue, eritoran attenuated this increase, whereas no significant reduction was observed in the heart. Furthermore, cardiac and aortic inducible nitric oxide synthetase mRNA levels were significantly increased 6 h after LPS application. This effect was reduced in the presence of eritoran. In summary, the beneficial influence of eritoran on cardiovascular function in vivo seems to rely mainly on reduction of LPS-induced inducible nitric oxide synthetase expression as well as on attenuated cytokine expression in the vascular wall.
2012Immunolocalization of Toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury.NeuroimmunomodulationToll-like receptors (TLRs) are essential to the innate immune system for recognizing not only microbial pathogens but also endogenous ligands from injured cells, suggesting that TLRs are a sensitive detection system to tissue injury and play roles in initiating tissue degeneration/regeneration. In this study, the effects of traumatic brain injury (TBI) on lesional expression of TLR2, TLR4, their most common adaptor molecule myeloid differentiation factor 88 (MyD88) and their endogenous ligand, heat shock protein 70 (HSP70), were investigated.Rat TBI was induced using an open-skull weight-drop model. TLR2, TLR4, MyD88 and HSP70 expression was studied by immunohistochemistry.TLR2, TLR4, HSP70 and MyD88 were mainly found in lesioned regions and subcortical white matter. While infiltration of TLR2+ cells became significant on day 2, significant accumulation of TLR4+, MyD88+ and HSP70+ cells was already seen on day 1, and the numbers of immunopositive cells increased continuously until day 4. Furthermore, double staining together with morphological classification showed that major cellular sources for TLR2, TLR4 and MyD88 were macrophages/microglia in lesioned areas and astrocytes in subcortical white matter. But for HSP70, the major cellular sources were neurons in perilesion and macrophages/microglia in lesion areas and astrocytes in subcortical white matter.In summary, our data reveal distinct patterns of localization of TLR+ resident and infiltrating cells in TBI rat brain. Infiltrating activated monocytic cells are the major source of TLR+ cells. These findings warrant further investigation of the roles of TLRs in controlling immune and degenerative/regenerative processes after TBI.
2012Expression of type I interferon by splenic macrophages suppresses adaptive immunity during sepsis.EMBO JEarly during Gram-negative sepsis, excessive release of pro-inflammatory cytokines can cause septic shock that is often followed by a state of immune paralysis characterized by the failure to mount adaptive immunity towards secondary microbial infections. Especially, the early mechanisms responsible for such immune hypo-responsiveness are unclear. Here, we show that TLR4 is the key immune sensing receptor to initiate paralysis of T-cell immunity after bacterial sepsis. Downstream of TLR4, signalling through TRIF but not MyD88 impaired the development of specific T-cell immunity against secondary infections. We identified type I interferon (IFN) released from splenic macrophages as the critical factor causing T-cell immune paralysis. Early during sepsis, type I IFN acted selectively on dendritic cells (DCs) by impairing antigen presentation and secretion of pro-inflammatory cytokines. Our results reveal a novel immune regulatory role for type I IFN in the initiation of septic immune paralysis, which is distinct from its well-known immune stimulatory effects. Moreover, we identify potential molecular targets for therapeutic intervention to overcome impairment of T-cell immunity after sepsis.
2011Bacterial superantigens enhance the in vitro proinflammatory response and in vivo lethality of the TLR2 agonist bacterial lipoprotein.J ImmunolBacterial superantigens are Gram-positive exotoxins that induce proinflammatory cytokine release in vitro, cause lethal shock in vivo, and can be detected in the bloodstream of critically ill patients. They also have a powerful priming effect on the TLR4 agonist LPS. The aim of this study was to investigate the relationship between superantigens and the TLR2 agonist bacterial lipoprotein (BLP). Priming of human monocytes or PBMCs with superantigens significantly enhanced proinflammatory cytokine TNF-α and IL-6 release in response to BLP stimulation. The priming effect of superantigens could be blocked by inhibiting p38 MAPK during the priming phase as opposed to NF-κB or ERK inhibition. This was consistent with higher expression of the phosphorylated p38 after superantigen priming and BLP or LPS stimulation. C57BL/6 mice with superantigen priming (10 μg/mouse) when challenged with BLP (600 μg/mouse) exhibited substantially higher mortality (100%) compared with mice without superantigen priming (zero). Mice given superantigen alone did not demonstrate any signs of illness. Mice challenged with both superantigen and BLP had significantly higher levels of serum TNF-α and IL-6 compared with those of mice challenged with either agent alone. Depletion of the monocyte/macrophage subpopulation significantly reduced the mortality rate from 100 to 20% in superantigen-primed, BLP-challenged C57BL/6 mice, with a 5- to 10-fold decrease in serum TNF-α and IL-6. Our results demonstrate that bacterial superantigens enhance the in vitro proinflammatory cytokine release and in vivo lethality of BLP. This novel finding may help to explain the massive proinflammatory cytokine release seen in superantigen-mediated septic shock.
2011The soluble recombinant Neisseria meningitidis adhesin NadA(Δ351-405) stimulates human monocytes by binding to extracellular Hsp90.PLoS OneThe adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadA(Δ351-405,) devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadA(Δ351-405) cellular effects in monocytes. We show that NadA(Δ351-405) (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadA(Δ351-405) cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadA(Δ351-405) /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadA(Δ351-405) and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadA(Δ351-405) determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadA(Δ351-405) alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by anti-TLR2 antibodies. We propose that hsp90-dependent recruitment into an hsp90/hsp70/TLR4 transducing signal complex is necessary for the immune-stimulating activity of NadA(Δ351-405) anti-MenB vaccine candidate.
2011Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells.J ImmunolHemorrhagic shock (HS) due to major trauma and surgery predisposes the host to the development of systemic inflammatory response syndrome (SIRS), including acute lung injury (ALI), through activating and exaggerating the innate immune response. IL-1β is a crucial proinflammatory cytokine that contributes to the development of SIRS and ALI. Lung endothelial cells (EC) are one important source of IL-1β, and the production of active IL-1β is controlled by the inflammasome. In this study, we addressed the mechanism underlying HS activation of the inflammasome in lung EC. We show that high mobility group box 1 acting through TLR4, and a synergistic collaboration with TLR2 and receptor for advanced glycation end products signaling, mediates HS-induced activation of EC NAD(P)H oxidase. In turn, reactive oxygen species derived from NAD(P)H oxidase promote the association of thioredoxin-interacting protein with the nucleotide-binding oligomerization domain-like receptor protein NLRP3 and subsequently induce inflammasome activation and IL-1β secretion from the EC. We also show that neutrophil-derived reactive oxygen species play a role in enhancing EC NAD(P)H oxidase activation and therefore an amplified inflammasome activation in response to HS. The present study explores a novel mechanism underlying HS activation of EC inflammasome and thus presents a potential therapeutic target for SIRS and ALI induced after HS.
2011Altered expression of SHIP, a Toll-like receptor pathway inhibitor, is associated with the severity of liver fibrosis in chronic hepatitis C virus infection.J Infect DisHepatitis C-related fibrogenesis has been shown to involve complex interactions between peripheral and hepatic immune responses. Peripheral whole blood (PB) samples from patients with chronic hepatitis C (n = 36) were subjected to microarray analysis in order to identify gene expression patterns associated with immune pathways in PB and hepatic fibrosis. Distinct regulation of gene expression of inositol polyphosphate-5-phosphatase/145kDa (INPP5D or SHIP), a TLR2/TLR4-inhibitor, and heat shock protein 8/22 kDa (HSPB8), an endogenous TLR4-ligand, during fibrogenesis was identified and could be confirmed by quantitative reverse-transcription polymerase chain reaction. These results suggest a potential link between peripheral activity of the TLR4-pathway, peripheral SHIP-dependent immune regulation, and liver fibrosis.
2011[The level and clinical significance of Toll-like receptor 4 in children with severe sepsis].Zhongguo Wei Zhong Bing Ji Jiu Yi XueTo study the clinical significance of Toll-like receptor 4 (TLR4) in children with severe sepsis.A prospective control study was performed. All cases were enrolled from pediatric department of the First Affiliated Hospital of Guangzhou Medical College, and they were divided into severe sepsis group (14 patients) who were diagnosed to have severe sepsis or septic shock in intensive care unit (ICU), pneumonia group (10 cases) with diagnosis of bronchial pneumonia, and healthy control group (10 healthy children). Venous blood samples of 2 ml were collected at admission, the level of TLR4 was detected by flow cytometry .At the same time, the changes in serum interleukin (IL-6, IL-10 ) and tumor necrosis factor-α (TNF-α) levels were determined by enzyme linked immunoadsorbent assay (ELISA).In severe sepsis group, the contents of TLR4 [(71.56±15.32)%], IL-6 [(1.98±1.55) ng/L], IL-10 [(88.20±61.23) ng/L] and TNF-α [(104.08±85.36) ng/L] were significantly higher than those in pneumonia group [(50.07±26.36)%, (0.93±0.16) ng/L, (41.42±7.02) ng/L, (48.96±6.40) ng/L] and healthy control group [(39.43±17.43)%, (0.94±0.43) ng/L,(43.73±22.68) ng/L, ( 49.94± 18.47) ng/L, all P<0.05). But there was no significant difference in the contents of TLR4, IL-6, IL-10 and TNF-α between pneumonia group and healthy control group (all P>0.05).This study suggests that TLR4 might be critically involved in the development of sepsis, and changes in TLR4 expression are parallel with levels of proinflammatory cytokines, including IL-6, TNF-α, and IL-10. The combination of TLR4 and proinflammatory cytokines would serve as the predictive parameters in early diagnosis and severity evaluation of sepsis in children.
2011Role of acute ethanol exposure and TLR4 in early events of sepsis in a mouse model.AlcoholSepsis is a major cause of death worldwide. The associated risks and mortality are known to significantly increase on exposure to alcohol (chronic or acute). The underlying mechanisms of the association of acute ethanol ingestion and poor prognosis of sepsis are largely unknown. The study described here was designed to determine in detail the role of ethanol and TLR4 in the pathogenesis of the sepsis syndrome. The effects of acute ethanol exposure and TLR4 on bacterial clearance, spleen cell numbers, peritoneal macrophage numbers, and cytokine production were evaluated using wild-type and TLR4 hyporesponsive mice treated with ethanol and then challenged with a nonpathogenic strain of Escherichia coli. Ethanol-treated mice exhibited a decreased clearance of bacteria and produced lesser amounts of most pro-inflammatory cytokines in both strains of mice at 2h after challenge. Neither ethanol treatment nor a hyporesponsive TLR4 had significant effects on the cell numbers in the peritoneal cavity and spleen 2h postinfection. The suppressive effect of acute ethanol exposure on cytokine and chemokine production was more pronounced in the wild-type mice, but the untreated hyporesponsive mice produced less of most cytokines than untreated wild-type mice. The major conclusion of this study is that acute ethanol exposure suppresses pro-inflammatory cytokine production and that a hyporesponsive TLR4 (in C3H/HeJ mice) decreases pro-inflammatory cytokine levels, but the cytokines and other mediators induced through other receptors are sufficient to ultimately clear the infection but not enough to induce lethal septic shock. In addition, results reported here demonstrate previously unknown effects of acute ethanol exposure on leukemia inhibitory factor and eotaxin, and provide the first evidence that interleukin (IL)-9 is induced through TLR4 in vivo.
2011Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice.PLoS OneInjurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.
2011Toll-like receptor 4 polymorphisms and the risk of gram-negative bacterial infections after liver transplantation.TransplantationToll-like receptor 4 (TLR4) is the main immune molecule that recognizes lipopolysaccharide from gram-negative bacteria. Single-nucleotide polymorphisms (SNPs) in the TLR4 gene that impair lipopolysaccharide recognition may influence gram-negative bacterial infections after liver transplantation.TLR4 D299G and T399I SNPs were assessed in a cohort of 706 liver transplant recipients and were associated with the clinical characteristics and outcome of gram-negative bacterial infections. Cox proportional hazard model was performed to determine covariates associated with outcomes after gram-negative bacterial infections.Of 706 patients, there were 108 with microbiologically confirmed gram-negative bacterial infections, 135 with clinically suspected but not confirmed infections, and 463 patients without gram-negative bacterial infections. The proportions of TLR4 D299G (5/108 [4.6%] vs. 32/463 [6.9%]; P=0.39) and T399I SNPs (19/108 [17.6%] vs. 68/463 [14.7%]; P=0.45) did not differ between those with or without microbiologically confirmed gram-negative bacterial infections. Female gender (odds ratio 2.30, 95% confidence interval [CI]1.50-3.53; P<0.001) and ulcerative colitis (odds ratio 2.18, 95% CI 1.08-4.38; P=0.03) were associated with gram-negative bacterial infections. Among 108 patients with gram-negative bacterial infections, alcoholic liver disease (relative risk [RR] 4.87, 95% CI 1.54-15.44; P=0.007), initial septic shock (RR 10.19, 95% CI 2.70-38.37; P=0.001), and nosocomially-acquired infection (RR 4.61, 95% CI 1.51-14.14; P=0.007) were significantly associated with 90-day mortality after gram-negative bacterial infections. In contrast, TLR4 D299G and T399I SNPs were not significantly associated with mortality after gram-negative bacterial infections.In this cohort of liver transplant recipients with long-term follow-up, no significant association was observed between TLR4 D299G and T399I SNPs and the risk and outcome of gram-negative bacterial infections.
2011Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2.Circ JToll-like receptors (TLRs) are expressed on cardiomyocytes and recognize pathogen-associated molecular patterns. Whether endogenous molecules produced by tissue injury (damage associated molecular patterns, DAMPs) can induce cardiomyocyte inflammation via TLR signalling pathways and/or reduce cardiomyocyte contractility is unknown.Primary cardiomyocytes isolated from nuclear factor κ B (NFκB)-luciferase knock-in mice were used to assess NFκB signalling. DAMPs, HSP60, HSP70 and HMGB1, increased NFκB transcriptional activity compared to controls. HSP70 stood out compared to other DAMPs and even lipopolysaccharide (LPS). Subsequent experiments focused on HSP70. Cardiomyocytes exposed to HSP70 had a 58% decrease in contractility without a decrease in calcium flux. Exposure of cultured HL-1 cardiomyocytes to HSP70 resulted in increased expression of intercellular adhesion molecule 1 (ICAM-1), interleukin 6 (IL-6) and keratinocyte-derived chemokine (KC) compared to controls. Knock-out mice for TLR2, TLR4 and MyD88, plus background strain controls (C57BL/6) were used to assess induction of cardiomyocyte inflammation by HSP70. The cardiomyocyte expression of ICAM-1 induced by HSP70 was significantly reduced in TLR2 and MyD88 knock-out mice but not TLR4 knock-out mice; implicating the TLR2 signalling pathway. Furthermore, blocking antibodies to TLR2 were able to abrogate HSP70-induced contractile dysfunction and cell death.Extracellular HSP70 acting via TLR2 and its obligate downstream adaptor molecule, MyD88, activate NFκB. This causes cardiomyocyte inflammation and decreased contractility.
Role of hippocampal TLR4 in neurotoxicity in mice following toluene exposure.Neurotoxicol TeratolThe present study was designed to investigate the possible involvement of TLR4 pathway in the mouse hippocampus following toluene exposure. Male C3H/HeN and C3H/HeJ (TLR4 defective) mice were exposed to 0, 5, 50 or 500 ppm of toluene for 6 weeks. The expressions of TLR4-related signal transduction pathway mRNAs in the hippocampi were examined using real-time RT-PCR and an immunohistochemical analysis. In C3H/HeN mice, the relative mRNA expression levels of TLR4 and NF-κB activating protein were significantly up-regulated in the groups exposed to toluene, but not in the C3H/HeJ mice. Heat shock protein 70, a possible endogenous ligand for TLR4, mRNA was increased in the C3H/HeN mice exposed to toluene. This is the first report to show that TLR4 may have a role in the neurotoxic effects in mice exposed to toluene.
2011MyD88 and Trif signaling play distinct roles in cardiac dysfunction and mortality during endotoxin shock and polymicrobial sepsis.AnesthesiologyToll-like receptors (TLRs) such as TLR2, TLR4, and TLR9 contribute to the pathogenesis of polymicrobial sepsis. These TLRs signal via the common myeloid differentiation factor 88 (MyD88)-dependent pathways. TLR4 also signals through MyD88-independent but TIR domain-containing adaptor inducing interferon-β-mediated transcription factor (Trif)-dependent pathway. The role of the two signaling pathways in cardiac dysfunction during polymicrobial sepsis and endotoxin shock is unknown.Sepsis was generated by cecum ligation and puncture. Mice were divided into sham and cecum ligation and puncture groups or subjected to saline or endotoxin. Left ventricular function was assessed in a Langendorff apparatus or by echocardiography. Cytokines were examined using a multiplex immunoassay. Neutrophil migratory and phagocytic functions were assessed using flow cytometry.In comparison with wild-type mice, MyD88(-/-) but not Trif(-/-) mice had markedly improved cardiac function and survival after cecum ligation and puncture. In comparison, both MyD88(-/-) and Trif(-/-) mice were protected from cardiac depression and mortality during endotoxin shock. Septic MyD88(-/-) but not Trif(-/-) mice had diminished cytokine production in serum and in peritoneal space in comparison with wild-type mice after cecum ligation and puncture. In contrast, both MyD88(-/-) and Trif(-/-) mice had attenuated serum cytokines in comparison with wild-type mice after endotoxin challenge. Neither MyD88(-/-) nor Trif(-/-) signaling had any effect on neutrophil phagocytic function or bacterial clearance at 24 h of polymicrobial sepsis.These studies establish that MyD88 but not Trif signaling plays a critical role in mediating cardiac dysfunction, systemic inflammation, and mortality during polymicrobial sepsis. Both MyD88 and Trif are essential for cardiac depression and mortality during endotoxin shock.
2011Heat shock protein 10 of Chlamydophila pneumoniae induces proinflammatory cytokines through Toll-like receptor (TLR) 2 and TLR4 in human monocytes THP-1.In Vitro Cell Dev Biol AnimInflammatory response is the first line of infection. Previous studies have suggested that Chlamydophila pneumoniae heat shock protein (CHSP) 60 is present in human atheromata, and it plays an important role on the chronic infection elicited by C. pneumoniae. Here, we demonstrated in vitro the impact of heat shock protein 10 (HSP10) of C. pneumoniae on THP-1 cells and the role of Toll-like receptors (TLRs) in the procedures of inflammatory response. The production of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-6, and IL-1beta were induced by recombinant HSP10 dose-dependently, and the proinflammatory activity of HSP10 was greatly reduced by heating and deproteinization treatment. The expression of TLR4 and TLR2 on the cultured cells were determined by reverse transcriptase-polymerase chain reaction and immunofluorescence. Peritoneal macrophages isolated from wild-type (C3H/HeN) and TLR4-deficient mice (C3H/HeJ) were respectively stimulated with endotoxin-free proteins. Cytokine responses after stimulation were significantly different, depending on the presence of TLR4. The effect on cytokine expression was blocked by anti-TLR2 or anti-TLR4 MAb partially or dramatically. Thus, HSP10 of C. pneumoniae which could elicit inflammatory reactions in human monocytes may contribute to the inflammatory processes in Chlamydophila infection, and the effects were mediated by TLR4 and, to a lesser extent, TLR2.
2011Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4.J Biol ChemInnate immune response after transient ischemia is the most common cause of myocardial inflammation and may contribute to injury, yet the detailed signaling mechanisms leading to such a response are not well understood. Herein we tested the hypothesis that myocardial ischemia activates interleukin receptor-associated kinase-1 (IRAK-1), a kinase critical for the innate immune signaling such as that of Toll-like receptors (TLRs), via a mechanism that involves heat shock proteins (HSPs) and TLRs. Coronary artery occlusion induced a rapid myocardial IRAK-1 activation within 30 min in wild-type (WT), TLR2(-/-), or Trif(-/-) mice, but not in TLR4(def) or MyD88(-/-) mice. HSP60 protein was markedly increased in serum or in perfusate of isolated heart following ischemia/reperfusion (I/R). In vitro, recombinant HSP60 induced IRAK-1 activation in cells derived from WT, TLR2(-/-), or Trif(-/-) mice, but not from TLR4(def) or MyD88(-/-) mice. Both myocardial ischemia- and HSP60-induced IRAK-1 activation was abolished by anti-HSP60 antibody. Moreover, HSP60 treatment of cardiomyocytes (CMs) led to marked activation of caspase-8 and -3, but not -9. Expression of dominant-negative mutant of Fas-associated death domain protein or a caspase-8 inhibitor completely blocked HSP60-induced caspase-8 activation, suggesting that HSP60 likely activates an apoptotic program via the death-receptor pathway. In vivo, I/R-induced myocardial apoptosis and cytokine expression were significantly attenuated in TLR4(def) mice or in WT mice treated with anti-HSP60 antibody compared with WT controls. Taken together, the current study demonstrates that myocardial ischemia activates an innate immune signaling via HSP60 and TLR4, which plays an important role in mediating apoptosis and inflammation during I/R.
2011Quadruple-allele dipstick test for simultaneous visual genotyping of A896G (Asp299Gly) and C1196T (Thr399Ile) polymorphisms in the toll-like receptor-4 gene.Clin Chim ActaToll-like receptor-4 (TLR4) is a central regulators of innate immune response as it interacts with bacterial lipopolysaccharide (LPS) and also with endogenous molecules, such as heat-shock proteins and fibrinogen. Two common single nucleotide polymorphisms, A896G (Asp299Gly) and C1196T (Thr399Ile), have been found in the exon 3 of human TLR4 gene, which lead to structure alteration of the extracellular domain of TLR4 thereby influencing the receptor ability for recognition and ligand binding.We propose a simple, rapid and reliable method for the simultaneous detection of the two SNPs in TLR4 gene that involves: (a) exponential amplification of the genomic region that spans the two SNPs, (b) quadruple primer extension (PEXT) reaction using two allele-specific primers per SNP, and (c) a simple-to-perform dipstick test that allows visual and simultaneous detection of the four alleles within minutes without the need for specialized instrumentation.The method was applied to the simultaneous detection of the two SNPs in 90 samples of general Greek population and the results showed 100% concordance with those obtained by direct sequencing. The entire assay, starting from genomic DNA, can be run in less than 1.5h.The dipstick test eliminates multiple incubation and washing steps that are common in microtiter well-based assays and does not require highly trained personnel. Because of these advantages, it is suitable for the routine clinical laboratory or even for point-of-care testing.
2011Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204).Biochem Biophys Res CommunThe class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A(-/-)) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and interferon (IFN)-β were significantly increased in SR-A(-/-) mice compared to wild-type mice, and elevated nuclear factor kappa B (NFκB) activation was detected in SR-A(-/-) macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NFκB in vitro. SR-A deletion also promoted the nuclear translocation of NFκB and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A(-/-) macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.
2011Targeting HIV-1 innate immune responses therapeutically.Curr Opin HIV AIDSThe early stage of HIV-1 infection is when the virus is most vulnerable, and should therefore offer the best opportunity for therapeutic interventions. This review addresses the recent progress in the understanding of innate immune responses against HIV-1 with focus on the potential targets for prevention of viral acquisition, replication and dissemination.Research indicates that the host-derived factor trappin-2/elafin is protective against HIV, whereas semen-derived enhancer of viral infection and defensins 5 and 6 enhance viral transmission. Further, studies suggest that stimulation of TLR4 and inhibition of TLR7-9 pathways may be HIV suppressive. The regulation and function of viral restriction factors tetherin and APOBEC3G have been investigated and a molecule mimicking the premature uncoating achieved by TRIM5α, PF74, has been identified. Chloroquine has been shown to inhibit plasmacytoid dendritic cell activation and suppress negative modulators of T-cell responses. Blockade of HMBG1 has been found to restore natural-killer-cell-mediated killing of infected dendritic cells, normally suppressed by HIV-1. Interestingly, when used as adjuvants, EAT-2 and heat shock protein gp96 reportedly enhance innate immune responses.Several targets for innate immunity-mediated therapeutics have been identified. Nonetheless, more research is required to unveil their underlying mechanisms and interactions before testing these molecules in clinical trials.
2011Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response.J Biol ChemToll-like receptors (TLRs) play important roles in initiation of innate and adaptive immune responses. Emerging evidence suggests that TLR agonists can serve as potential adjuvant for vaccination. Heat shock proteins (HSPs), functionally serving as TLR4 agonists, have been proposed to act as Th1 adjuvant. We have identified a novel Hsp70 family member, termed Hsp70-like protein 1 (Hsp70L1), shown that Hsp70L1 is a potent T helper cell (Th1) polarizing adjuvant that contributes to antitumor immune responses. However, the underlying mechanism for how Hsp70L1 exerts its Th1 adjuvant activity remains to be elucidated. In this study, we found that Hsp70L1 binds directly to TLR4 on the surface of DCs, activates MAPK and NF-κB pathways, up-regulates I-a(b), CD40, CD80, and CD86 expression and promotes production of TNF-α, IL-1β, and IL-12p70. Hsp70L1 failed to induce such phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating a role for TLR4 in mediating Hsp70L1-induced DC activation. Furthermore, more efficient induction of carcinoembryonic antigen (CEA)-specific Th1 immune response was observed in mice immunized by wild-type DCs pulsed with Hsp70L1-CEA(576-669) fusion protein as compared with TLR4-deficient DCs pulsed with same fusion protein. In addition, TLR4 antagonist impaired induction of CEA-specific human Th1 immune response in a co-culture system of peripheral blood lymphocytes (PBLs) from HLA-A2.1(+) healthy donors and autologous DCs pulsed with Hsp70L1-CEA(576-669) in vitro. Taken together, these results demonstrate that TLR4 is a key receptor mediating the interaction of Hsp70L1 with DCs and subsequently enhancing the induction of Th1 immune response by Hsp70L1/antigen fusion protein.
2011siRNA targeting mCD14 inhibits TNF-α, MIP-2, and IL-6 secretion and NO production from LPS-induced RAW264.7 cells.Appl Microbiol BiotechnolInnate immunity plays a key role in protecting a host against invading microorganism, including Gram-negative bacteria. Cluster of differentiation antigen 14 (CD14) is an important innate immunity molecule, existing as a soluble (sCD14) and membrane-associated (mCD14) protein. Endotoxin [lipopolysaccharide (LPS)] is recognized as a key molecule in the pathogenesis of sepsis and septic shock caused by Gram negative bacteria. Emerging evidences indicate that upstream inhibition of bacterial LPS/Toll-like receptor 4(TLR4)/CD14-mediated inflammation pathway is an effective therapeutic approach for attenuating damaging immune activation. RNA interference (RNAi) provides a promising approach to down-regulate gene expression specifically. To explore the possibility of using RNAi against mCD14 as a strategy for inhibiting the secretion of cytokines and the nitric oxide (NO) production from LPS-activated RAW264.7 cells, four different short interfering RNA (siRNA) molecules corresponding to the sequence of mCD14 gene were designed and synthesized. We then tested the inhibition effects of these siRNA molecules on mCD14 expression by real-time quantitative RT-PCR and Western blot. After effective siRNA molecule (mCD14-siRNA-224), which is capable of reducing messenger RNA (mRNA) accumulation and protein expression of mCD14 specifically, was identified, RAW264.7 cells pretreated with mCD14-siRNA-224 were stimulated with LPS, and the secretion of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2) and interleukin-6 (IL-6) and the NO production were evaluated. The results indicated that mCD14-siRNA-224 effectively inhibited TNF-α, MIP-2, and IL-6 release and NO production from LPS-stimulated RAW 264.7 cells by down-regulating mRNA accumulation and protein expression of mCD14 specifically. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for endotoxin-related diseases.
2011A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway.Int J Mol MedThe purpose of this study was to investigate the antioxidant and anti-inflammatory effects of a glycoprotein isolated from the alga Porphyra yezoensis in LPS-stimulated RAW 264.7 mouse macrophages. First, we extracted a novel material with antioxidant activity from P. yezoensis, confirmed by SDS-PAGE to be a glycoprotein, which we named P. yezoensis glycoprotein (PGP). PGP inhibited the production of NO and ROS and expression of iNOS, COX-2, TNF-α and IL-1β, which are involved in the pathogenesis of many inflammation-associated human diseases, including septic shock, hemorrhagic shock and rheumatoid arthritis. Next, we determined the mechanisms behind the antioxidant and anti-inflammatory activities of PGP. We focused on the Toll-like receptor 4 (TLR4) signaling pathway because it is well-known to induce the pro-inflammatory proteins that trigger MAPK and NF-κB activation in lipopolysaccharide (LPS)-induced oxidative events. PGP treatment reduced the formation of the TLR4-IRAK4 and TLR4-TRIF binding complexes in response to LPS. Moreover, it inhibited LPS-induced activation and nuclear translocation of NF-κB by abrogating IκB phosphorylation. PGP also suppressed the phosphorylation of ERK1/2 and JNK in a dose-dependent manner. These results suggest that PGP exerts its anti-inflammatory effects by modulating TLR4 signaling and thus inhibiting the activation of NF-κB and MAP kinases.
2011Plant Hsp90 proteins interact with B-cells and stimulate their proliferation.PLoS OneThe molecular chaperone heat shock protein 90 (Hsp90) plays an important role in folding stabilization and activation of client proteins. Besides, Hsp90 of mammals and mammalian pathogens displays immunostimulatory properties. Here, we investigated the role of plant-derived Hsp90s as B-cell mitogens by measuring their proliferative responses in vitro.Plant cytosolic Hsp90 isoforms from Arabidopsis thaliana (AtHsp81.2) and Nicotiana benthamiana (NbHsp90.3) were expressed in E. coli. Over-expression of recombinant plant Hsp90s (rpHsp90s) was confirmed by SDS-PAGE and western blot using and anti-AtHsp81.2 polyclonal anti-body. Both recombinant proteins were purified by Ni-NTA affinity chromatography and their identity confirmed by MALDI-TOF-TOF. Recombinant AtHsp81.2 and NbHsp90.3 proteins induced prominent proliferative responses in spleen cells form BALB/c mice. Polymyxin-B, a potent inhibitor of lipopolysaccharide (LPS), did not eliminate the rpHsp90-induced proliferation. In addition, in vitro incubation of spleen cells with rpHsp90 led to the expansion of CD19-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. This effect was confirmed by immunofluorescence analysis, where a direct binding of rpHsp90 to B- but not to T-cells was observed in cells from BALB/c and C3H/HeN mice. Finally, we examined the involvement of Toll Like Receptor 4 (TLR4) molecules in the rpHsp90s induction of B-cell proliferation. Spleen cells from C3H/HeJ mice, which carry a point mutation in the cytoplasmic region of TLR4, responded poorly to prAtHsp90. However, the interaction between rpHsp90 and B-cells from C3H/HeJ mice was not altered, suggesting that the mutation on TLR4 would be affecting the signal cascade but not the rpHsp90-TLR4 receptor interaction.Our results show for the first time that spleen cell proliferation can be stimulated by a non-pathogen-derived Hsp90. Furthermore, our data provide a new example of a non-pathogen-derived ligand for TLRs.
2012The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation.InjuryHaemorrhagic shock and resuscitation (HS/R) following major trauma results in a global ischaemia and reperfusion injury that may lead to multiple organ dysfunction syndrome (MODS). Systemic activation of the immune system is fundamental to the development of MODS in this context, and shares many features in common with the systemic inflammatory response syndrome (SIRS) that complicates sepsis. An important advancement in the understanding of the innate response to infection involved the identification of mammalian toll-like receptors (TLRs) expressed on cells of the immune system. Ten TLR homologues have been identified in humans and toll-like receptor-4 (TLR4) has been studied most intensively. Initially found to recognise bacterial lipopolysaccharide (LPS), it has also recently been discovered that TLR4 is capable of activation by endogenous 'danger signal' molecules released following cellular injury; this has since implicated TLR4 in several non-infectious pathophysiologic processes, including HS/R. The exact events leading to multi-organ dysfunction following HS/R have not yet been clearly defined, although TLR4 is believed to play a central role as has been shown to be expressed at sites including the liver, lungs and myocardium following HS/R. Multi-organ dysfunction syndrome remains an important cause of morbidity and mortality in trauma patients, and current therapy is based on supportive care. Understanding the pathophysiology of HS/R will allow for the development of targeted therapeutic strategies aimed at minimising organ dysfunction and improving patient outcomes following traumatic haemorrhage. A review of the pathogenesis of haemorrhagic shock is presented, and the complex, yet critical role of TLR4 as both a key mediator and therapeutic target is discussed.
2012LPS hypersensitivity of gp130 mutant mice is independent of elevated haemopoietic TLR4 signaling.Immunol Cell BiolAmong the many inflammatory mediators induced by the prototypical inflammatory stimulus lipopolysaccharide (LPS), which signals via Toll-like receptor (TLR)-4, interleukin (IL)-6 has recently been shown to feedback and augment TLR4 signaling when overproduced in LPS hypersensitive gp130(F/F) mice. This regulation by IL-6 in gp130(F/F) mice requires hyperactivation of the latent transcription factor signal transducer and activator of transcription (STAT) 3 via the IL-6 signaling receptor subunit gp130. However, the identity of LPS/TLR4-responsive inflammatory signaling pathways and gene networks, which are modulated by IL-6 (via gp130/STAT3), and the extent to which the tissue and cellular context of this regulation contributes to LPS-induced endotoxic shock in gp130(F/F) mice, are unknown. We report here that in LPS-treated macrophages from gp130(F/F) mice, gp130 hyperactivation upregulated the LPS-induced expression of inflammatory mediators downstream of Janus kinase (JAK)/STAT, nuclear factor κ-light-chain-enhancer of activated B cells, interferon regulatory factor and c-Jun N-terminal kinase/p38 mitogen-activated protein kinase pathways. Notably, however, LPS administration to bone marrow chimeras indicated that heightened LPS/TLR4 signaling in haemopoietic-derived gp130(F/F) immune cells is dispensable for the hypersensitivity of gp130(F/F) mice to LPS-induced endotoxemia. To understand the molecular consequences of gp130 hyperactivity in non-haemopoietic tissue on LPS-induced systemic inflammation, global gene expression profiling of livers from LPS-treated gp130(F/F) mice was performed and identified 264 hepatic LPS-responsive genes, which are differentially regulated by hyperactive gp130 signaling. Collectively, the substantial transcriptional reprogramming of LPS-responsive genes in gp130(F/F) mice emphasizes non-haemopoietic gp130 signaling as a key regulator of systemic inflammatory responses during LPS-induced endotoxemia.
2011Glucan phosphate attenuates myocardial HMGB1 translocation in severe sepsis through inhibiting NF-κB activation.Am J Physiol Heart Circ PhysiolMyocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. High-mobility group box 1 (HMGB1) serves as a late mediator of lethality in sepsis. We have reported that glucan phosphate (GP) attenuates cardiac dysfunction and increases survival in cecal ligation and puncture (CLP)-induced septic mice. In the present study, we examined the effect of GP on HMGB1 translocation from the nucleus to the cytoplasm in the myocardium of septic mice. GP was administered to mice 1 h before induction of CLP. Sham-operated mice served as control. The levels of HMGB1, Toll-like receptor 4 (TLR4), and NF-κB binding activity were examined. In an in vitro study, H9C2 cardiomyoblasts were treated with lipopolysaccharide (LPS) in the presence or absence of GP. H9C2 cells were also transfected with Ad5-IκBα mutant, a super repressor of NF-κB activity, before LPS stimulation. CLP significantly increased the levels of HMGB1, TLR4, and NF-κB binding activity in the myocardium. In contrast, GP administration attenuated CLP-induced HMGB1 translocation from the nucleus to the cytoplasm and reduced CLP-induced increases in TLR4 and NF-κB activity in the myocardium. In vitro studies showed that GP prevented LPS-induced HMGB1 translocation and NF-κB binding activity. Blocking NF-κB binding activity by Ad5-IκBα attenuated LPS-induced HMGB1 translocation. GP administration also reduced the LPS-stimulated interaction of HMGB1 with TLR4. These data suggest that attenuation of HMGB1 translocation by GP is mediated through inhibition of NF-κB activation in CLP-induced sepsis and that activation of NF-κB is required for HMGB1 translocation.
2011TLR2 and TLR4 expression after kidney ischemia and reperfusion injury in mice treated with FTY720.Int ImmunopharmacolIschemia and reperfusion injury (IR) is an antigen independent inflammatory process that causes tissue damage. After IR, kidneys up-regulate leukocyte adhesion molecules and toll-like receptors (TLRs). Moreover, injured kidneys can also secrete factors (i.e. heat shock protein) which bind to TLRs and trigger intracellular events culminating with the increase in the gene expression of inflammatory cytokines. FTY720 is an immunomodulatory compound and protects at least in part kidneys submitted to IR. The mechanisms associated with FTY720's beneficial effects on kidneys after IR remain elusive. We investigated whether FTY720 administration in mice submitted to kidney IR is associated with modulation of TLR2 and TLR4 expression. C57BL/6 mice submitted to 30min of renal pedicles clamp were evaluated for serum parameters (creatinine, urea and nitric oxide), kidney histology, spleen and kidney infiltrating cells expression of TLR2 and TLR4, resident kidney cells expression of TLR2 and TLR4 and IL-6 protein expression in kidney. FTY720-treated mice presented decrease in serum creatinine, urea and nitric oxide, diminished expression of TLR2 and TLR4 both in spleen and kidney infiltrating cells, and reduced kidney IL-6 protein expression in comparison with IR non-treated mice. However, acute tubular necrosis was present both in IR non-treated and IR+FTY720-treated groups. Also, FTY720 did not prevent TLR2 and TLR4 expression in kidney resident cells. In conclusion, FTY720 can promote kidney function recovery after IR by reducing the inflammatory process. Further studies are needed in order to establish whether TLR2 and TLR4 down regulation should be therapeutically addressed as protective targets of renal function and structure after IR.
2011Insight into the mechanisms regulating immune homeostasis in health and disease.Asian Pac J Allergy ImmunolInnate and adaptive immune systems consist of cells and molecules that work together in concert to fight against microbial infection and maintain homeostasis. Hosts encounter microbes / exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) all the time and they must have proper mechanisms to counteract the danger such that appropriate responses (e.g., degree of inflammation and types of mediators induced) can be mounted in different scenarios. Increasing numbers of endogenous danger signals of host origin are being identified including, for example, uric acid and cholesterol crystals, high mobility group box1 (HMGB1) protein, oxidized LDL, vesicans, heat shock proteins (HSPs) and self DNA. Many of these endogenous ligands have been shown to be associated with inflammation-related diseases like atherosclerosis, gout and type 2 diabetes. Several DAMPs appear to have the ability to interact with more than one receptor. We are now beginning to understand how the immune system can distinguish infection from endogenous ligands elaborated following cellular insults and tissue damage. Appropriate responses to maintain the homeostatic state in health and disease depend largely on the recognition and response to these stimuli by germline encoded pattern-recognition receptors (PRRs) present on both immune and non-immune cells. These receptors are, for example, Toll-like receptors (TLRs), C-type lectin receptors (CLRs) and cytosolic receptors (e.g., RLRs, NLRs and some intracellular DNA sensors). Atypical PRR "danger" receptors, like the receptor for advanced glycation end products (RAGE) and their ligands have been identified. A proper response to maintain homeostasis relies on specific negative regulators and regulatory pathways to dampen its response to tissue injury while maintaining the capacity to eliminate infection and induce proper tissue repair. Moreover, some PRRs (e.g., TLR2,TLR4 and NLRP3) and atypical PRRs can recognize both PAMPs and DAMPs, either as single entities or after forming complexes (e.g., immune complexes, or DNA- HMGB1 and DNA-LL37 complexes), so there must be a mechanism to selectively depress or alleviate the inflammatory response to DAMPs, while leaving that of PAMPs intact. Excessive inflammatory responses can induce considerable tissue damage and can be highly detrimental to the host. For example, CD24 reacting with HMGB1 and HSPs has been implicated to function as negative regulator for RAGE. In this review, I will briefly overview the information on various host and microbial components and bring together the information to synthesize a model to explain how homeostasis can be maintained in states of health and disease. Understanding the molecular mechanisms by which the immune system functions under different scenarios will provide us with ways and means to design appropriate approaches, for example, to prevent or treat autoimmune and inflammatory diseases or the ability to design new drugs or formulate safe chemicals for vaccine adjuvants.
2011Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy.FASEB JAutophagy is one of the downstream effector mechanisms for elimination of intracellular microbes following activation of the Toll-like receptors (TLRs). Although the detailed molecular mechanism for this cellular process is still unclear, Beclin 1, a key molecule for autophagy, has been suggested to play a role. Heat shock protein 90 (Hsp90) is a molecular chaperone that regulates the stability of signaling proteins. Herein, we show that Hsp90 forms a complex with Beclin 1 through an evolutionarily conserved domain to maintain the stability of Beclin 1. In monocytic cells, geldanamycin (GA), an Hsp90 inhibitor, effectively promoted proteasomal degradation of Beclin 1 in a concentration-dependent (EC(50) 100 nM) and time-dependent (t(50) 2 h) manner. In contrast, KNK437/Hsp inhibitor I had no effect. Hsp90 specifically interacted with Beclin 1 but not with other adapter proteins in the TLR signalsome. Treatment of cells with GA inhibited TLR3- and TLR4-mediated autophagy. In addition, S. typhimurium infection-induced autophagy was blocked by GA treatment. This further suggested a role of the Hsp90/Beclin 1 in controlling autophagy in response to microbial infections. Taken together, our data revealed that by maintaining the homeostasis of Beclin 1, Hsp90 plays a novel role in TLR-mediated autophagy.
2011Identification of candidate genes downstream of TLR4 signaling after ozone exposure in mice: a role for heat-shock protein 70.Environ Health PerspectToll-like receptor 4 (TLR4) is involved in ozone (O3)-induced pulmonary hyperpermeability and inflammation, although the downstream signaling events are unknown.The aims of our study were to determine the mechanism through which TLR4 modulates O3-induced pulmonary responses and to use transcriptomics to determine potential TLR4 effector molecules.C3H/HeJ (HeJ; Tlr4 mutant) and C3H/HeOuJ (OuJ; Tlr4 normal) mice were exposed continuously to 0.3 ppm O3 or filtered air for 6, 24, 48, or 72 hr. We assessed inflammation using bronchoalveolar lavage and molecular analysis by mRNA microarray, quantitative RT-PCR (real-time polymerase chain reaction), immunoblots, immunostaining, and ELISAs (enzyme-linked immunosorbent assays). B6-Hspa1a/Hspa1btm1Dix/NIEHS (Hsp70-/-) and C57BL/6 (B6; Hsp70+/+ wild-type control) mice were used for candidate gene validation studies.O3-induced TLR4 signaling occurred through myeloid differentiation protein 88 (MyD88)-dependent and -independent pathways in OuJ mice and involved multiple downstream pathways. Genomewide transcript analyses of lungs from air- and O3-exposed HeJ and OuJ mice identified a cluster of genes that were significantly up-regulated in O3-exposed OuJ mice compared with O3-exposed HeJ mice or air-exposed controls of both strains; this cluster included genes for heat-shock proteins (e.g., Hspa1b, Hsp70). Moreover, O3-induced inflammation, MyD88 up-regulation, extracellular-signal-related kinase-1/2 (ERK1/2) and activator protein-1 (AP-1) activation, and kerotinocyte-derived chemokine (KC) protein content were significantly reduced in Hspa1a/Hspa1btm1Dix (Hsp70-/-) compared with Hsp70+/+ mice (p < 0.05).These studies suggest that HSP70 is an effector molecule downstream of TLR4 and is involved in the regulation of O3-induced lung inflammation by triggering similar pathways to TLR4. These novel findings may have therapeutic and preventive implications for inflammatory diseases resulting from environmental exposures.
2011GSK-3β-induced ASK1 stabilization is crucial in LPS-induced endotoxin shock.Exp Cell ResGlycogen synthase kinase-3β (GSK-3β), a multifunctional kinase, is a regulator of lipopolysaccharide (LPS)-mediated septic shock. Apoptosis signal-regulating kinase 1 (ASK1) is also required for LPS-induced activation of p38, which is a crucial determinant for the production of pro-inflammatory cytokines via Toll-like receptor 4 (TLR4) in endotoxemia. Here, we show that attenuation of endotoxemia induced by GSK-3 inhibition is caused by the ASK1 reduction-mediated inhibition of p38, a representative downstream kinase of ASK1. LPS-stimulated activation of p38 was blocked by the reduction of ASK1 via the knockdown of GSK-3β. In addition, compared with L929 control cells, ASK1 protein was reduced in L929 cells stably expressing Wnt-3a and in which β-catenin was active, due to the inhibition of GSK-3β activity. GSK-3β inhibition-mediated ASK1 reduction was also confirmed by reduced ASK1 in GSK-3β-deficient mouse embryo fibroblasts (MEFs) and MCF7 GSK-3β siRNA cells. Furthermore, ASK1 protein stability was also attenuated in MCF7 GSK-3β siRNA cells compared with GFP control cells. Consistent with stability data, a much stronger ubiquitination of ASK1 was observed in cells in which GSK-3β was knocked down. These findings suggest that GSK-3β crosstalks with p38 kinase via the regulation of ASK1 protein stability in endotoxemia.
Responses to surgical stress after esophagectomy: Gene expression of heat shock protein 70, toll-like receptor 4, tumor necrosis factor-α and inducible nitric oxide synthase.Mol Med RepThe progression and interrelationship of mediators that are released, activated or suppressed after major surgery appear to play an important role in responses to surgical stress. Heat shock protein 70 (HSP70) is stress-induced and acts like a cytokine to modulate pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), by stimulating toll-like receptor 4 (TLR4) signaling. We hypothesized that this effect would occur after major surgery, such as esophagectomy. We therefore measured the expression of HSP70, TLR4, TNF-α and iNOS mRNA in peripheral blood mononuclear cells (PBMCs) from 11 patients who underwent esophagectomy with thoracoabdominal procedures at postoperative day (POD) 1 and POD3 using real-time polymerase chain reaction, and compared the results to expression levels in 6 healthy adult volunteers (controls). We also measured plasma cortisol as a well-known stress hormone. The expression of HSP70 mRNA in PBMCs was 2.1-fold higher on POD1 compared to the controls (P=0.041) and was positively correlated with TLR4 mRNA (r2=0.45, P=0.0007). The expression of TNF-α mRNA tended to be lower on POD1 (P=0.055) and was significantly decreased on POD3 (P=0.016), and iNOS mRNA were significantly lower on POD1 (P=0.0015) and POD3 (P=0.0003) compared to the controls. Moreover, there was a positive correlation between the expression of TLR4 mRNA and plasma cortisol levels (r2=0.24, P=0.021). The expression of HSP70 mRNA in PBMCs in the early postoperative period was significantly higher and positively correlated with TLR4 mRNA. This suggests that HSP70-TLR4 signaling has an important role in postoperative inflammatory responses. However, the expression of pro-inflammatory mediators, including TNF-α and iNOS mRNA, was significantly decreased postoperatively. This may be caused by the anti-inflammatory mechanism of cortisol. Our findings indicate that responses to surgical stress reflect simultaneous pro-inflammatory and anti-inflammatory responses, and are complex.
2011Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6.J Biol ChemThe collaboration and cross-talk between different classes of innate pattern recognition receptors are crucial for a well coordinated inflammatory response and host defense. Here we report a previously unrecognized role of scavenger receptor A (SRA; also known as CD204) as a signaling regulator in the context of Toll-like receptor 4 (TLR4) activation. We show that SRA/CD204 deficiency leads to greater sensitivity to LPS-induced endotoxic shock. SRA/CD204 down-regulates inflammatory gene expression in dendritic cells by suppressing TLR4-induced activation of the transcription factor NF-κB. For the first time, we demonstrate that SRA/CD204 executes its regulatory functions by directly interacting with the TRAF-C domain of TNF receptor-associated factor 6 (TRAF6), resulting in inhibition of TRAF6 dimerization and ubiquitination. The attenuation of NF-κB activity by SRA/CD204 is independent of its ligand-binding domain, indicating that the signaling-regulatory feature of SRA/CD204 can be uncoupled from its conventional endocytic functions. Collectively, we have identified the molecular linkage between SRA/CD204 and the TLR4 signaling pathways, and our results reveal a novel mechanism by which a non-TLR pattern recognition receptor restricts TLR4 activation and consequent inflammatory response.
2011Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity.Discov MedInflammatory and innate immune signaling in response to recognition of pathogens is essential for immunity and host survival. However, deregulation may lead to detrimental pathologies including immunodeficiency, inflammatory diseases, and cancer. Inhibitor of apoptosis (IAP) proteins have emerged as important regulators of innate immune signaling downstream of pattern recognition receptors (PRRs) such as Toll-like receptor 4 (TLR4), the nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 receptors, and the retinoic acid-inducible gene (RIG)-I receptor. Recent evidence suggests that cIAP1, cIAP2, and XIAP facilitate ubiquitin-dependent signaling activated by these PRRs and mediate activation of nuclear factor-kappa B (NF-kappaB) transcription factors as well as the MAP kinases p38 and JNK. Here, we review the current understanding of IAP-mediated PRR signaling and how IAP proteins might present as promising targets for anti-inflammatory therapies in PRR-dependent inflammatory diseases including Crohn's disease, Blau syndrome, and septic shock.
2011GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, induces lectin-like oxidized low-density lipoprotein receptor 1 expression in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits.J ImmunolLectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) plays a major role in oxidized low-density lipoprotein-induced vascular inflammation. Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis, although its specific mechanism remains unknown. This study was conducted to investigate the mechanisms of LOX-1 expression in GroEL1 (a heat shock protein from C. pneumoniae)-administered human coronary artery endothelial cells (HCAECs) and atherogenesis in hypercholesterolemic rabbits. We demonstrated that in the hypercholesterolemic rabbit model, GroEL1 administration enhanced fatty streak and macrophage infiltration in atherosclerotic lesions, which may be mediated by elevated LOX-1 expression. In in vitro study using HCAECs, stimulation with GroEL1 increased TLR4 and LOX-1 expression. Increased LOX-1 expression was downregulated by Akt activation and PI3K-mediated endothelial NO synthase activation. PI3K inhibitor and NO synthase inhibitor induced LOX-1 mRNA production, whereas the NO donor ameliorated the increasing effect of LOX-1 mRNA in GroEL1-stimulated HCAECs. LOX-1 expression was regulated by NADPH oxidase, which mediates reactive oxygen species production and intracellular MAPK signaling pathway in GroEL1-stimulated HCAECs. Treatment with polyethylene-glycol-conjugated superoxide dismutase, apocynin, or diphenylene iodonium significantly decreased GroEL1-induced LOX-1 expression, as did the knockdown of Rac1 gene expression by RNA interference. In conclusion, the GroEL1 protein may induce LOX-1 expression in endothelial cells and atherogenesis in hypercholesterolemic rabbits. The elevated level of LOX-1 in vitro may be mediated by the PI3K-Akt signaling pathway, endothelial NO synthase activation, NADPH oxidase-mediated reactive oxygen species production, and MAPK activation in GroEL1-stimulated HCAECs. The GroEL1 protein of C. pneumoniae may contribute to vascular inflammation and cardiovascular disorders.
2011The helminth product ES-62 protects against septic shock via Toll-like receptor 4-dependent autophagosomal degradation of the adaptor MyD88.Nat ImmunolSepsis is one of the most challenging health problems worldwide. Here we found that phagocytes from patients with sepsis had considerable upregulation of Toll-like receptor 4 (TLR4) and TLR2; however, shock-inducing inflammatory responses mediated by these TLRs were inhibited by ES-62, an immunomodulator secreted by the filarial nematode Acanthocheilonema viteae. ES-62 subverted TLR4 signaling to block TLR2- and TLR4-driven inflammatory responses via autophagosome-mediated downregulation of the TLR adaptor-transducer MyD88. In vivo, ES-62 protected mice against endotoxic and polymicrobial septic shock by TLR4-mediated induction of autophagy and was protective even when administered after the induction of sepsis. Given that the treatments for septic shock at present are inadequate, the autophagy-dependent mechanism of action by ES-62 might form the basis for urgently needed therapeutic intervention against this life-threatening condition.
2011Determination of cell surface expression of Toll-like receptor 4 by cellular enzyme-linked immunosorbent assay and radiolabeling.Anal BiochemLipopolysaccharide (LPS) is recognized by Toll-like receptor 4 (TLR4) of macrophages triggering production of pro-inflammatory mediators. One of the factors determining the magnitude of responses to LPS, which may even lead to life-threatening septic shock, is the cell surface abundance of TLR4. However, quantitation of the surface TLR4 is difficult due to the low level of receptor expression. To develop a method of TLR4 assessment, we labeled the receptor on the cell surface with a rabbit antibody followed by either anti-rabbit immunoglobulin G-fluorescein isothiocyanate (IgG-FITC) for flow cytometry or with anti-rabbit IgG-peroxidase for a cellular enzyme-linked immunosorbent assay (ELISA). Alternatively, the anti-TLR4 antibody was detected by anti-rabbit IgG labeled with (125)I. Flow cytometry did not allow detection of TLR4 on the surface of J774 cells or human macrophages. In contrast, application of cellular ELISA or the radiolabeling technique combined with effective blockage of nonspecific binding of antibodies provided TLR4-specific signals. The level of TLR4 on the surface of J774 cells did not change on treatment with 1-100ng/ml LPS; however, it was reduced by approximately 30-40% after 2 h of treatment with 1 μg/ml LPS. These data indicate that down-regulation of surface TLR4 can serve as a means of negative regulation of cell responses toward high doses of LPS.
2011Peroxiredoxin 1 controls prostate cancer growth through Toll-like receptor 4-dependent regulation of tumor vasculature.Cancer ResIn recent years a number of studies have implicated chronic inflammation in prostate carcinogenesis. However, mitigating factors of inflammation in the prostate are virtually unknown. Toll-like receptor 4 (TLR4) activity is associated with inflammation and is correlated with progression risk in prostate cancer (CaP). TLR4 ligands include bacterial cell wall proteins, danger signaling proteins, and intracellular proteins such as heat shock proteins and peroxiredoxin 1 (Prx1). Here we show that Prx1 is overexpressed in human CaP specimens and that it regulates prostate tumor growth through TLR4-dependent regulation of prostate tumor vasculature. Inhibiting Prx1 expression in prostate tumor cells reduced tumor vascular formation and function. Furthermore, Prx1 inhibition reduced levels of angiogenic proteins such as VEGF within the tumor microenvironment. Lastly, Prx1-stimulated endothelial cell proliferation, migration, and differentiation in a TLR4- and VEGF-dependent manner. Taken together, these results implicate Prx1 as a tumor-derived inducer of inflammation, providing a mechanistic link between inflammation and TLR4 in prostate carcinogenesis. Our findings implicate Prx1 as a novel therapeutic target for CaP.
2011Toll-like receptor 4 is involved in human and mouse vein graft remodeling, and local gene silencing reduces vein graft disease in hypercholesterolemic APOE*3Leiden mice.Arterioscler Thromb Vasc BiolThe goal of this study was to explore the role of Toll-like receptor 4 (TLR4) in vein graft remodeling and disease.First, expression of TLR4 was analyzed in freshly isolated human saphenous veins (huSV), in freshly isolated huSV ex vivo perfused in an extracorporeal circulation, or in huSV used as coronary vein grafts. Marked induction of focal TLR4 expression was observed in perfused fresh huSV. Moreover, TLR4 was abundantly present in lesions in fresh huSV or in intimal hyperplasia in coronary vein grafts. Second, mouse venous bypass grafting was performed. In grafts of hypercholesterolemic APOE*3Leiden mice, increased TLR4 mRNA and protein was detected over time by reverse transcription-polymerase chain reaction and immunohistochemistry. Furthermore, the local presence of the endogenous TLR4 ligands heat shock protein 60, high-mobility group box 1, tenascin-C, and biglycan in the grafts was demonstrated. TLR4 deficiency in C3H-Tlr4LPS-d (LPS indicates lipopolysaccharide) mice resulted in 48±12% less vein graft wall thickening (P=0.04) than in Balb/c controls. Moreover, local TLR4 gene silencing in hypercholesterolemic APOE*3Leiden mice using lentiviral short hairpin RNA against TLR4 administered perivascularly around vein grafts led to a 44±13% reduction of vessel wall thickening compared with controls (P=0.0059).These results indicate that TLR4 is involved in vein graft remodeling and can be used as a local therapeutic target against vein graft disease.
2011Nasal immunity to staphylococcal toxic shock is controlled by the nasopharynx-associated lymphoid tissue.Clin Vaccine ImmunolThe nasopharynx-associated lymphoid tissue (NALT) of humans and other mammals is associated with immunity against airborne infections, though it is generally considered to be a secondary component of the mucosa-associated lymphoid system. We found that protective immunity to a virulence factor of nasal mucosa-colonizing Staphylococcus aureus, staphylococcal enterotoxin B (SEB), requires a functional NALT. We examined the role of NALT using intranasal (IN) vaccination with a recombinant SEB vaccine (rSEBv) combined with an adjuvant in a mouse model of SEB-induced toxic shock. The rSEBv was rapidly internalized by NALT cells at the mucosal barrier, and transport into NALT was accelerated by inclusion of a Toll-like receptor 4 (TLR4) agonist. Vaccine-induced germinal centers of B cells formed within NALT, accompanied by elevated levels of IgA(+) and IgG(+) cells, and these were further increased by TLR4 activation. The NALT was the site of specific anti-rSEBv IgA and IgG production but was also influenced by intraperitoneal (IP) inoculation and perhaps other isolated lymphoid follicles observed within the nasal cavity. Vaccination by the IN route generated robust levels of anti-rSEBv IgA in saliva, nasal secretions, and blood compared to much lower levels after IP vaccination. IN vaccination also induced secretion of anti-rSEBv IgG in the blood and nasal secretions. Significantly, the efficacy of IN vaccination was dependent on NALT, as surgical removal resulted in greater sensitivity to IN challenge with wild-type SEB. Thus, protective immunity to SEB within the nasal sinuses was elicited by responses originating in NALT.
2011Dysfunctional mitochondria contain endogenous high-affinity human Toll-like receptor 4 (TLR4) ligands and induce TLR4-mediated inflammatory reactions.Int J Biochem Cell BiolMitochondria, known to share many common features with prokaryotic cells, accumulate several endogenous ligands of the pattern-recognition Toll-like receptor 4 (TLR4), such as the heat shock proteins (Hsp) 70 and 60. TLR4 specifically recognises and responds to LPS of Gram-negative bacteria and participates in both autoimmune reactions and tissue regeneration due to its ability to recognise endogenous ligands. In the present study we show that mitochondria extracts obtained from hydrogen peroxide-dysfunctionalised cells induce a pro-inflammatory response in human THP-1 myeloid leukaemia cells. This inflammatory response was similar to that caused by LPS and much stronger than that induced by the extracts of normal mitochondria. Such reactions include activation of stress-adaptation hypoxia-inducible factor 1 alpha (HIF-1α) and expression/release of the pro-inflammatory cytokines IL-6 and TNF-α. Pre-treatment of THP-1 myeloid macrophages with TLR4-neutralising antibody before exposure to mitochondria extracts or LPS attenuated the inflammatory responses. Signalling pathways recruited by TLR4 in response to LPS and mitochondria-derived ligands were found to be the same. An in vitro ELISA-based TLR4-ligand binding assay, in which the ligand-binding domain of human TLR4 was immobilised, showed that mitochondria extracts contain endogenous TLR4 ligands. These results were verified in surface plasmon resonance experiments in which the affinity of the ligands derived from dysfunctional mitochondria was comparable with that of LPS and was much higher than that observed for normal mitochondria.
2011Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization.VaccineToxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) is a tachyzoite-specific virulent molecule expressed before the death of hosts. We have already demonstrated the vaccine effects of T.g.HSP70 gene targeting peripheral epidermal or dermal dendritic cells (DC) to limit T. gondii loads in T. gondii-infected mice. In the present study, involvement of innate immunity in T.g.HSP70 gene vaccine-induced Th polarization at draining lymph nodes (dLN) of C57BL/6 (B6) mice and vaccine effects against toxoplasmosis have been evaluated. Compared to the mice unvaccinated or vaccinated with empty plasmid, CD11c(+) cells at the dLN from naïve B6 mice expressed prominent IL-12 mRNA after the T.g.HSP70 gene vaccine. Also, CD4(+) cells at the dLN from the mice expressed prominent interferon-γ, but not IL-4 or IL-17, mRNA at a maximum level at day 5 following vaccination. Thus, in vivo DC activation and successive early Th1 polarization were induced at the dLN of naïve mice by the T.g.HSP70 gene vaccine. The DC activation and Th1 polarization were observed at the dLN from wild type (WT) and Toll-like receptor (TLR) 2-deficient mice, but not TLR4-deficient mice with B6 background by the vaccine. This T.g.HSP70 gene vaccine-induced DC activation and Th1 polarization were also observed in TRIF-deficient mice, but not MyD88-deficient mice with B6 background indicating the involvement of TLR4/MyD88 signal transduction cascade in the vaccine effects with T.g.HSP70 gene. The T.g.HSP70 gene vaccine (twice at a 2-week interval) has been shown to limit T. gondii loads in the mesenteric LN of WT, TLR2-deficient and TRIF-deficient mice, but neither TLR4-deficient nor MyD88-deficient mice, at an acute phase of toxoplasmosis. The T.g.HSP70 gene vaccine also limited cyst number in the brains of WT, TLR2-deficient and TRIF-deficient mice, but not TLR4-deficient mice at a chronic phase of toxoplasmosis. Thus, innate immunity also has effects on the vaccine with T.g.HSP70 gene against acute and chronic phases of toxoplasmosis.
2011Heat shock proteins and high mobility group box 1 protein lack cytokine function.J Leukoc BiolIn search of the etiology and pathophysiology for autoimmune and chronic inflammatory diseases, many molecules have been identified as endogenous damage-associated molecules with proinflammatory cytokine functions that may be responsible for the sterile inflammation leading to tissue injuries observed in these disorders. HSPs and HMGB1 are intracellular molecular chaperones for peptides and DNAs, respectively. They are released extracellularly upon cellular injury or activation. In vitro studies revealed that HSPs and HMGB1 were capable of inducing the release of proinflammatory cytokines by monocytes and macrophages and the activation and maturation of DCs. These cytokine effects were reported to be mediated by TLR2 and TLR4 signal transduction pathways. Thus, they were called endogenous ligands of TLR2 and TLR4 and might serve as danger signals, alarmins, or damage-associated molecules to the host immune system. It has been suggested that HSPs provide a link between innate and adaptive immune systems, and HMGB1 functions at the cross-road between innate and adaptive immunity. However, recent evidence suggests that highly purified HSPs and HMGB1, although retaining their biological activities, do not have cytokine effects. Thus, HSPs and HMGB1 do not meet the definition of endogenous ligands of TLRs, danger signals, alarmins, or damage-associated molecules. In contrast, HSPs and HMGB1 are found to bind a number of pathogen-associated molecules, such as LPS and bacterial lipopeptides, and enhance the cytokine effects of these molecules. The significance of these cytokine-enhancing effects of HSPs and HMGB1 needs further investigation.
2010Toll-like Receptors in Regulatory T Cells of Patients With Head and Neck Cancer.Arch Otolaryngol Head Neck Surgto investigate the role of Toll-like receptor (TLR) signaling and T-regulatory (T-reg) cells in patients with head and neck squamous cell carcinoma (HNSCC).multicolor flow cytometry was used to study the frequency and phenotype of CD4(+)CD25(+)CD127(-) T-reg cells and CD4(+)CD25(-)CD127(+) T-effector (T-eff) cells in peripheral blood mononuclear cells (PBMCs).all patients were seen at the outpatient clinic at the Department of Otorhinolaryngology at the University of Duisburg-Essen from March 1, 2009, through December 31, 2009.eleven patients with HNSCC and 10 healthy donors (HDs) were studied. T-reg and T-eff cells were isolated from PBMCs using a magnetic bead-activated cell-sorting technique.proliferation of T-eff cells and suppressor activity of T-reg cells were assessed in functional assays after preincubation with the TLR4 ligand heat shock protein 60 or lipopolysaccharide in the presence or absence of neutralizing antibody against TLR4.frequency of T-reg cells in PBMCs was strongly increased in patients with HNSCC vs HDs. Isolation of T-reg cells from PBMCs of patients with HNSCC showed a significantly higher expression of TLR4, TLR6, TLR9, and TLR10 compared with HDs, whereas TLR2 was not detectable. After incubation with heat shock protein 60 or lipopolysaccharide, the suppressive function of T-reg cells was significantly increased (1.14- and 1.44-fold, respectively), whereas the proliferation capacity of T-eff cells remained unchanged. This effect was reversed after TLR4 inhibition on T-reg cells.the TLR ligation on T-reg cells may contribute to tumor-mediated immune suppression by enhancing their suppressive activity.
2010ATF3 plays a key role in Kdo2-lipid A-induced TLR4-dependent gene expression via NF-κB activation.PLoS OneActivating transcription factor 3 (ATF3) is a negative regulator of proinflammatory cytokine expression in macrophages, and ATF3 deficient mice are more susceptible to endotoxic shock. This study addresses the role of ATF3 in the Kdo(2)-Lipid A-induced Toll-like receptor 4 (TLR4) signaling pathway in mouse embryonic fibroblasts (MEF). Kdo(2)-Lipid A upregulates ATF3 expression in wild type MEF cells and induces both nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) activation via the TLR4 signaling pathway, while neither of these pathways is activated in ATF3-/- MEF cells. Interestingly, in contrast to Kdo(2)-Lipid A, the activation of both NF-κB and JNK by TNF-α was normal in ATF3-/- MEF cells.We found that several genes were dramatically upregulated in ATF3+/+ MEF cells in response to Kdo(2)-Lipid A treatment, while little difference was observed in the ATF3-/- MEF cells. However, we also found that the signal intensities of IκBζ in ATF3-/- MEF cells were substantially higher than those in wild type MEF cells upon microarray analyses, and upregulated IκBζ expression was detected in the cytosol fraction.Our findings indicate that ATF3 deficiency affects Kdo(2)-Lipid A-induced TLR4 signaling pathways in MEF cells, that it may upregulate IκBζ expression and that the high levels of IκBζ expression in ATF3-/- cells disrupts Kdo(2)-Lipid A-mediated signaling pathways.
2011IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3.J ImmunolInnate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis of TLR4-driven inflammatory disorders, as well as the identity of signaling pathways activated by IL-6 in a proinflammatory state, remain unclear. To define the contribution of gp130 signaling events to TLR4-driven inflammatory responses, we combined genetic and therapeutic approaches based on a series of gp130(F/F) knock-in mutant mice displaying hyperactivated IL-6-dependent JAK/STAT signaling in an experimental model of LPS/TLR4-mediated septic shock. The gp130(F/F) mice were markedly hypersensitive to LPS, which was associated with the specific upregulated production of IL-6, but not TNF-α. In gp130(F/F) mice, either genetic ablation of IL-6, Ab-mediated inhibition of IL-6R signaling or therapeutic blockade of IL-6 trans-signaling completely protected mice from LPS hypersensitivity. Furthermore, genetic reduction of STAT3 activity in gp130(F/F):Stat3(+/-) mice alleviated LPS hypersensitivity and reduced LPS-induced IL-6 production. Additional genetic approaches demonstrated that the TLR4/Mal pathway contributed to LPS hypersensitivity and increased IL-6 production in gp130(F/F) mice. Collectively, these data demonstrate for the first time, to our knowledge, that IL-6 trans-signaling via STAT3 is a critical modulator of LPS-driven proinflammatory responses through cross-talk regulation of the TLR4/Mal signaling pathway, and potentially implicate cross-talk between JAK/STAT and TLR pathways as a broader mechanism that regulates the severity of the host inflammatory response.
2011EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity.J ImmunolHeat shock protein 90 (Hsp90) is a molecular chaperone involved in folding and stabilizing multiple intracellular proteins that have roles in cell activation and proliferation. Many Hsp90 client proteins in tumor cells are mutated or overexpressed oncogenic proteins driving cancer cell growth, leading to the acceptance of Hsp90 as a potential therapeutic target for cancer. Because several signal transduction molecules that are dependent on Hsp90 function are also involved in activation of innate and adaptive cells of the immune system, we investigated the mechanism by which inhibiting Hsp90 leads to therapeutic efficacy in rodent models of inflammation and autoimmunity. EC144, a synthetic Hsp90 inhibitor, blocked LPS-induced TLR4 signaling in RAW 264.7 cells by inhibiting activation of ERK1/2, MEK1/2, JNK, and p38 MAPK but not NF-κB. Ex vivo LPS-stimulated CD11b(+) peritoneal exudate cells from EC144-treated mice were blocked from phosphorylating tumor progression locus 2, MEK1/2, and ERK1/2. Consequently, EC144-treated mice were resistant to LPS administration and had suppressed systemic TNF-α release. Inhibiting Hsp90 also blocked in vitro CD4(+) T cell proliferation in mouse and human MLRs. In vivo, semitherapeutic administration of EC144 blocked disease development in rat collagen-induced arthritis by suppressing the inflammatory response. In a mouse collagen-induced arthritis model, EC144 also suppressed disease development, which correlated with a suppressed Ag-specific Ab response and a block in activation of Ag-specific CD4(+) T cells. Our results describe mechanisms by which blocking Hsp90 function may be applicable to treatment of autoimmune diseases involving inflammation and activation of the adaptive immune response.
2011Transactivation of the epidermal growth factor receptor by heat shock protein 90 via Toll-like receptor 4 contributes to the migration of glioblastoma cells.J Biol ChemExtracellular heat shock protein HSP90α was reported to participate in tumor cell growth, invasion, and metastasis formation through poorly understood signaling pathways. Herein, we show that extracellular HSP90α favors cell migration of glioblastoma U87 cells. More specifically, externally applied HSP90α rapidly induced endocytosis of EGFR. This response was accompanied by a transient increase in cytosolic Ca(2+) appearing after 1-3 min of treatment. In the presence of EGF, U87 cells showed HSP90α-induced Ca(2+) oscillations, which were reduced by the ATP/ADPase, apyrase, and inhibited by the purinergic P(2) inhibitor, suramin, suggesting that ATP release is requested. Disruption of lipid rafts with methyl β-cyclodextrin impaired the Ca(2+) rise induced by extracellular HSP90α combined with EGF. Specific inhibition of TLR4 expression by blocking antibodies suppressed extracellular HSP90α-induced Ca(2+) signaling and the associated cell migration. HSPs are known to bind lipopolysaccharides (LPSs). Preincubating cells with Polymyxin B, a potent LPS inhibitor, partially abrogated the effects of HSP90α without affecting Ca(2+) oscillations observed with EGF. Extracellular HSP90α induced EGFR phosphorylation at Tyr-1068, and this event was prevented by both the protein kinase Cδ inhibitor, rottlerin, and the c-Src inhibitor, PP2. Altogether, our results suggest that extracellular HSP90α transactivates EGFR/ErbB1 through TLR4 and a PKCδ/c-Src pathway, which induces ATP release and cytosolic Ca(2+) increase and finally favors cell migration. This mechanism could account for the deleterious effects of HSPs on high grade glioma when released into the tumor cell microenvironment.
2011Toll-like receptor 4 stimulation initiates an inflammatory response that decreases cardiomyocyte contractility.Antioxid Redox SignalToll-like receptors (TLRs) have been identified as primary innate immune receptors for the recognition of pathogen-associated molecular patterns by immune cells, initiating a primary response toward invading pathogens and recruitment of the adaptive immune response. TLRs, especially Toll-like receptor 4 (TLR4), can also be stimulated by host-derived molecules and are expressed in the cardiovascular system, thus acting as a possible key link between cardiovascular diseases and the immune system. TLR4 is involved in the acute myocardial dysfunction caused by septic shock and myocardial ischemia. We used wild-type (WT) mice, TLR4-deficient (TLR4-knockout [ko]) mice, and chimeras that underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the heart (TLR4-ko/WT) and the immunohematopoietic system (WT/TLR4-ko). Following lipopolysaccharide (LPS) challenge (septic shock model) or coronary artery ligation, myocardial ischemia (MI) model, we found WT/TLR4-ko mice challenged with LPS or MI displayed reduced cardiac function, increased myocardial levels of interleukin-1β and tumor necrosis factor-α, and upregulation of mRNA encoding TLR4 prior to myocardial leukocyte infiltration. The cardiac function of TLR4-ko or WT/TLR4-ko mice was less affected by LPS and demonstrated reduced suppression by MI compared with WT. These results suggest that TLR4 expressed in the cardiomyocytes plays a key role in this acute phenomenon.
2011Biological activity of truncated C-terminus human heat shock protein 72.Immunol LettHeat shock protein 72 (Hsp72), a canonical intracellular molecular chaperone, may also function as an extracellular danger signal for the innate immune system. To further delineate the biological role of Hsp72 in the innate immune system, we generated two truncated versions of the full length human Hsp72 (N-terminus Hsp72, amino acids 1-430; and C-terminus Hsp72 amino acids 420-641) and directly compared their ability to activate cells from the macrophage/monocyte lineage. In RAW 264.7 macrophages transfected with a NF-κB-dependent luciferase reporter plasmid, C-terminus Hsp72 was a more potent inducer of NF-κB activity than N-terminus Hsp72, and this effect did not seem to be secondary to endotoxin contamination. C-terminus Hsp72-mediated activation of the NF-κB pathway was corroborated by increased activation of IκB kinase, degradation of IκBα, and increased NF-κB-DNA binding. C-terminus Hsp72 was a more potent inducer of tumor necrosis factor-α (TNFα) expression in RAW 264.7 macrophages and in primary murine peritoneal macrophages from wild-type mice. C-terminus Hsp72 did not induce TNFα expression in primary murine peritoneal macrophages from Toll-like receptor (TLR4) mutant mice, indicating a role for TLR4. In human THP-1 mononuclear cells, C-terminus Hsp72 induced tolerance to subsequent LPS stimulation, whereas N-terminus Hsp72 did not induce tolerance. Finally, control experiments using equimolar amounts of N-terminus or C-terminus Hsp72 demonstrated a higher biological potency for C-terminus Hsp72. These data demonstrate that the ability of human Hsp72 to serve as an activator for cells of the macrophage/monocyte lineage primarily lies in the C-terminus region spanning amino acids 420-641.
2010Inhibition of TLR4-induced IκB kinase activity by the RON receptor tyrosine kinase and its ligand, macrophage-stimulating protein.J ImmunolThe RON receptor tyrosine kinase regulates the balance between classical (M1) and alternative (M2) macrophage activation. In primary macrophages, the ligand for Ron, macrophage-stimulating protein (MSP), inhibits the expression of inducible NO synthase, a marker of classically activated macrophages, whereas promoting the expression of arginase I, a marker of alternative activation. Ron(-/-) mice express increased levels of IL-12, a product of classically activated macrophages, after endotoxin administration, resulting in increased serum IFN-γ levels and enhanced susceptibility to septic shock. In this study, we demonstrate that MSP inhibits LPS-induced IL-12p40 expression, and this inhibition is dependent on the docking site tyrosines in Ron. To further define this inhibition, we examined the effect of Ron on signaling pathways downstream of Ron. We found that MSP does not inhibit the MyD88-independent activation of IFN regulatory factor 3 and production of IFN-β in response to LPS, nor does it inhibit MyD88-dependent TGF-β-activated kinase phosphorylation or MAPK activation in primary macrophages. However, the induction of IκB kinase activity, IκB degradation, and DNA binding of NF-κB after LPS stimulation is delayed in the presence of MSP. In addition, Ron inhibits serine phosphorylation of p65 and NF-κB transcriptional activity induced by LPS stimulation of TLR4. Finally, MSP inhibits the NF-κB-dependent upregulation of the nuclear IκB family member, IκBζ, a positive regulator of secondary response genes including IL-12p40. LPS also induces expression of Ron and an N-terminally truncated form of Ron, Sf-Ron, in primary macrophages, suggesting that the upregulation of Ron by LPS could provide classical feedback regulation of TLR signaling.
2010Regulation of miRNA transcription in macrophages in response to Candida albicans.PLoS OneMacrophages detect pathogens via pattern recognition receptors (PRRs), which trigger several intracellular signaling cascades including the MAPK and NFκB pathways. These in turn mediate the up-regulation of pro-inflammatory cytokines that are essential to combat the pathogen. However as the over-production of pro-inflammatory cytokines results in tissue damage or septic shock, precise control of these signaling pathways is essential and achieved via the induction of multiple negative feedback mechanisms. miRNAs are small regulatory RNAs that are able to affect protein expression, via the regulation of either mRNA stability or translation. Up-regulation of specific miRNAs could have the potential to modulate PRR signaling, as has been shown for both miR-146 and miR-155. Here we have analysed which miRNAs are up-regulated in mouse macrophages in response to the fungal pathogen heat killed Candida albicans and compared the profile to that obtained with the TLR4 ligand LPS. We found that in addition to miR-146 and miR-155, both Candida albicans and LPS were also able to up-regulate miR-455 and miR-125a. Analysis of the signaling pathways required showed that NFκB was necessary for the transcription of all 4 pri-miRNAs, while the ERK1/2 and p38 MAPK pathways were also required for pri-miR-125a transcription. In addition the anti-inflammatory cytokine IL-10 was found to be able to induce miR-146a and b, but inhibited miR-155 induction. These results suggest that miR-455, miR-125, miR-146 and miR-155 may play important roles in regulating macrophage function following PRR stimulation.
2010Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide.J ImmunolLPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.
2011Novel interactions of a microbial superantigen with TLR2 and TLR4 differentially regulate IL-17 and Th17-associated cytokines.Cell MicrobiolMycoplasma arthritidis, an inflammatory murine pathogen, secretes a potent superantigen, Mycoplasma arthritidis mitogen (MAM) that contributes to toxic shock, arthritis and skin necrosis. Previously we showed that MAM induced type 2 T-cell cytokines in mice that express functional TLR2 and TLR4, but type 1 cytokines in mice that lack TLR4 function. We show here that IL-17, pSTAT3 and retinoid-related orphan nuclear receptorγt are rapidly expressed in wild-type C3H/HeSnJ (TLR2+/4+) mice but are significantly delayed in mutant C3H/HeJ (TLR2+/4-) mice. This marked kinetic difference was associated with a high level of IL-6 in TLR2+/4+ mice versus high levels of IL-1β and TNFα in TLR2+/4- mice. Also antibodies to IL-6 and IL-23, suppressed IL-17 responses to MAM in TLR2+/4+ mice whereas anti-IL-1β, but not anti-TNFα, enhanced IL-17 in TLR2+/4- mice. Antibody blocking of TLR4 in TLR2+/4+ mice decreased IL-17 and IL-6 but not IL-23. In addition both IL-17 and IL-6 but not IL-23 were elevated in TLR2 KO mice versus wild-type TLR2+/4+ mice given MAM. We conclude that the MAM interaction with TLR2 versus TLR4 leads to distinct cytokine pathways mediated primarily by IL-1β or IL-6/IL-17 signalling respectively. Our findings suggest that the differential interaction of MAM with different TLRs might play an important role in disease outcomes by M. arthritidis.
2010Exploring the LPS/TLR4 signal pathway with small molecules.Biochem Soc TransThe identification of the bacterial endotoxin receptors for innate immunity, most notably TLR4 (Toll-like receptor 4), has sparked great interest in therapeutic manipulation of the innate immune system. In the present mini-review, several natural and synthetic molecules that modulate the TLR4-mediated LPS (lipopolysaccharide) signalling in animals and humans are considered, and their mechanisms of action are discussed. The process of LPS sensing and signal amplification in humans is based on the sequential action of specific receptors situated in the extracellular side of the innate immunity cells, which bind and transfer LPS to TLR4: LBP (LPS-binding protein), CD14, MD-2 (myeloid differentiation protein 2). We classified the compounds active on TLR4 pathway depending on the specific molecular targets (LPS, LBP, CD14, MD-2 or TLR4). Small molecules developed by our group are described that inhibit LPS-stimulated TLR4 activation by selectively targeting the LPS-CD14 interaction. These compounds have an interesting antiseptic shock, anti-inflammatory and anti-neuropathic pain activity in vivo.
2010Increased heat shock protein 72 expression in celiac disease.J Pediatr Gastroenterol NutrHeat shock protein (HSP) 72, a known chaperone, has potential epithelial barrier protecting, antiapoptotic, and immune system regulatory effects; therefore, our aim was to study its involvement in the pathology of celiac disease (CD).Duodenal biopsy specimens were collected from children with untreated and treated CD and from controls. mRNA expression, protein level, and localization of HSP72 were determined.Elevated HSP72 mRNA expression and higher protein levels were found in the duodenal mucosa of children with untreated CD as well as in children with treated CD compared with those in controls. In the duodenal mucosa of children with treated CD, HSP72 mRNA expression was decreased and HSP72 protein levels were lower than those in children with untreated CD. We detected intensive HSP72 staining in the villous enterocytes and immune cells of the lamina propria in the duodenal villi of children with untreated CD compared with that in controls.The increased expression and altered localization of HSP72 in CD indicate that HSP72 should have a role in protection against gliadin-induced cytotoxicity. HSP72 may exert antiapoptotic effect and contribute to preservation of intestinal epithelial barrier integrity. Moreover, HSP72 as a ligand of TLR2 and TLR4 may promote innate immune responses and warn the cells of the potential injury.
2011Myeloid-specific GPCR kinase-2 negatively regulates NF-κB1p105-ERK pathway and limits endotoxemic shock in mice.J Cell PhysiolG-protein-coupled receptor kinase 2 (GRK2) is a member of a kinase family originally discovered for its role in the phosphorylation and desensitization of G-protein-coupled receptors. It is expressed in high levels in myeloid cells and its levels are altered in many inflammatory disorders including sepsis. To address the physiological role of myeloid cell-specific GRK2 in inflammation, we generated mice bearing GRK2 deletion in myeloid cells (GRK2▵mye). GRK2▵mye mice exhibited exaggerated inflammatory cytokine/chemokine production, and organ injury in response to lipopolysaccharide (LPS, a TLR4 ligand) when compared to wild-type littermates (GRK2fl/fl). Consistent with this, peritoneal macrophages from GRK2▵mye mice showed enhanced inflammatory cytokine levels when stimulated with LPS. Our results further identify TLR4-induced NF-κB1p105-ERK pathway to be selectively regulated by GRK2. LPS-induced activation of NF-κB1p105-MEK-ERK pathway is significantly enhanced in the GRK2▵mye macrophages compared to GRK2fl/fl cells and importantly, inhibition of the p105 and ERK pathways in the GRK2▵mye macrophages, limits the enhanced production of LPS-induced cytokines/chemokines. Taken together, our studies reveal previously undescribed negative regulatory role for GRK2 in TLR4-induced p105-ERK pathway as well as in the consequent inflammatory cytokine/chemokine production and endotoxemia in mice.
2010B7-H3 augments the inflammatory response and is associated with human sepsis.J ImmunolB7-H3, a new member of the B7 superfamily, acts as both a T cell costimulator and coinhibitor, and thus plays a key role in the regulation of T cell-mediated immune responses. However, it is unclear whether B7-H3 is involved in the innate immune monocyte/macrophage-mediated inflammatory response. In this paper, we show that, although B7-H3 alone failed to stimulate proinflammatory cytokine release from murine macrophages, it strongly augmented both LPS- and bacterial lipoprotein-induced NF-kappaB activation and inflammatory response. This occurred in both a TLR4- and TLR2-dependent manner. Blockage of B7-H3 in vivo attenuated LPS-induced proinflammatory cytokine release and endotoxic shock-related lethality. Furthermore, we found that patients diagnosed with sepsis, in contrast to healthy individuals, exhibited significant levels of raised plasma soluble B7-H3 (sB7-H3) and that this level correlated with the clinical outcome and levels of plasma TNF-alpha and IL-6. In addition, a putative receptor for B7-H3 was detected on monocytes and peritoneal macrophages from septic patients but not on monocytes from healthy donors. Stimulation of human monocytes with LPS and inflammatory cytokines led to a substantial release of sB7-H3. Taken together, our data indicate that significantly elevated plasma sB7-H3 in septic patients may predict a poor outcome. Furthermore, we demonstrate that B7-H3 functions as a costimulator of innate immunity by augmenting proinflammatory cytokine release from bacterial cell wall product-stimulated monocytes/macrophages and may contribute positively to the development of sepsis.
Heat shock protein polymorphism predisposes to urinary tract malformations and renal transplantation in children.Transplant ProcAnatomical malformations of the kidney and urinary tract account for 17% of pediatric renal transplantation procedures. Heat shock proteins (HSPs) are molecular chaperones with a protective function that promotes cell survival. HSP72 is an endogenous ligand for toll-like receptor TLR4, thereby stimulating innate immunity. Both in adults and children, decreased expression of HSP70s is associated with a number of kidney diseases.To assess the prevalence of HSPA1A G(190)C, HSPA1B A(1267)G, and TLR4 A(896)G polymorphisms in children who had undergone kidney transplantation.Genotypes were analyzed using allele-specific polymerase chain reaction in 41 pediatric recipients. Allelic prevalence was related to reference values in 65 age- and sex-matched healthy children.Clinical data did not reveal a difference between any of the groups. HSPA1B (1267)GG genotype and HSPA1B (1267)G allele were observed more frequently in the transplant recipients compared with the control group: AA vs AG: odds ratio [OR], 12.6; 95% confidence interval [CI], 1.58-100.0; P = .004; AA vs GG: OR, 20.80; 95% CI, 2.32-187.00; P = .01; and A vs G: OR, 2.10; 95% CI, 1.19-3.07; P = .01. Furthermore, the prevalence of the HSPA1B (1267)GG genotype was greater in transplant recipients with vs without urinary tract malformations: AG vs GG: OR, 0.10; 95% CI, 0.09-0.48; P = .007. No differences were observed in the other studied polymorphisms.Our findings suggest an association between the carrier status of HSPA1B (1267)G with urinary tract malformations, leading to end-stage renal disease requiring kidney transplantation. This observation raises further questions about the clinical and therapeutic relevance of this polymorphism to pediatric nephrology.
2010Toll-like receptors 2 and 4: initiators of non-septic inflammation in critical care medicine?Intensive Care MedAlthough the role of Toll-like receptors (TLRs) in bacterial infection and sepsis is well characterized, recent studies have also shown that TLR4 and TLR2 can play an important role in contributing to acute inflammatory processes and organ dysfunction in settings in which LPS or other bacterial products are not present. This review presents not only insights into pathophysiologic mechanisms that contribute to organ dysfunction and outcome in critical illness, but also direct therapeutic approaches to ameliorating such TLR-mediated responses that may potentially be of clinical benefit in critically ill patients.Literature review of the role of TLR4 and TLR2 in sterile inflammation relevant to critical care medicine using PubMed search, including original papers in English from 1990 to 2010.There is increasing evidence that TLR4 and TLR2 are not only receptors for bacterial products, but also can be activated through other mechanisms relevant to the pathophysiology of critical illnesses. There is evidence that TLR4 and TLR2 are involved in ischemia-reperfusion injury and trauma where Gram-negative or Gram-positive bacteria are not detectible in the circulation or local organ sites, such as the lungs. In these settings TLRs can transduce other proinflammatory signals and thereby contribute to cellular activation leading to acute lung injury and other organ system dysfunction. The consequences of TLR4 and TLR2 activation through reactive oxygen species (ROS), heat shock proteins, and other non-LPS dependent mechanisms may be different from those associated with binding of the membrane component of bacteria to TLR4 or TLR2 and may produce different signatures of gene activation and release of proinflammatory mediators.
2010Lipid A receptor TLR4-mediated signaling pathways.Adv Exp Med BiolLipid A is a strong activator of monocytes to release immune stimulators such as proinflammatory cytokines. Overproduction of inflammatory cytokines such as TNF and IL-6 is known to cause septic shock that frequently leads to multiple organ failure and finally to death. In recent years, Lipid A has also been recognized by a Toll-like receptor, TLR4. Activation of TLR4by LPS or Lipid A triggers signal transduction via the cytoplasmic domain called the Toll/IL-1 Receptor (TIR) domain. Intracellular TIR domain-containing adaptor molecules are involved in the TLR4-mediated signaling pathways. Moreover, a subset of LPS-inducible genes is regulated in two steps by the inducible nuclear protein. Additionally, the TLR4-mediated activation of signaling cascadesis elaborately down-regulated by a number of negative regulators. In this chapter, we discuss the mechanisms of the activation or de-activation program mediated by the Lipid A receptor TLR4.
2010Nucleotide oligomerization domain 1 is a dominant pathway for NOS2 induction in vascular smooth muscle cells: comparison with Toll-like receptor 4 responses in macrophages.Br J PharmacolGram-negative bacteria contain ligands for Toll-like receptor (TLR) 4 and nucleotide oligomerization domain (NOD) 1 receptors. Lipopolysaccharide (LPS) activates TLR4, while peptidoglycan products activate NOD1. Activation of NOD1 by the specific agonist FK565 results in a profound vascular dysfunction and experimental shock in vivo.Here, we have analysed a number of pharmacological inhibitors to characterize the role of key signalling pathways in the induction of NOS2 following TLR4 or NOD1 activation.Vascular smooth muscle (VSM) cells expressed NOD1 mRNA and protein, and, after challenge with Escherichia coli or FK565, NOS2 protein and activity were induced. Macrophages had negligible levels of NOD1 and were unaffected by FK565, but responded to E. coli and LPS by releasing increased NO and expression of NOS2 protein. Classic pharmacological inhibitors for NF-kappaB (SC-514) and mitogen-activated protein kinase (SB203580, PD98059) signalling pathways inhibited responses in both cell types regardless of agonist. While TLR4-mediated responses in macrophages were specifically inhibited by the pan-caspase inhibitor z-VAD-fmk and the PKC inhibitor Gö6976, NOD1-mediated responses in VSM cells were inhibited by the Rip2 inhibitor PP2.Our findings suggest a selective role for NOD1 in VSM cells, and highlight NOD1 as a potential novel therapeutic target for the treatment of vascular inflammation.
2010Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway.J ImmunolHeat shock protein (Hsp) 60 elicits a potent proinflammatory response in the innate immune system and has been proposed as a danger signal of stressed or damaged cells to the immune system. Previous studies reported CD14, TLR2, and TLR4 as mediators of signaling but probably not of binding. Although the receptor for Hsp60 was proposed to be saturable and specific on macrophages, it is not well defined. In the current study, we found that lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), as a receptor for Hsp60, could bind and internalize Hsp60 via the C terminus of Hsp60. Yeast two-hybrid assay revealed that the second beta-sheet containing the long-loop region of LOX-1 played an important role in this interaction. Furthermore, LOX-1 might be engaged as a common receptor for different Hsp60 species. Bone marrow-derived dendritic cells could cross-present Hsp60-fused OVA Ag on MHC class I molecules via LOX-1. Inhibition of the recognition of Hsp60 by LOX-1 decreases Hsp60-mediated cross-presentation of OVA and specific CTL response and protective tumor immunity in vivo. Taken together, these results demonstrate that LOX-1 functions as a receptor for Hsp60 and is involved in the delivery of Hsp60-fused Ag into the MHC class I presentation pathway.
2010CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype.J ImmunolIn many animal models, the manifestations of inflammatory diseases can be prevented by the adoptive transfer of CD4(+)FOXP3(+) regulatory T cells (Tregs). CD4(+)FOXP3(+) Tregs can be obtained by isolation and expansion of polyclonal naturally occurring Tregs or by Ag-specific activation of CD4(+)CD25(-)FOXP3(-) T cells. Two major obstacles are hampering the translation of this latter protocol into therapeutic application. First, there is a lack of knowledge on relevant autoantigens. Second, the resulting population is contaminated with activated CD4(+) T cells that transiently express Forkhead box P3 but gain no regulatory function. Therefore, these cells may not be safe for clinical application. In this study, we demonstrate that highly suppressive FOXP3(+) Tregs can be induced in vitro by the activation of CD4(+)CD25(-) T cells with the self-Ag human 60-kDa heat shock protein (HSP60). The activation induced suppressive FOXP3(+) Tregs can be distinguished by surface expression of CD30 from nonsuppressive FOXP3(+) effector cells. We confirm that the induced CD30(+)FOXP3(+) Tregs recognize HSP60 epitopes and that the induction of Tregs by HSP60 is enhanced by signaling via TLR4 on APCs. These findings have implications for the generation and isolation of pure populations of Ag-specific Tregs, with the potential to prevent and treat human inflammatory diseases.
2010TLR4 activation is required for IL-17-induced multiple tissue inflammation and wasting in mice.J ImmunolIL-17 is a recently identified proinflammatory cytokine that plays pivotal roles in several chronic inflammatory disease models. Its expression was also found to be elevated in the serum of patients with chronic diseases. However, whether elevated systemic IL-17 expression can induce pathophysiological tissue inflammation is unknown. In this study, we demonstrated that systemic overexpression of IL-17 using an adenoviral vector could induce multiple tissue inflammation and wasting in mice. We also found that the expression of TLR4 was increased in tissues of IL-17-overexpressing mice. Moreover, TLR4 activation is required for IL-17-induced tissue inflammation and wasting, as evidenced by the absence of aggressive atrophy in gastrocnemius muscle, neutrophil accumulation, and expression of proinflammatory cytokines downstream of TLR4 in multiple tissues of TLR4-deficient mice. Further investigation revealed that TLR4 endogenous ligands high-mobility group box 1 and heat shock protein 22, were systemically upregulated and might be involved in the IL-17-induced TLR4 activation. Our results suggest that IL-17 may induce disease-associated tissue inflammation and wasting through TLR4 signaling. The study indicates a novel interaction between IL-17 and TLR4 activation and may have implications in the pathogenesis and treatment of chronic diseases.
2011MicroRNA-146: tiny player in neonatal innate immunity?NeonatologyConcise regulation of the Toll signaling pathway is mandatory in neonatal innate immunity. The microRNA-146 family (miR-146a/b) was recently reported to be a regulator of Toll-like receptor 4 (TLR4) through a negative feedback loop mechanism. Acting as a potent regulator, miRNA helps to protect the organism from developing overwhelming proinflammatory immune responses leading to septic shock or chronic inflammatory diseases.We investigated for the first time whether miRNA-146a/b plays a regulatory role in human monocytes derived from infant cord or adult blood, and whether differences in miRNA-146 expression exist.Expression profiles of miR-146a/b and TLR4 were studied by real-time PCR upon stimulation with lipopolysaccharide.Both members of the miRNA-146 family showed a time-dependent upregulation. For miR-146a, a statistically higher significant increase was found after 24 h of stimulation in monocytes from cord blood compared to those derived from adults. In contrast, no differences were found for miR-146b and TLR4, respectively.We conclude that differences between the negative regulatory role for miR-146a obviously exist in neonatal and adult TLR4 signaling, and suggest that more intense research in the involvement of miRNA in immune regulation will facilitate the understanding of the development and function of the innate immune system of neonates.
2010Regulation of lipopolysaccharide-induced inflammatory response and endotoxemia by beta-arrestins.J Cell PhysiolBeta-arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that beta-arrestin-1 (beta-arr-1) and -2 knockout (KO) mice are protected from TLR4-mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild-type (WT) and beta-arr-1 and -2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS-induced inflammatory cytokine levels in the plasma were markedly decreased in both beta-arr-1 and -2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11(b+) and CD11(b-) populations) from WT, beta-arr-1, and -2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS-induced inflammatory cytokines were significantly blocked in both splenocyte populations from the beta-arr-2 KO compared to the WT mice. This effect in the beta-arr-1 KO mice, however, was restricted to the CD11(b-) splenocytes. Our studies further indicate that regulation of cytokine production by beta-arrestins is likely independent of MAPK and IkappaBalpha-NFkappaB pathways. Our results, however, suggest that LPS-induced chromatin modification is dependent on beta-arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by beta-arrestins in vivo. Taken together, these results indicate that beta-arr-1 and -2 mediate LPS-induced cytokine secretion in a cell-type specific manner and that both beta-arrestins have overlapping but non-redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice.
Contribution of renal tubule epithelial cells in the innate immune response during renal bacterial infections and ischemia-reperfusion injury.Chang Gung Med JThe epithelial cells that line the renal tubule are sometimes severely injured in the course of inflammatory kidney diseases. These renal tubule epithelial cells (RTECs) express some of the Toll-like receptors (TLRs) of the innate immune system. A number of studies have implicated RTECs, together with bone marrow-derived cells, in triggering an innate immune response to bacterial infection and/or ischemic stress. RTECs expressing TLR4, which recognizes lipopolysaccharide (LPS), contribute to defending the host against ascending urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPECs). Activation of TLR2 and TLR4 signaling by endogenous damage-associated molecular patterns controls the inflammatory responses of RTECs and cell apoptosis in kidneys subjected to ischemia/reperfusion (I/R) injury. This review will consider some recent advances in understanding of the role of RTECs in inducing the innate immune response in experimental models of ascending UTIs and renal I/R injury. Arginine vasopressin, which regulates renal water absorption, has been shown to act as a potent modulator of the innate response in collecting duct cells, a preferred intrarenal site for UPEC adhesion. The activation of the mitogen-associated protein kinase ERK1/2 in post-hypoxic RTECs has also been shown to be selectively regulated by TLR2 via the serine-threonine protein phosphatase 5, which is associated with the endoplasmic reticulum resident heat shock protein, gp96, which acts as a master chaperone of TLRs. These findings provide further support for the concept that RTECs are actively involved in triggering the innate immune response, at least in the context of ascending UTIs and I/R injury.
2011Hypertonic saline enhances host defense and reduces apoptosis in burn mice by increasing toll-like receptors.ShockHypertonic saline (HTS) is useful in the management of intracranial hypertension and shock patients. The aim of this study was to investigate whether HTS enhances host defense in burn mice through the increase of Toll-like receptors (TLRs) and nuclear factor κB (NF-κB) activation. C57BL/6, TLR4, C3H/HeN, and C3H/HeJ (nonfunctional TLR4 mutant) mice underwent burn and were given 10 mL/kg HTS (7.5% NaCl, 1.28 mol/L), 10 mL/kg saline (154 mmol/L), or 80 mL/kg saline (154 mmol/L) at 8 h after burn. At 24 h after burn, mesenteric lymph nodes were harvested and assayed for bacterial translocation (BT). Next, animals received i.p. Escherichia coli challenge, and bacterial clearance was measured. Finally, peritoneal cells were isolated for assay of bacterial killing activity, phagocytic activity, apoptotic ratio, NF-κB DNA binding activity, and expression of TLR4, MyD88, p-Akt, pp38, macrophage inflammatory protein 2, and Bcl-xL. Hypertonic saline decreased BT in C57BL/6 and C3H/HeN mice but not in TLR4 mutant mice. Also, HTS increased bacterial clearance and bacterial killing activity and decreased apoptotic ratio of peritoneal cells from C57BL/6 and C3H/HeN mice but not TLR4 or C3H/HeJ mice. Finally, HTS increased NF-κB activity and expression of TLR4, MyD88, p-Akt, pp38, macrophage inflammatory protein 2, and Bcl-xL in C57BL/6 but not in TLR4 mice. Hypertonic saline increases bacterial clearance and bacterial killing activity and decreases thermal injury-induced BT in wild-type but not in TLR4 mutant mice. Given that HTS induces NF-κB activity and TLR4, MyD88, and pp38 expression but decreases the apoptosis of inflammatory cells, we conclude that HTS resuscitation enhances host defense against bacterial challenge and reduces apoptosis of inflammatory cells in burn mice by increasing TLR4 expression and NF-κB activation.
2010[Effect of high volume hemofiltration on expression of Toll-like receptor 4 in myocardium in endotoxin induced shock in dogs].Zhongguo Wei Zhong Bing Ji Jiu Yi XueTo investigate the effects of high volume hemofiltration (HVHF) on the expression of Toll-like receptor 4 (TLR4) mRNA in myocardium in endotoxin (lipopolysaccharide, LPS) induced shock in dogs.Sixteen healthy male dogs were injected with LPS 650 microg/kg via central vein to reproduce the model of endotoxin shock. All dogs were divided randomly into two groups: control group and therapy group, with 8 dogs in each group. Contents of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), IL-10 in circulation were measured by radioimmunological method. The expression levels of TLR4 mRNA in all group were measured by reverse transcription-polymerase chain reaction (RT-PCR). Change in myocardial histopathology was observed and analyzed with the aid of electron microscope.The contents of TNF-alpha (microg/L: 0.59+/-0.15, 0.51+/-0.12, 0.41+/-0.10), IL-6 (ng/L: 11.08+/-2.83, 9.82+/-2.58, 8.25+/-2.05), IL-10 (microg/L: 57.28+/-5.93, 53.81+/-5.83, 50.67+/-6.33) in therapy group were found to have decreased significantly at 1, 2, and 4 hours after HVHF compared with those when the model was completed [(0.84+/-0.16) microg/L, (16.97+/-2.50) ng/L, (70.86+/-5.43) microg/L], showing a continuous trend of lowering (all P<0.01). The contents of TNF-alpha, IL-6, IL-10 in therapy group were lower than those in control group significantly at any time point [TNF-alpha (microg/L): 0.75+/-0.14, 0.74+/-0.11, 0.72+/-0.11, IL-6 (ng/L): 15.33+/-3.20, 14.66+/-3.24, 14.20+/-3.33, IL-10 (microg/L): 71.54+/-4.73, 70.71+/-4.34, 69.35+/-4.60, all P<0.01]. Compared with control group, HVHF treatment group could down-regulate mRNA expression of TLR4 in myocardium (t=3.58, P<0.01). Correlation analysis revealed significant positive-correlation between tissue TLR4 mRNA expression and contents of TNF-alpha, IL-6, IL-10 in circulation (r(1)=0.785, r(2)=0.569, r(3)=0.653, all P<0.05). Injury to the myocardium was significantly ameliorated in therapy group compared with control group as shown by electron microscopic observation.HVHF can down-regulate mRNA expression of TLR4 in myocardium in LPS induced shock in dogs, and myocardial inflammatory response was alleviated resulting in amelioration of myocardial injury.
2010NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice.J ImmunolSepsis syndrome is characterized by a dysregulated inflammatory response to infection. NADPH oxidase-dependent reactive oxygen species (ROS) play significant roles in the pathophysiology of sepsis. We previously showed that disruption of Nrf2, a master regulator of antioxidant defenses, caused a dysregulation of innate immune response that resulted in greater mortality in a polymicrobial sepsis and LPS shock model; however, the underlying mechanisms are unclear. In the current study, compared with wild-type (Nrf2(+/+)) macrophages, we observed greater protein kinase C-induced NADPH oxidase-dependent ROS generation in Nrf2-disrupted (Nrf2(-/-)) macrophages that was modulated by glutathione levels. To address the NADPH oxidase-mediated hyperinflammatory response and sepsis-induced lung injury and mortality in Nrf2(-/-) mice, we used double knockout mice lacking Nrf2 and NADPH oxidase subunit, gp91(phox) (Nrf2(-/-)//gp91(phox-/-)). Compared with Nrf2(+/+) macrophages, LPS induced greater activation of TLR4 as evident by TLR4 surface trafficking and downstream recruitment of MyD88 and Toll/IL-1R domain-containing adaptor in Nrf2(-/-) macrophages that was diminished by ablation of gp91(phox). Similarly, phosphorylation of IkappaB and IFN regulatory factor 3 as well as cytokine expression was markedly higher in Nrf2(-/-) macrophages; whereas, it was similar in Nrf2(+/+) and Nrf2(-/-)//gp91(phox-/-). In vivo studies showed greater LPS-induced pulmonary inflammation in Nrf2(-/-) mice that was significantly reduced by ablation of gp91(phox). Furthermore, LPS shock and polymicrobial sepsis induced early and greater mortality in Nrf2(-/-) mice; whereas, Nrf2(-/-)//gp91(phox-/-) showed prolonged survival. Together, these results demonstrate that Nrf2 is essential for the regulation of NADPH oxidase-dependent ROS-mediated TLR4 activation and lethal innate immune response in sepsis.
2010Extracellular heat shock cognate protein 70 induces cardiac functional tolerance to endotoxin: differential effect on TNF-alpha and ICAM-1 levels in heart tissue.CytokineEndotoxin provokes cardiac dysfunction, and induction of tolerance to endotoxin has therapeutic potential. Heat shock protein 70 (HSP70) can induce endotoxin tolerance in macrophages. We recently found that heat shock cognate protein 70 (HSC70) induces pro-inflammatory cytokines via activation of TLR4 in macrophages and the myocardium. We hypothesize that HSC70 preconditioning induces cardiac tolerance to endotoxin. Pretreatment of peritoneal macrophages with HSC70 for 24h reduced TNF-alpha levels following endotoxin stimulation. Preconditioning of mice with HSC70 24h prior to endotoxin attenuated endotoxemic cardiac dysfunction. HSC70 preconditioning reduced TNF-alpha levels in plasma and heart tissue by 33.3% and 35.4%, respectively, and decreased ICAM-1 levels in heart tissue by 63.5% following endotoxin challenge. The effect of HSC70 on TNF-alpha was less robust than endotoxin preconditioning (79.7% and 75.0% reduction in TNF-alpha levels in plasma and heart tissue, respectively); however, HSC70 and endotoxin preconditioning had comparable effects on ICAM-1 levels in heart tissue. While HSC70 preconditioning had no effect on myocardial TLR4 protein levels, it suppressed NF-kappaB activation induced by endotoxin. We conclude that HSC70 preconditioning (1) attenuates the TNF-alpha response to endotoxin in macrophages in vitro, (2) induces cardiac functional tolerance to endotoxin and (3) reduces NF-kappaB activity, and TNF-alpha and ICAM-1 levels in heart tissue. Thus, the mechanism of HSC70-induced cardiac tolerance to endotoxin appears to involve down-regulation of myocardial TLR4 signaling and inflammatory responses.
2010Effects of hydroxyethyl starch (130 kD) on brain inflammatory response and outcome during normotensive sepsis.Int ImmunopharmacolDuring sepsis, the dysfunction of blood-brain barrier (BBB) was mediated by inflammation and subsequently caused sepsis-associated encephalopathy. Hydroxyethyl starch (HES, 130/0.4) is most widely used for volume replacement to maintain or improve tissue perfusion in patients with sepsis, trauma, and shock. This study was undertaken to investigate the effects of HES on BBB permeability, brain edema, inflammatory response and clinical outcome in septic rats.Using the cecal ligation and puncture (CLP) model, Sprague-Dawley rats were treated with 15 ml/kg HES or normal saline 4h after the operation. Two hours later, expressions of brain toll-like receptor (TLR)-2, TLR4 and intercellular adhesion molecule (ICAM)-1 mRNA was determined by real-time reverse transcription-polymerase chain reaction; inflammatory cytokines like tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 by enzyme-linked immunosorbent assay; activity of nuclear factor-kappa B (NF-kappaB) by electrophoretic mobility shift assay; BBB permeability by Evans blue extravasation method; brain edema by wet/dry weight ratio. Weight loss, and clinical symptoms were also observed.Without obvious influence on systemic macrohemodynamics, HES could markedly attenuate BBB dysfunction and brain edema. Meanwhile, HES could significantly reduce TNF-alpha, IL-6, and ICAM-1 mRNA, inhibit NF-kappaB activation, and down-regulate TLR2 and TLR4 expression in the brain. In addition, CLP-induced increase in weight loss, and clinical symptoms was not reduced after treatment with HES.HES could ameliorate BBB dysfunction and inflammation mediators by modulating brain TLR2 and TLR4 expression during sepsis. However, HES could not improve clinical outcome.
2010[Effects of vasoactive intestinal peptide on Toll-like receptor (TLR) 2 mRNA and TLR4 mRNA expression on acute lung injury induced by lipopolysaccharide in rat].Zhonghua Er Ke Za ZhiVasoactive intestinal peptide (VIP) is a neuro-peptide that can modulate immunity. Previous studies indicated that VIP can attenuate the deleterious consequences of severe sepsis and septic shock by regulating production of inflammatory cytokines in immune activated cells. The signaling induced by bacterial components occurs primarily through Toll like receptors (TLRs). TLRs have been recognized to play a key role in pathogen recognition and innate immunity. It was convincingly demonstrated that lung is one of early suffered disaster organ and may trigger multiple organ dysfunction syndrome in sepsis. The present study was conducted to investigate the effects of VIP on TLR2/4 mRNA expressions on acute lung injury of endotoxic shock induced by lipopolysaccharide (LPS) in rat.Forty Sprague-Dawley rats were randomly divided into 3 groups, i.e., LPS shock group (n = 16), LPS + VIP group (n = 16), and control group (n = 8). LPS shock model was established by LPS (E. coli O(55)B(5) 10 mg/kg) with tail intravenous injection. The rats in LPS + VIP group were given a bolus of 5 nmol VIP intravenous injection follow by LPS. The rats in control group were given normal saline. The rats were sacrificed at 6 h, 24 h after being injected. The lung tissues were collected. The TLR2 mRNA and TLR4 mRNA expressions were detected by RT-PCR from the lung tissues. Pathological changes of the lungs were observed by light microscope and electron microscope 24 h after LPS injection.(1) Lung histopathology: the alveolar space was full with leukocyte, necrotic cells, segmental hemorrhage and protein effusion. Partial alveolar space was enlarged, lung interstitial edema were observed in LPS shock group. However, pathological changes of LPS + VIP group were milder than those in LPS shock group. (2) The expressions of TLR2 mRNA and TLR4 mRNA were significantly higher in LPS shock group compared with those of the control group (F = 16.638, P = 0.000; t = 5.876, P = 0.000), TLR2 mRNA and TLR4 mRNA expression on 24 h was down-regulated in LPS + VIP shock subgroup than those in LPS shock subgroup (F = 16.676, P = 0.000; t = 3.946, P < 0.001).Expressions of TLR2 mRNA and TLR4 mRNA were up-regulated on LPS induced lung injury in rats. VIP mitigated lung injury induced by LPS, which may be related to TLR2 mRNA and TLR4 mRNA down-regulation of expression. The effect of VIP may suggest a protective mechanism in sepsis. VIP may play a potential protective role in severe infection.
2010[Gene polymorphisms of Toll-like receptors in Chinese Han children with sepsis in Wenzhou].Zhonghua Er Ke Za ZhiSepsis remains a serious clinical problem because of high morbidity and mortality. The importance of Toll-like receptors (TLRs) for the induction of immune responses against sepsis was demonstrated in humans. The present study aimed to probe the gene polymorphisms of TLR4 (Asp299Gly and Thr399Ile) and TLR2 (Arg753Gln) in patients with sepsis among Chinese Han children in Wenzhou, and investigate the correlation with sepsis.This study was conducted as a case-control study. Using polymerase chain reaction and DNA sequencing, gene polymorphisms of TLR4 (Asp299Gly and Thr399Ile) and TLR2 (Arg753Gln) in 59 children with sepsis, 38 children with severe sepsis (including 20 septic shock) and 57 healthy controls were analyzed. Hardy-Weinberg method of statistics was used to compare the frequency of genotypes alleles among three groups.The mutant genotypes of TLR4 gene (Asp299Gly and Thr399Ile) were not found among sepsis, septic shock and control groups. In severe sepsis group, the Arg753Gln TLR2 polymorphism occurred in 2 out of 38 severe sepsis patients and both of the subjects with the TLR2 Arg753Gln polymorphism had fatal staphylococcal infections.TLR4 gene (Asp299Gly and Thr399Ile) polymorphisms may not be correlated with susceptibility to sepsis among Chinese Han children in Wenzhou. The fact that only 2 out of 38 severe sepsis patients had Arg753Gln TLR2 polymorphism suggests that a larger sample size is needed because of the rarity of the TLR2 allele among Chinese Han children in Wenzhou.
[Stressful effects of chemical toxins at low concentrations].BiofizikaEffects of three chemical compounds: ammonia, diethyl ether, and acetic acid, known as common environmental contaminants in technogenic accidents, were investigated in vivo and in vitro in low concentrations. When added in cultivation media, each of the chemicals has affected peritoneal macrophages and spleen lymphocytes isolated from male NMRI mice and led to a rise in the production of several cytokines, particularly the tumor necrosis factor-alpha and interferon-gamma, as well as the expression of the inducible form of heat shock proteins (HSP72 and HSP90-alpha) and in the activation of signal cascades NF-kappaB and SAPK/JNK. The increase of the nitric oxide (NO) production in macrophages has been observed only when ammonia was added in cultivation media. Also, low concentrations of all compounds investigated led to the activation of the expression of receptor protein TLR4. When mice were exposed to airborne toxic contaminants in a hermetically sealed experimental chamber, an increase in the concentrations of cytokines, heat shock proteins, and signal proteins in immune cells was also observed in response to low concentrations of all chemicals investigated. Similarly to in vitro experiments, the NO production was augmented only in the presence of the airborne ammonia. The results indicate the environmental hazard of chemical contaminants even in rather low concentrations, which nevertheless lead to the stress response.
2010Endogenous ligands for TLR2 and TLR4 are not involved in renal injury following ureteric obstruction.Nephron Exp NephrolToll-like receptors (TLRs) are a recently described arm of innate immunity. As well as responding to conserved molecular patterns found on pathogens, TLRs can also respond to endogenous ligands. Those described for TLR2 and TLR4 include molecules released following tissue injury including heat shock proteins and matrix proteins. We hypothesised that following injury, TLRs on renal tubular cells are activated by these endogenous ligands, resulting in cytokine production and cellular infiltration which propagate the fibrotic process.We performed unilateral ureteric obstruction (UUO) in wild-type C57BL/6, TLR2 knockout and TLR4 knockout mice. Gene expression of TGF-beta and TNF-alpha within renal tissue was analysed by real-time PCR. Kidneys were also scored for the level of tubulointerstitial fibrosis, collagen type IV deposition and macrophage infiltration.No significant difference was found in the degree of tubulointerstitial fibrosis, collagen type IV deposition or macrophage infiltration 14 days after UUO between the 3 groups. Renal TNF-alpha and TGF-beta gene expression was also similar in all groups 3 days after UUO.TLR2 and TLR4 do not play a significant role in the development of tubulointerstitial fibrosis following obstruction.
Toll-like receptors 2 and 4 cell surface expression reflects endotoxin tolerance in Henoch-Schönlein purpura.Turk J PediatrWe aimed to analyze the Toll-like receptor (TLR)2 and TLR4 expressions, which are known to be involved in the recognition of pathogens by the innate immune system, in patients with Henoch-Schönlein purpura. Twenty-three patients (10 males, 13 females, aged 4-16 years) with a clinical diagnosis of Henoch-Schönlein purpura were enrolled. Twenty healthy age-matched children (10 males, 10 females) served as controls. TLR2 and TLR4 expression levels on peripheral blood mononuclear cells (PBMCs) were determined by flow cytometric analysis. PBMCs were cultured with heat shock protein (HSP) 60 (1 microg/ml) as an endogenous ligand for TLR. Levels of TLR2 and TLR4 expression on PBMC were significantly lower in the Henoch- Schönlein purpura patients compared to healthy controls when stimulated with HSP60 and with lipopolysaccharide (LPS) (p < 0.05 for both). There was no significant difference between the stimulated and unstimulated samples from the patients. The lower TLR response to these ligands among these patients may reflect a tolerance to bacterial antigens. Further studies will clarify whether tolerance to microbial antigens may have a role in the pathogenesis and course of Henoch-Schönlein purpura.
2010Toll-like receptor 4 modulation as a strategy to treat sepsis.Mediators InflammDespite a decrease in mortality over the last decade, sepsis remains the tenth leading causes of death in western countries and one of the most common cause of death in intensive care units. The recent discovery of Toll-like receptors and their downstream signalling pathways allowed us to better understand the pathophysiology of sepsis-related disorders. Particular attention has been paid to Toll-like receptor 4, the receptor for Gram-negative bacteria outer membrane lipopolysaccharide or endotoxin. Since most of the clinical trial targeting single inflammatory cytokine in the treatment of sepsis failed, therapeutic targeting of Toll-like receptor 4, because of its central role, looks promising. The purpose of this paper is to focus on the recent data of various drugs targeting TLR4 expression and pathway and their potential role as adjunctive therapy in severe sepsis and septic shock.
2010Characterization of transglutaminase type II role in dendritic cell differentiation and function.J Leukoc BiolDCs play an essential role in the endotoxic shock, and their profound depletion occurs in septic patients and septic mice. TG2(-/-) mice are more resistant to the endotoxic shock induced by LPS. Here, we studied the cellular and molecular basis of this effect, analyzing the role of the enzyme in DC maturation and function. We show that TG2 is up-regulated drastically during the final, functional maturation of DCs consequent to LPS treatment. In keeping with this finding, the inhibition of the enzyme cross-linking activity determines the impairment of DC function highlighted by wide phenotypic changes associated with a reduced production of cytokines (IL-10, IL-12) after LPS treatment and a lower ability to induce IFN-gamma production by naïve T cells. The in vivo analysis of DCs obtained from TG2(-/-) mice confirmed that the enzyme ablation leads to an impairment of DC maturation and their reduced responsiveness to LPS treatment. In fact, a marked decrease in DC death, TLR4 down-regulation, and impaired up-regulation of MHCII and CD86 were observed in TG2(-/-) mice. Taken together, these data suggest that TG2 plays an important role in regulating the response of DCs to LPS and could be a candidate target for treating endotoxin-induced sepsis.
2010Sera from patients with Crohn's disease break bacterial lipopolysaccharide tolerance of human intestinal epithelial cells via MD-2 activity.Innate ImmunMyeloid differentiation (MD)-2 is linked to the cell surface as a Toll-like receptor (TLR) 4-bound protein though may also function as a soluble receptor to enable the lipopolysaccharide (LPS)-driven response. We recently demonstrated the importance of MD-2 either as a cell-associated or as a soluble receptor in the control of intestinal epithelial cell response toward LPS. High levels of circulating MD-2 were recently proposed as a risk factor for infectious/ inflammatory diseases as septic shock. We hypothesized that MD-2 might be present in sera from patients with inflammatory bowel disease and have pathogenic consequences. We analysed MD-2 activity in sera from patients with inflammatory bowel disease or from healthy subjects. We measured MD-2 activity as the capacity to mediate LPS-driven stimulation of intestinal epithelial cells (HT29). We found that sera from patients with inflammatory bowel disease, particularly Crohn's disease, endowed HT29 cells with a markedly higher LPS-dependent stimulating capacity as compared to sera from healthy subjects. The effect of sera was specific for LPS activation and was reduced in the presence of anti-MD-2, and anti-TLR4 antibodies. We conclude that sera from patients with inflammatory bowel disease might contain increased MD-2. This might result in higher local availability of the protein leading to a loss of tolerance toward gut microbiota.
2010Protective immunity against lethal anaphylactic reaction in Toxoplasma gondii-infected mice by DNA vaccination with T. gondii-derived heat shock protein 70 gene.Parasitol IntToxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) was proven to induce lethal anaphylactic reaction in T. gondii-infected mice through platelet-activating factor (PAF)-mediated, but not classical IgE-dependent, pathway via TLR4/MyD88 signal pathway. The effector cells generating PAF and causing T.g.HSP70-induced anaphylactic reaction were CD11b(+) and CD11c(+) cells, although the reaction was enhanced by marked IFN-gamma production by CD11b(+), CD11c(+), CD4(+) and CD8(+) splenocytes. In the present study, the effects of T.g.HSP70 gene vaccine targeting peripheral dendritic cells were evaluated against T.g.HSP70-induced anaphylactic reaction in T. gondii-infected mice. C57BL/6 mice receiving T.g.HSP70 gene vaccine showed prolonged survival. Platelets of peripheral blood, which completely disappeared during the T.g.HSP70-induced anaphylactic reaction, were partially restored with the T.g.HSP70 gene vaccination. The T.g.HSP70-induced marked production of PAF and IFN-gamma from splenocytes of infected mice during the T.g.HSP70-induced anaphylactic reaction was shown to decrease after the T.g.HSP70 gene vaccination. Thus, T.g.HSP70 gene vaccine induced protective immunity against T.g.HSP70-induced PAF-mediated lethal anaphylactic reaction in T. gondii-infected mice.
2010Heat shock protein gp96 and NAD(P)H oxidase 4 play key roles in Toll-like receptor 4-activated apoptosis during renal ischemia/reperfusion injury.Cell Death DifferIschemia/reperfusion injury (IRI) causes inflammation and cell injury as a result of activating innate immune signaling. Toll-like receptor 4 (TLR4) has a key role in mediating kidney damages during IRI, but the downstream signaling pathway(s) stimulating apoptosis remains debated. In this study we show that TLR4 mediates MyD88-dependent activation of TNF receptor-associated factor 2, apoptosis signal-regulating kinase 1 (ASK1), and Jun N-terminal kinase (JNK) and p38 MAP kinases in ischemic-reperfused kidneys and posthypoxic renal tubule epithelial cells (RTECs). Hypoxia stimulated the expression of the endoplasmic-resident gp96, which co-immunoprecipitated TLR4, whereas silencing gp96 mRNA expression impaired hypoxia-induced apoptosis in TLR4-expressing RTECs. NAD(P)H oxidase 4 (NOX4) was shown to interact with TLR4 and to be required in lipopolysaccharide-induced production of reactive oxygen species (ROS). IRI stimulated the expression of a 28-kDa NOX4 spliced isoform abundantly expressed in wild-type RTECs, which co-immunoprecipitated with TLR4, but not with gp96 in TLR4-deficient RTECs. Silencing NOX4 mRNA expression impaired hypoxia-induced activation of ASK1 and both JNK and p38, leading to the inhibition of ROS production and apoptosis in posthypoxic TLR4-expressing RTECs. These findings show that, concomitantly to the activation of p38, the gp96/TLR4 interaction is required for activation of ASK1/JNK signaling in posthypoxic mouse RTECs, and that the 28-kDa NOX4 has a key role in TLR4-mediated apoptosis during renal IRI.
2010Cardiomyocyte Toll-like receptor 4 is involved in heart dysfunction following septic shock or myocardial ischemia.J Mol Cell CardiolToll-like receptors are expressed in immune cells and cardiac muscle. We examined whether the cardiac Toll-like receptor 4 (TLR4) is involved in the acute myocardial dysfunction caused by septic shock and myocardial ischemia (MI). We used wild type mice (WT), TLR4 deficient (TLR4-ko) mice and chimeras that underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the heart (TLR4-ko/WT) and the immunohematopoietic system (WT/TLR4-ko). Mice were injected with lipopolysaccharide (LPS) (septic shock model) or subjected to coronary artery ligation (MI model) and tested in vivo and ex vivo, for function, histopathology proinflammatory cytokine and TLR4 expression. WT mice challenged with LPS or MI displayed reduced cardiac function, increased myocardial levels of IL-1 beta and TNF-alpha and upregulation of mRNA encoding TLR4 prior to myocardial leukocyte infiltration. TLR4 deficient mice sustained significantly smaller infarctions as compared to control mice at comparable areas at risk. The cardiac function of TLR4-ko mice was not affected by LPS and demonstrated reduced suppression by MI compared to WT. Chimeras deficient in myocardial TLR4 were resistant to suppression induced by LPS and the heart function was less depressed, compared to the TLR4-ko, following MI in the acute phase (4h). In contrast, hearts of chimeras deficient in immunohematopoietic TLR4 expression were suppressed both by LPS and MI, exhibiting increased myocardial cytokine levels, similar to WT mice. We concluded that cardiac function of TLR4-ko mice and chimeric mice expressing TLR4 in the immunohematopoietic system, but not in the heart, revealed resistance to LPS and reduced cardiac depression following MI, suggesting that TLR4 expressed by the cardiomyocytes themselves plays a key role in this acute phenomenon.
2010Ischemic injury enhances dendritic cell immunogenicity via TLR4 and NF-kappa B activation.J ImmunolIschemic (isc) injury during the course of transplantation enhances the immunogenicity of allografts and thus results in poorer graft outcome. Given the central role of dendritic cells (DCs) in mounting alloimmune responses, activation of donor DCs by ischemia may have a primary function in the increased immunogenicity of isc allografts. In this study, we sought to investigate the effect of ischemia on DC activity in vitro. Following induction of ischemia, bone marrow-derived DCs were shown to augment allogeneic T cell proliferation as well as the IFN-gamma response. Isc DCs produced greater levels of IL-6, and isc insult was concurrent with NF-kappaB activation. TLR4 ligation was also shown to occur in isc DCs, most likely in response to the endogenous ligand heat shock protein 70, which was found to be elevated in DCs following isc injury, and lack of TLR4 abrogated the observed effects of isc DCs. As compared with control DCs, isc DCs injected into the footpads of mice demonstrated enhanced migration, which was concomitant with increased recipient T cell activity. Moreover, isc DCs underwent a greater degree of apoptosis in the lymph nodes of injected mice, which may further demonstrate enhanced immunogenicity of isc DCs. We thus show that isc injury of DCs enhances DC function, augments the allogeneic T cell response, and occurs via ligation of TLR4, followed by activation of NF-kappaB. These data may serve to identify novel therapeutic targets to attenuate graft immunogenicity following ischemia.
2010C-type lectin SIGN-R1 has a role in experimental colitis and responsiveness to lipopolysaccharide.J ImmunolPathogen recognition receptors (PRRs) function to maintain the balance between controlled responses to pathogens and uncontrolled innate immune activation leading to inflammation. In the context of commensal bacteria and the etiology of inflammatory bowel disease, although a role for the TLRs is known, there is a less defined function for C-type lectin receptors (CLRs). We demonstrate that mice deficient ((-/-)) in the CLR specific intracellular adhesion molecule-3 grabbing nonintegrin homolog-related 1 (SIGN-R1) (CD209b) have reduced susceptibility to experimental colitis, with a reduction in the disease severity, colon damage, and levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6. To determine whether SIGN-R1(-/-) mice had a systemic defect in innate activation, we examined the responsiveness of macrophages from SIGN-R1(-/-) mice to TLR ligands. SIGN-R1(-/-) peritoneal macrophages, but not bone marrow-derived macrophages, have a specific defect in IL-1beta and IL-18 production, but not other cytokines, in response to the TLR4 ligand LPS. In vivo SIGN-R1(-/-) mice had significantly reduced susceptibility to LPS-induced shock. To address the synergistic relationship between SIGN-R1 and TLR4 in the context of experimental colitis, SIGN-R1/TLR4(-/-) mice were generated. SIGN-R1/TLR4(-/-) mice displayed reduced susceptibility to experimental colitis relative to severity of disease observed in wild-type or TLR4(-/-) mice. The in vivo use of a blocking mAb confirmed a functional role for SIGN-R1 in LPS-induced shock and experimental colitis. These data indicate a role for SIGN-R1 in the regulation of inflammation in a model of experimental colitis and illustrate that SIGN-R1 is a critical innate factor in response to LPS.
2010GroEL and lipopolysaccharide from Francisella tularensis live vaccine strain synergistically activate human macrophages.Infect ImmunFrancisella tularensis, the causative agent of tularemia, interacts with host cells of innate immunity in an atypical manner. For most Gram-negative bacteria, the release of lipopolysaccharide (LPS) from their outer membranes stimulates an inflammatory response. When LPS from the attenuated live vaccine strain (LVS) or the highly virulent Schu S4 strain of F. tularensis was incubated with human umbilical vein endothelial cells, neither species of LPS induced expression of the adhesion molecule E-selectin or secretion of the chemokine CCL2. Moreover, a high concentration (10 microg/ml) of LVS or Schu S4 LPS was required to stimulate production of CCL2 by human monocyte-derived macrophages (huMDM). A screen for alternative proinflammatory factors of F. tularensis LVS identified the heat shock protein GroEL as a potential candidate. Recombinant LVS GroEL at a concentration of 10 microg/ml elicited secretion of CXCL8 and CCL2 by huMDM through a TLR4-dependent mechanism. When 1 microg of LVS GroEL/ml was added to an equivalent amount of LVS LPS, the two components synergistically activated the huMDM to produce CXCL8. Schu S4 GroEL was less stimulatory than LVS GroEL and showed a lesser degree of synergy when combined with Schu S4 LPS. These findings suggest that the intrinsically low proinflammatory activity of F. tularensis LPS may be increased in the infected human host through interactions with other components of the bacterium.
2010Differential regulation of toll-like receptor-2, toll-like receptor-4, CD16 and human leucocyte antigen-DR on peripheral blood monocytes during mild and severe dengue fever.ImmunologyDengue fever (DF), a public health problem in tropical countries, may present severe clinical manifestations as result of increased vascular permeability and coagulation disorders. Dengue virus (DENV), detected in peripheral monocytes during acute disease and in in vitro infection, leads to cytokine production, indicating that virus-target cell interactions are relevant to pathogenesis. Here we investigated the in vitro and in vivo activation of human peripheral monocytes after DENV infection. The numbers of CD14(+) monocytes expressing the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) were significantly increased during acute DF. A reduced number of CD14(+) human leucocyte antigen (HLA)-DR(+) monocytes was observed in patients with severe dengue when compared to those with mild dengue and controls; CD14(+) monocytes expressing toll-like receptor (TLR)2 and TLR4 were increased in peripheral blood from dengue patients with mild disease, but in vitro DENV-2 infection up-regulated only TLR2. Increased numbers of CD14(+) CD16(+) activated monocytes were found after in vitro and in vivo DENV-2 infection. The CD14(high) CD16(+) monocyte subset was significantly expanded in mild dengue, but not in severe dengue. Increased plasma levels of tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and interleukin (IL)-18 in dengue patients were inversely associated with CD14(high) CD16(+), indicating that these cells might be involved in controlling exacerbated inflammatory responses, probably by IL-10 production. We showed here, for the first time, phenotypic changes on peripheral monocytes that were characteristic of cell activation. A sequential monocyte-activation model is proposed in which DENV infection triggers TLR2/4 expression and inflammatory cytokine production, leading eventually to haemorrhagic manifestations, thrombocytopenia, coagulation disorders, plasmatic leakage and shock development, but may also produce factors that act in order to control both intense immunoactivation and virus replication.
2010TLR Cross-Talk Mechanism of Hemorrhagic Shock-Primed Pulmonary Neutrophil Infiltration.Open Crit Care Med JHemorrhage resulted from severe trauma renders patients susceptible to the development of acute lung injury (ALI). The accumulation of polymorphonuclear neutrophils (PMN) in the lung is a critical event in the development of ALI. PMN migration is a result of a cascade of cellular events, in which PMN, endothelial cells (EC), and macrophages (Mϕ) act in concert. Recent studies explored interrelated novel findings indicating that Toll-like receptors (TLRs) cross-talk mechanisms occurring in PMN, EC, and Mϕ are important determinants for hemorrhage-primed PMN migration. In Mϕ and EC, LPS acts through TLR4 signaling to up-regulate TLR2. Oxidant signaling derived from hemorrhage-activated PMN NAD(P)H oxidase enhances the TLR2 upregulation through PMN-Mϕ or PMN-EC interaction, resulting in an amplified release of cytokines and chemokines from the Mϕ and expression of adhesion molecules in the EC in response to TLR2 ligands, thereby promoting PMN migration. This review provides an insight of the mechanisms.
2010Over-expression of Toll-like receptors and their ligands in small-for-size graft.Hepatol ResToll-like receptors (TLRs) participate in several physiological and pathological processes of transplantation, including inflammation and allograft rejection, but the expression of TLRs and their ligands remains undetermined in small-for-size graft transplantation.A non-arterialized partial liver transplantation model was used. The expression of TLR2 and TLR4 mRNA and protein, CD14 and Myeloid Differentiation-2 (MD-2) mRNA, as well as TLR2 and TLR4 exogenous ligands (endotoxin) and endogenous ligands [heat shock protein (HSP) 60 and 70] were assessed. The signaling pathways induced by TLR2 and TLR4 were also assessed.In small-for-size liver graft, the expression of mRNA and protein of TLR2 and TLR4, CD14 and MD-2 mRNA, as well as endogenous ligands of TLR2 and TLR4 such as HSP60 and HSP70 was quickly and significantly increased after reperfusion, and reached a peak at 3 h after reperfusion. The levels of exogenous ligands (endotoxin) were increased and reached a peak at 6 h after reperfusion. The appearance of TLR2 and TLR4 mRNA was accompanied by increased HSP 60 and 70 mRNA within 24 h after reperfusion. In the small-for-size group, the peak levels of TLRs and their endogenous ligands appeared earlier than those in the full size group; the peak levels of TLRs and their endogenous and exogenous ligands were higher than those in the full size group.TLR2 and TLR4, as well as their endogenous and exogenous ligands were activated in small-for-size liver graft transplantation.
2010Role of TLR4 in the host response to Vibrio vulnificus, an emerging pathogen.FEMS Immunol Med MicrobiolThe incidence of infection with Vibrio vulnificus is increasing due to changing ecologic and demographic factors. Most fatal cases are caused by septic shock that results from dysregulation of proinflammatory cytokines such as tumor necrosis factor-alpha (TNFalpha), presumably due to interaction of V. vulnificus components with Toll-like receptors (TLRs). The goal of this study was to investigate the role of TLR4 in the host response to V. vulnificus. Results obtained using V. vulnificus type strain ATCC 27562 showed that (1) TLR4 signaling is myeloid differentiation factor 88 dependent and plays a key role in TNFalpha production by mouse blood and splenocytes stimulated ex vivo with inactivated V. vulnificus cells, (2) TLR4 signaling is deleterious in a mouse model of V. vulnificus infection, (3) signaling by TLR(s), exclusive of TLR4, is needed to eradicate infection, and (4) the TLR-mediated TNFalpha response plays a critical role in determining the outcome of infection. These results suggest that blockade of the harmful TLR4-mediated inflammatory response could be a useful adjunct to antibiotics for treatment of severe V. vulnificus infection.
Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling.Dis Model MechToll-like receptors (TLRs) recognize specific molecular patterns derived from microbial components (exogenous ligands) or stressed cells (endogenous ligands). Stimulation of these receptors leads to a pronounced inflammatory response in a variety of acute animal models. Chronic allograft dysfunction (CAD) was regarded as a candidate disease to test whether TLRs influence chronic fibrosing inflammation. Potential endogenous renal TLR ligands, specifically for TLR2 and TLR4, have now been detected by a significant upregulation of glucose regulated protein (GRP)-94, fibrinogen, heat shock protein (HSP)-60, HSP-70, biglycan (Bgn) and high-mobility group box chromosomal protein 1 (HMGB1) in the acute and chronic transplant setting. In a genetic approach to define the contribution of TLR2 and TLR4, and their adaptor proteins MyD88 and TRIF [Toll/interleukin (IL)-1 receptor domain-containing adaptor-protein inducing interferon beta], to CAD, kidney transplantation of TLR wild-type grafts to recipients who were deficient in TLR2, TLR4, TLR2/4, MyD88 and TRIF was performed. TLR and adaptor protein deficiencies significantly improved the excretory function of chronic kidney grafts by between 65% and 290%, and histopathologic signs of chronic allograft damage were significantly ameliorated. T cells, dendritic cells (DCs) and foremost macrophages were reduced in grafts by up to 4.5-fold. The intragraft concentrations of IL-6, IL-10, monocyte chemotactic protein-1 (MCP-1) and IL-12p70 were significantly lower. TLR-, MyD88- and TRIF-deficient recipients showed a significant reduction in fibrosis. alpha-smooth muscle actin (alpha-SMA)-positive cells were decreased by up to ninefold, and collagen I and III were reduced by up to twofold. These findings highlight the functional relevance of TLRs and their two major signaling pathways in graft-infiltrating mononuclear cells in the pathophysiology of CAD. A TLR signaling blockade may be a therapeutic option for the prevention of CAD.
2010M1 protein from streptococcus pyogenes induces nitric oxide-mediated vascular hyporesponsiveness to phenylephrine: involvement of toll-like receptor activation.ShockStreptococcus pyogenes carrying M1 protein causes the severe and increasingly prevalent streptococcal toxic shock syndrome and necrotizing fasciitis. M1 protein is an important virulence factor of S. pyogenes and induces an inflammatory response in human monocytes. We wanted to investigate if purified M1 protein in solution could induce vascular NO production leading to vasopressor hyporesponsiveness. Rat aortic segments were incubated with M1 protein or LPS in vitro. M1 protein (10 microg mL) and LPS (1 ng mL) to a similar extent induced NO production and hyporesponsiveness to the vasoconstrictor phenylephrine. Immunogold electron microscopy demonstrated that M1 protein binds to Toll-like receptor 2 (TLR2) as well as TLR4 in mouse aorta but only to TLR2 in human omental artery. Incubation with M1 protein caused a reduction in the contractile response to phenylephrine in aortic segments from wild-type and TLR2-knockout but not from TLR4-knockout mice. In conclusion, M1 protein causes vascular NO production leading to hyporesponsiveness to vasopressors via a mechanism involving TLR, but the subtypes may be species dependent. M1 protein could contribute to the circulatory disturbances accompanying severe invasive streptococcal infections.
2010Toll-like receptor 4 signaling promotes tumor growth.J ImmunotherChronic inflammation is a potential risk factor for tumor progression. The molecular mechanisms linking chronic inflammation and tumor growth have proven elusive. Herein, we describe a new role for Toll-like receptor 4 (TLR4) in tumor-associated macrophages (TAMs) in promoting tumor growth. TAMs can remodel tumor microenvironment and promote tumor growth. With the use of mice lacking TLR4 signaling, we show that TLR4 signaling influences tumor growth and that TLR4 signaling is a critical upstream activator of nuclear factor-kappa B (NF-kappaB) in TAMs. TLR4-deficient TAMs produce neither proinflammatory cytokines nor angiogenic factors, and activate no NF-kappaB activity in tumor cells. Furthermore, using macrophage/tumor cell coculture system and adoptive transfer of macrophages with functional TLR4 macrophages to TLR4-deficient mice bearing tumors, we demonstrate an essential role for TLR4 signaling in inducing NF-kappaB activity in tumor cells and enhancing tumor growth. Antibody neutralization experiments reveal that TAMs are stimulated by heat shock proteins derived from tumor cells through TLR4, leading to production of growth factors, which may in turn promote tumor growth via NF-kappaB signal pathway. Therefore, this signaling cascade may represent a therapeutic target in cancer.
2009Extracellular heat shock protein 60, cardiac myocytes, and apoptosis.Circ ResPreviously, we have found that changes in the location of intracellular heat shock protein (HSP)60 are associated with apoptosis. HSP60 has been reported to be a ligand of toll-like receptor (TLR)-4.We hypothesized that extracellular HSP60 (exHSP60) would mediate apoptosis via TLR4.Adult rat cardiac myocytes were treated with HSP60, either recombinant human or with HSP60 purified from the media of injured rat cardiac myocytes. ExHSP60 induced apoptosis in cardiac myocytes, as detected by increased caspase 3 activity and increased DNA fragmentation. Apoptosis could be reduced by blocking antibodies to TLR4 and by nuclear factor kappaB binding decoys, but not completely inhibited, even though similar treatment blocked lipopolysaccharide-induced apoptosis. Three distinct controls showed no evidence for involvement of a ligand other than exHSP60 in the mediation of apoptosis.This is the first report of HSP60-induced apoptosis via the TLRs. HSP60-mediated activation of TLR4 may be a mechanism of myocyte loss in heart failure, where HSP60 has been detected in the plasma.
2009The novel lipopolysaccharide-binding protein CRISPLD2 is a critical serum protein to regulate endotoxin function.J ImmunolLPS is an immunostimulatory component of Gram-negative bacteria. Acting on the immune system in a systemic fashion, LPS exposes the body to the hazard of septic shock. In this study we report that cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2/Crispld2; human and mouse/rat versions, respectively), expressed by multitissues and leukocytes, is a novel LPS-binding protein. As a serum protein, median CRISPLD2 concentrations in health volunteers and umbilical cord blood samples are 607 microg/ml and 290 microg/ml, respectively. Human peripheral blood granulocytes and mononuclear cells including monocytes, NK cells, and T cells spontaneously release CRISPLD2 (range, 0.2-0.9 microg/ml) and enhance CRISPLD2 secretion (range, 1.5-4.2 microg/ml) in response to stimulation of both LPS and humanized anti-human TLR4-IgA Ab in vitro. CRISPLD2 exhibits significant LPS binding affinity similar to that of soluble CD14, prevents LPS binding to target cells, reduces LPS-induced TNF-alpha and IL-6 production, and protects mice against endotoxin shock. In in vivo experiments, serum Crispld2 concentrations increased in response to a nontoxic dose of LPS and correlated negatively with LPS lethality, suggesting that CRISPLD2 serum concentrations not only are indicators of the degree of a body's exposure to LPS but also reflect an individual's LPS sensitivity.
2009Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype.Am J PatholToll-like receptor (TLR) 2, 4, 7, and 9 agonists, together with adenosine A(2A) receptor (A(2A)R) agonists, switch macrophages from an inflammatory (M1) to an angiogenic (M2-like) phenotype. This switch involves induction of A(2A)Rs by TLR agonists, down-regulation of tumor necrosis factor alpha (TNFalpha) and interleukin-12, and up-regulation of vascular endothelial growth factor (VEGF) and interleukin-10 expression. We show here that the TLR4 agonist lipopolysaccharide (LPS) induces rapid and specific post-transcriptional down-regulation of phospholipase C(PLC)beta1 and beta2 expression in macrophages by de-stabilizing their mRNAs. The PLCbeta inhibitor U73122 down-regulates TNFalpha expression by macrophages, and in the presence of A(2A)R agonists, up-regulates VEGF, mimicking the synergistic action of LPS with A(2A)R agonists. Selective down-regulation of PLCbeta2, but not PLCbeta1, using small-interfering RNA resulted in increased VEGF expression in response to A(2A)R agonists, but did not suppress TNFalpha expression. Macrophages from PLCbeta2(-/-) mice also expressed increased VEGF in response to A(2A)R agonists. LPS-mediated suppression of PLCbeta1 and beta2 is MyD88-dependent. In a model of endotoxic shock, LPS (35 microg/mouse, i.p.) suppressed PLCbeta1 and beta2 expression in spleen, liver, and lung of wild-type but not MyD88(-/-) mice. These studies indicate that LPS suppresses PLCbeta1 and beta2 expression in macrophages in vitro and in several tissues in vivo. These results suggest that suppression of PLCbeta2 plays an important role in switching M1 macrophages into an M2-like state.
2010Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1.J VirolEbola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and suppressor of cytokine signaling 1 (SOCS1) in a human monocytic cell line and in HEK293-TLR4/MD2 cells stably expressing the TLR4/MD2 complex. Ebola virus GP was found to interact with TLR4 by immunoprecipitation/Western blot analyses, and Ebola virus GP on VLPs was able to stimulate expression of NF-kappaB in a TLR4-dependent manner. Interestingly, we found that budding of Ebola virus VLPs was more pronounced in TLR4-stimulated cells than in unstimulated control cells. In sum, these findings identify the host innate immune protein TLR4 as a sensor for Ebola virus GP which may play an important role in the immunopathogenesis of Ebola virus infection.
2009A conjugated linoleic acid-enriched beef diet attenuates lipopolysaccharide-induced inflammation in mice in part through PPARgamma-mediated suppression of toll-like receptor 4.J NutrConjugated linoleic acid (CLA) is a PUFA found in beef and dairy products that has immunoregulatory properties. The level of CLA in beef can be enhanced by feeding cattle fresh grass rather than concentrates. This study determined the effect of feeding a high-CLA beef diet on inflammation in an in vivo model of septic shock. Mice were fed a high-CLA beef (4.3% total fatty acid composition) or low-CLA beef diet (0.84% total fatty acid composition) for 6 wk. Lipopolysaccharide (LPS; 3 microg) or sterile PBS was injected i.v. and serum was harvested 6 h after injection. Serum interleukin (IL)-1beta, IL-12p70, IL-12p40, and interferon-gamma concentrations were significantly reduced in response to the LPS challenge in the high-CLA beef diet group. Bone marrow-derived dendritic cells (BMDC) from the high-CLA beef diet group had significantly less IL-12 and more IL-10 in response to ex vivo LPS stimulation. Furthermore, toll-like receptor 4 (TLR4) and CD14 protein and mRNA expression on BMDC was significantly attenuated in the high-CLA compared with the low-CLA beef diet group. Complimentary in vitro experiments to determine the specificity of the effect showed that synthetic cis9, trans11-CLA suppressed surface expression of CD14 and TLR4 on BMDC. Treatment with the PPARgamma inhibitor GW9662 partially reversed TLR4 expression in immature BMDC. The results of this study demonstrate that feeding a diet enriched in high-beef CLA exerts profound antiinflammatory effects in vivo within the context of LPS-induced sepsis. In addition, downregulation of BMDC TLR4 is mediated through induction of PPARgamma.
2010Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta.NeuroscienceMorphine-3-glucoronide (M3G) is a major morphine metabolite detected in cerebrospinal fluid of humans receiving systemic morphine. M3G has little-to-no affinity for opioid receptors and induces pain by unknown mechanisms. The pain-enhancing effects of M3G have been proposed to significantly and progressively oppose morphine analgesia as metabolism ensues. We have recently documented that morphine activates toll-like receptor 4 (TLR4), beyond its classical actions on mu-opioid receptors. This suggests that M3G may similarly activate TLR4. This activation could provide a novel mechanism for M3G-mediated pain enhancement, as (a) TLR4 is predominantly expressed by microglia in spinal cord and (b) TLR4 activation releases pain-enhancing substances, including interleukin-1 (IL-1). We present in vitro evidence that M3G activates TLR4, an effect blocked by TLR4 inhibitors, and that M3G activates microglia to produce IL-1. In vivo, intrathecal M3G (0.75 microg) induced potent allodynia and hyperalgesia, blocked or reversed by interleukin-1 receptor antagonist, minocycline (microglial inhibitor), and (+)-and (-)-naloxone. This latter study extends our prior demonstrations that TLR4 signaling is inhibited by naloxone nonstereoselectively. These results with (+)-and (-)-naloxone also demonstrate that the effects cannot be accounted for by actions at classical, stereoselective opioid receptors. Hyperalgesia (allodynia was not tested) and in vitro M3G-induced TLR4 signaling were both blocked by 17-DMAG, an inhibitor of heat shock protein 90 (HSP90) that can contribute to TLR4 signaling. Providing further evidence of proinflammatory activation, M3G upregulated TLR4 and CD11b (microglial/macrophage activation marker) mRNAs in dorsal spinal cord as well as IL-1 protein in the lumbosacral cerebrospinal fluid. Finally, in silico and in vivo data support that the glucuronic acid moiety is capable of inducing TLR4/MD-2 activation and enhanced pain. These data provide the first evidence for a TLR4 and IL-1 mediated component to M3G-induced effects, likely of at least microglial origin.
2009Hemorrhagic shock augments lung endothelial cell activation: role of temporal alterations of TLR4 and TLR2.Am J Physiol Regul Integr Comp PhysiolHemorrhagic shock (HS) due to major trauma predisposes the host to the development of acute lung inflammation and injury. The lung vascular endothelium is an active organ that plays a central role in the development of acute lung injury through generating reactive oxygen species and synthesizing and releasing of a number of inflammatory mediators, including leukocyte adhesion molecules that regulate neutrophils emigration. Previous study from our laboratory has demonstrated that in a setting of sepsis, toll-like receptor-4 (TLR4) signaling can induce TLR2 expression in endothelial cells (ECs), thereby increasing the cells' response to TLR2 ligands. The present study tested the hypothesis that TLR4 activation by HS and the resultant increased TLR2 surface expression in ECs might contribute to the mechanism underlying HS-augmented activation of lung ECs. The results show that high-mobility group box 1 (HMGB1) through TLR4 signaling mediates HS-induced surface expression of TLR2 in the lung and mouse lung vascular endothelial cells (MLVECs). Furthermore, the results demonstrate that HMGB1 induces activation of NAD(P)H oxidase and expression of ICAM-1 in the lung, and MLVECs sequentially depend on TLR4 in the early phase and on TLR2 in the late phase following HS. Finally, the data indicate an important role of the increased TLR2 surface expression in enhancing the activation of MLVECs and augmenting pulmonary neutrophil infiltration in response to TLR2 agonist peptidoglycan. Thus, induction of TLR2 surface expression in lung ECs, induced by HS and mediated by HMGB1/TLR4 signaling, is an important mechanism responsible for endothelial cell-mediated inflammation and organ injury following trauma and hemorrhage.
2009Evidence for a role of heat shock protein-90 in toll like receptor 4 mediated pain enhancement in rats.NeuroscienceSpinal cord microglial toll-like receptor 4 (TLR4) has been implicated in enhancing neuropathic pain and opposing morphine analgesia. The present study was initiated to explore TLR4-mediated pain modulation by intrathecal lipopolysaccharide, a classic TLR4 agonist. However, our initial study revealed that intrathecal lipopolysaccharide failed to induce low-threshold mechanical allodynia in naive rats, suggestive that TLR4 agonism may be insufficient to enhance pain. These studies explore the possibility that a second signal is required; namely, heat shock protein-90 (HSP90). This candidate was chosen for study given its known importance as a regulator of TLR4 signaling. A combination of in vitro TLR4 cell signaling and in vivo behavioral studies of pain modulation suggest that TLR4-enhancement of neuropathic pain and TLR4-suppression of morphine analgesia each likely require HSP90 as a cofactor for the effects observed. In vitro studies revealed that dimethyl sulfoxide (DMSO) enhances HSP90 release, suggestive that this may be a means by which DMSO enhances TLR4 signaling. While 2 and 100 microg lipopolysaccharide intrathecally did not induce mechanical allodynia across the time course tested, co-administration of 1 microg lipopolysaccharide with a drug that enhances HSP90-mediated TLR4 signaling now induced robust allodynia. In support of this allodynia being mediated via a TLR4/HSP90 pathway, it was prevented or reversed by intrathecal co-administration of a HSP90 inhibitor, a TLR4 inhibitor, a microglia/monocyte activation inhibitor (as monocyte-derived cells are the predominant cell type expressing TLR4), and interleukin-1 receptor antagonist (as this proinflammatory cytokine is a downstream consequence of TLR4 activation). Together, these results suggest for the first time that TLR4 activation is necessary but not sufficient to induce spinally mediated pain enhancement. Rather, the data suggest that TLR4-dependent pain phenomena may require contributions by multiple components of the TLR4 receptor complex.
2009Role of endothelial TLR4 for neutrophil recruitment into central nervous system microvessels in systemic inflammation.J ImmunolBrain inflammation is a frequent consequence of sepsis and septic shock. We imaged leukocyte recruitment in brain postcapillary venules induced by i.p. administration of LPS as a simple model of systemic inflammation. The i.p. injection of LPS (0.5 mg/kg) induced significant leukocyte rolling and adhesion in brain postcapillary venules of wild-type (WT) mice and more than 90% were neutrophils. However, no emigrated neutrophils were detected in brain parenchyma. High levels of TNF-alpha and IL-1beta were detected in the plasma after LPS injection but a different profile (IL-1beta but not TNF-alpha) was detected in the brain. LPS caused no recruitment in TLR4 knockout mice. In chimeric mice with TLR4-expressing resident cells but TLR4-deficient bone marrow-derived circulating cells, neutrophil rolling and adhesion was similar to WT mice. This observation is consistent with a requirement for resident cells in the LPS-induced neutrophil recruitment into brain microvessels. Transgenic mice engineered to express TLR4 exclusively on endothelial cells had a similar level of leukocyte recruitment in brain as WT mice in response to LPS. High dose LPS (10 mg/kg) led to neutrophil infiltration in the brain parenchyma in WT mice. High KC and MIP-2 production was observed from brain parenchyma microglial cells, and CXCR2 knockout mice failed to recruit neutrophils. However, neither neutrophil infiltration nor KC or MIP-2 was observed in endothelial TLR4 transgenic mice in response to this LPS dose. Our results demonstrate that direct endothelial activation is sufficient to mediate leukocyte rolling and adhesion in cerebral microvessels but not sufficient for emigration to brain parenchyma.
2009Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production.Nat ImmunolToll-like receptors (TLRs) are pivotal in innate immunity and inflammation. Here we show that genetic deficiency in Peli1, an E3 ubiquitin ligase, attenuated the induction of proinflammatory cytokines by ligands of TLR3 and TLR4 and rendered mice resistant to septic shock. Peli1 was required for TLR3-induced activation of IkappaB kinase (IKK) and its 'downstream' target, transcription factor NF-kappaB, but was dispensable for IKK-NF-kappaB activation induced by several other TLRs and the interleukin 1 (IL-1) receptor. Notably, Peli1 bound to and ubiquitinated RIP1, a signaling molecule that mediates IKK activation induced by the TLR3 and TLR4 adaptor TRIF. Our findings suggest that Peli1 is a ubiquitin ligase needed for the transmission of TRIF-dependent TLR signals.
2009Bone marrow and non-bone marrow TLR4 regulates hepatic ischemia/reperfusion injury.Biochem Biophys Res CommunHepatic ischemia-reperfusion injury (IRI) is a highly coordinated process often observed during liver transplantation, liver surgery, and hemorrhagic shock. Signaling through toll-like receptor 4 (TLR4), which is widely expressed on all kinds of liver cells, appears critical in the pathogenesis of IRI. Although the role of TLR4 expressed on non-parenchymal cells (NPCs) of the liver, including Kupffer cells and neutrophils, in IRI has been widely studied, TLR4 signaling on liver sinusoidal endothelial cells (LSECs) or hepatocytes in the process of IRI, and their coordination with bone marrow derived TLR4 in the late reperfusion stage, is largely unknown. We produced TLR4 chimeric mice that received hepatic IRI, and examined the degree of liver injury and the underlying mechanisms of injury. Results indicated that mutation of TLR4 on bone-marrow or non-bone marrow derived cells reduced hepatic IRI in the late reperfusion stage via cytokine release and neutrophil infiltration, while non-bone marrow derived TLR4 regulated the expression of ICAM-1 on hepatocytes and LSECs, exacerbating their injury. In conclusion, both TLR4 on bone marrow derived and non-bone marrow derived cells were necessary in the process of hepatic IRI.
2009Renal tubular expression of Toll-like receptor 4 in cyclosporine nephrotoxicity.APMISExploring the expression of Toll-like receptor (TLR) in cyclosporine (CsA)-induced renal injury in humans, we evaluated the expression of TLR4 in both biopsied renal tissue and cultured tubular cells. Immunohistochemical stains for TLR4, heat shock protein (HSP) 47, and HSP70 were performed in both pre- and post-treatment biopsies obtained from 18 patients of minimal change nephrotic syndrome or IgA nephropathy treated with CsA, and the percentage of positive tubules was compared in each case. For in vitro experiments, HK-2 cells were treated with CsA (2, 5, and 10 microg/ml) for 24, 48, and 72 h. TLR4 mRNA and protein were measured using real-time RT-PCR and Western blot. In addition, hypoxic effect was added by GasPak System. The tubular expressions of TLR4 (2.2 +/- 1.2% vs 4.4 +/- 2.0%, p < 0.001) and HSP70 (2.6 +/- 2.8% vs 6.1 +/- 4.2%, p = 0.002) were increased after CsA treatment. TLR4 mRNA and protein expression were also increased in a dose-dependent manner. Hypoxia enormously increased TLR4 expression. In summary, CsA increased tubular expression of TLR4 and its ligand HSP70. As hypoxia was shown to be a strong stimulus for TLR4 expression, it can be said that TLR4 is influenced by both direct toxicity and impediment of renal microcirculation in human CsA nephrotoxicity.
2009T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1.J ImmunolHeat shock protein (HSP) 70 isolated from tumor-dendritic cell (DC) fusions (HSP70.PC-F) induces potent antitumor immunity and prevents growth of such tumors. In the present study, we have examined mechanisms underlying such antitumor activity of the HSP70.PC-F vaccine. The degree of antitumor immunity induced by HSP70.PC-F depended on intact TLR signaling in immunized animals, and mice in which the tlr2 and tlr4 genes were both inactivated did not respond to the vaccine. The reduced responses to HSP70.PC-F vaccine in such tlr knockout mice were restored by immunization of animals with HSP70.PC-F-pulsed wild-type DC, indicating a key role for this cell type in HSP70.PC-F-mediated immunity. Our studies also indicate a role for the scavenger receptor expressed by endothelial cells-1 (SREC-1) in antitumor immunity induced by HSP70.PC-F. These two receptor types appeared functionally interdependent, as indicated by the finding that tlr2 and tlr4 knockout decreases HSP70 binding in double-knockout DC and reduces SREC-1 expression. In addition, TLR-dependent, tumor cell killing was suppressed by SREC-1 knockdown in DC, suggesting a significant role for this receptor in HSP70.PC-F-mediated tumor immunity.
2009Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced.J ImmunolWe recently reported that heat shock protein 60 (HSP60) via TLR4 signaling activates B cells and induces them to proliferate and secrete IL-10. We now report that HSP60 inhibits mouse B cell apoptosis, spontaneous or induced by dexamethasone or anti-IgM activation. Unlike HSP60 enhancement of B cell proliferation and IL-10 secretion, TLR4 signaling was not required for the inhibition of apoptosis by HSP60; nevertheless, MyD88 was essential. Inhibition of apoptosis by HSP60 was associated with up-regulation of the antiapoptotic molecules Bcl-2, Bcl-x(L), and survivin, maintenance of the mitochondrial transmembrane potential, and inhibition of caspase-3 activation. Moreover, B cells incubated with HSP60 manifested prolonged survival following transfer into recipient mice. These results extend the varied role of HSP60 in the innate regulation of the adaptive immune response.
2009Angiopoietin-2 is increased in septic shock: evidence for the existence of a circulating factor stimulating its release from human monocytes.Immunol LettWe aimed to investigate if angiopoietin-2 (Ang-2) participates in the septic process and what may be the role of monocytes as a site of release of Ang-2 in sepsis. Concentrations of Ang-2 were estimated in sera and in supernatants of monocytes derived form one already described cohort of 90 patients with septic syndrome due to ventilator-associated pneumonia (VAP). Mononuclear cells of 17 healthy volunteers were stimulated by serum of patients in the presence or absence of various intracellular pathway inhibitors. Ang-2 gene expression after stimulation was also tested. Ang-2 was higher in patients with septic shock compared to patients with sepsis, severe sepsis and controls. Ang-2 was significantly increased in non-survivors compared with survivors. Serum levels greater than 9700 pg/ml were accompanied by a 3.254 odds ratio for death (p: 0.033). Ang-2 release from monocytes of septic patients was slightly decreased after stimulation with lipopolysaccharide (LPS) of Escherichia coli O55:B5. Release of Ang-2 from healthy mononuclear cells was stimulated by serum of patients with shock but not by serum of non-shocked patients (p: 0.016). Release was decreased by LPS; increased in the presence of a TLR4 antagonist; and decreased by anti-TNF antibody. RNA transcripts of PBMCs after stimulation with serum of patients with septic shock were higher than those after LPS stimulation. It is concluded that Ang-2 is increased in serum in the event of septic shock and that its increase is related to unfavorable outcome. It seems that a circulating factor may exist in the serum of patients with septic shock that stimulates gene expression and subsequent release of Ang-2 from monocytes. TLR4 and TNFalpha modulate release of Ang-2.
2010Up-regulation of intestinal Toll-Like receptors and cytokines expressions change after TPN administration and a lack of enteral feeding.J Surg ResTotal parenteral nutrition (TPN) increases the risk of severe infectious complications such as septic shock, which are believed to be the result of a breakdown of intestinal barrier function and subsequent bacterial translocation. Toll-like receptors (TLRs) comprise a family of membrane proteins that serve as pattern recognition receptors for a variety of microbe-derived molecules and stimulate innate immune responses to microbes. Alteration of intraepithelial lymphocytes (IELs) to TPN administration has been studied extensively. However, few studies have examined the effect of TPN administration on intestinal TLRs. We hypothesized that the expressions of intestinal TLRs and cytokines may change with TPN administration and a lack of enteral feeding.TPN-treated mice and sham operation mice (control) were killed at 10 days after operation. mRNA expression of intestinal cytokines and TLRs were analyzed with reverse transcription-polymerase chain reaction (RT-PCR) methods. Change in IEL populations was analyzed with flow cytometry.RT-PCR showed varying expression levels of TLRs at different sites on the small intestine and colon. TLR4, TLR5, TLR7, and TLR9 mRNAs were up-regulated in response to TPN administration, particularly in the distal small intestine.Up-regulation of TLRs in intestine in response to TPN administration and a lack of enteral nutrition may be associated with an increased risk of septic shock due to bacterial translocation caused by Interferon gamma-mediated intestinal epithelial cell apoptosis.
2009Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock.Proc Natl Acad Sci U S AAdequate responses by our innate immune system toward invading pathogens were of vital importance for surviving infections, especially before the antibiotic era. Recently, a polymorphism in Mal (Ser180Leu, TIRAP rs8177374), an important adaptor protein downstream of the Toll-like receptor (TLR) 2 and 4 pathways, has been described to provide protection against a broad range of infectious pathogens. We assessed the functional effects of this polymorphism in human experimental endotoxemia, and we demonstrate that individuals bearing the TIRAP 180L allele display an increased, innate immune response to TLR4 and TLR2 ligands, but not to TLR9 stimulation. This phenotype has been related to an increased resistance to infection. However, an overshoot in the release of proinflammatory cytokines by TIRAP 180L homozygous individuals suggests a scenario of balanced evolution. We have also investigated the worldwide distribution of the Ser180Leu polymorphism in 14 populations around the globe to correlate the genetic makeup of TIRAP with the local infectious pressures. Based on the immunological, clinical, and genetic data, we propose that this mutation might have been selected in West Eurasia during the early settlement of this region after the out-of-Africa migration of modern Homo sapiens. This combination of functional and genetic data provides unique insights to our understanding of the pathogenesis of sepsis.
2009Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes.DiabetologiaType 1 diabetes is a proinflammatory state characterised by increased levels of circulating biomarkers of inflammation and monocyte activity. We have shown increased Toll-like receptor 2 (TLR2) and TLR4 expression and signalling in monocytes from type 1 diabetic patients. Several endogenous ligands of TLR2 and TLR4 have been identified; however, there is a paucity of data on levels of these endogenous ligands in diabetes. Thus, the aim of this study was to examine circulating levels of exogenous/endogenous ligands of TLR2 and TLR4 in type 1 diabetic patients and to compare these with the levels in matched healthy controls.Healthy controls (n = 37) and type 1 diabetic patients (n = 34) were recruited, and a fasting blood sample was obtained. Circulating levels of endotoxin, heat-shock protein 60 (Hsp60), high-mobility group box 1 (HMGB1) and growth arrest-specific 6 (GAS6) proteins were assessed by ELISA, and TLR2 and TLR4 expression was determined by flow cytometry.Levels of the classical TLR4 ligand, endotoxin, were significantly elevated in type 1 diabetic patients compared with those in matched controls. Hsp60 and HMGB1 concentrations were also significantly increased in the patients (p < 0.01 and p < 0.001, respectively). No significant differences were observed in GAS6.We report the novel observation that levels of ligands of TLR2 and TLR4 are significantly elevated in type 1 diabetes, and this, in concert with hyperglycaemia, accounts for the increase in TLR2 and TLR4 activity, underscoring the proinflammatory state of type 1 diabetes.
2009The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer.J Leukoc BiolThe innate immune system is crucial for initiation and amplification of inflammatory responses. During this process, phagocytes are activated by PAMPs that are recognized by PRRs. Phagocytes are also activated by endogenous danger signals called alarmins or DAMPs via partly specific, partly common PRRs. Two members of the S100 protein family, S100A8 and S100A9, have been identified recently as important endogenous DAMPs. The complex of S100A8 and S100A9 (also called calprotectin) is actively secreted during the stress response of phagocytes. The association of inflammation and S100A8/S100A9 was discovered more than 20 years ago, but only now are the molecular mechanisms involved in danger signaling by extracellular S100A8/S100A9 beginning to emerge. Taking advantage of mice lacking the functional S100A8/S100A9 complex, these molecules have been identified as endogenous activators of TLR4 and have been shown to promote lethal, endotoxin-induced shock. Importantly, S100A8/S100A9 is not only involved in promoting the inflammatory response in infections but was also identified as a potent amplifier of inflammation in autoimmunity as well as in cancer development and tumor spread. This proinflammatory action of S100A8/S100A9 involves autocrine and paracrine mechanisms in phagocytes, endothelium, and other cells. As a net result, extravasation of leukocytes into inflamed tissues and their subsequent activation are increased. Thus, S100A8/S100A9 plays a pivotal role during amplification of inflammation and represents a promising new therapeutic target.
2009Myocardial TLR4 is a determinant of neutrophil infiltration after global myocardial ischemia: mediating KC and MCP-1 expression induced by extracellular HSC70.Am J Physiol Heart Circ PhysiolCardiac surgery with global myocardial ischemia-reperfusion (I/R) induces a myocardial inflammatory response that impairs cardiac recovery. Chemokines contribute to the overall myocardial inflammatory response through inducing leukocyte infiltration. Although Toll-like receptor 4 (TLR4) has an important role in postischemic myocardial injury, the relative roles of myocardial tissue and leukocyte TLR4 in leukocyte infiltration, as well as the role of TLR4 in myocardial chemokine expression, are unclear. Our recent study, in an isolated mouse heart model of global I/R, found that the 70-kDa heat shock cognate protein (HSC70) is released from cardiac cells and mediates the expression of cardiodepressant cytokines via a TLR4-dependent mechanism. In the present study, we tested the hypotheses that myocardial tissue TLR4 has a major role in mediating neutrophil infiltration and that myocardial TLR4 and extracellular HSC70 contribute to the mechanisms underlying cardiac chemokine response to global I/R. We subjected hearts isolated from TLR4-defective and TLR4-competent mice to global I/R and examined myocardial neutrophil infiltration and expression of keratinocyte-derived chemokine (KC) and monocyte chemoattractant protein-1 (MCP-1). TLR4-defective hearts exhibited reduced neutrophil infiltration regardless of the phenotypes of neutrophils perfused during reperfusion and expressed lower levels of KC and MCP-1. HSC70-specific antibody reduced myocardial expression of KC and MCP-1 after I/R. Furthermore, perfusion of HSC70 increased KC and MCP-1 expression in TLR4-competent hearts but not in TLR4-defective hearts, and HSC70 also induced the chemokine response in macrophages in a TLR4-dependent fashion. A recombinant HSC70 fragment lacking the substrate-binding domain was insufficient to induce chemokine expression in hearts and cells. This study demonstrates that myocardial tissue TLR4, rather than neutrophil TLR4, is the determinant of myocardial neutrophil infiltration after global I/R. TLR4 mediates myocardial chemokine expression, and the mechanisms involve extracellular HSC70. These results imply the HSC70-TLR4 interaction as a novel mechanism underlying the myocardial chemokine response to global I/R.
2009Molecular events in the activation of B cells and macrophages by a non-microbial TLR4 agonist, G1-4A from Tinospora cordifolia.Immunol LettG1-4A, a polysaccharide from an Indian medicinal plant Tinospora cordifolia, was recently shown to protect mice against septic shock by modulating the proinflammatory cytokines. G1-4A also activated B cells polyclonally. The present report describes in detail the molecular events associated with G1-4A-induced immunomodulation in vitro and in vivo. G1-4A treatment led to an increase in the CD69 expression in lymphocytes. G1-4A-induced proliferation of B cells was completely inhibited by PI3K inhibitor Ly294002, mTOR inhibitor rapamycin and NF-kappaB inhibitor plumbagin. Akt, ERK and JNK were activated by G1-4A which finally resulted in the activation of IKK, degradation of IkappaB-alpha and translocation of NF-kappaB to the nucleus. Administration of G1-4A to mice led to splenomegaly and an increase in the numbers of T cells, B cells and macrophages. This increase in spleen cellularity was due to in vivo proliferation of lymphocytes and upregulation of anti-apoptotic genes. Anti-TLR4-MD2 complex antibody inhibited G1-4A-induced B cell proliferation and degradation of IkappaB-alpha suggesting that TLR-4 was a receptor for G1-4A on B cells. Activation of RAW 264.7 macrophages by G1-4A was found to be dependent on ERK and NF-kappaB-mediated signals. The phagocytosis index in peritoneal exudate cells (PEC) isolated from G1-4A treated mice was significantly higher as compared to that in PEC from control mice. G1-4A administration also increased the number of CD11b(+) cells in the PEC without an increase in the total number of PEC. Thus the present understanding of the molecular mechanism of action of G1-4A, a novel non-microbial TLR4 agonist, will pave the way for its application as an immunomodulator and adjuvant.
2009Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4.Respir ResNeutrophils play an important role in the pathophysiology of RSV, though RSV does not appear to directly activate neutrophils in the lower airways. Therefore locally produced cytokines or other molecules released by virally-infected airway epithelial cells are likely responsible for recruiting and activating neutrophils. Heat shock proteins (HSPs) are generally regarded as intracellular proteins acting as molecular chaperones; however, HSP72 can also be released from cells, and the implications of this release are not fully understood.Human bronchial epithelial cells (16HBE14o-) were infected with RSV and Hsp72 levels were measured by Western blot and ELISA. Tracheal aspirates were obtained from critically ill children infected with RSV and analyzed for Hsp72 levels by ELISA. Primary human neutrophils and differentiated HL-60 cells were cultured with Hsp72 and supernatants analyzed for cytokine production. In some cases, cells were pretreated with polymyxin B prior to treatment with Hsp72. IkappaBalpha was assessed by Western blot and EMSA's were performed to determine NF-kappaB activation. HL-60 cells were pretreated with neutralizing antibody against TLR4 prior to Hsp72 treatment. Neutrophils were harvested from the bone marrow of wild type or TLR4-deficient mice prior to treatment with Hsp72.Infection of 16HBE14o- with RSV showed an induction of intracellular Hsp72 levels as well as extracellular release of Hsp72. Primary human neutrophils from normal donors and differentiated HL-60 cells treated with increasing concentrations of Hsp72 resulted in increased cytokine (IL-8 and TNFalpha) production. This effect was independent of the low levels of endotoxin in the Hsp72 preparation. Hsp72 mediated cytokine production via activation of NF-kappaB translocation and DNA binding. Using bone marrow-derived neutrophils from wild type and TLR4-mutant mice, we showed that Hsp72 directly activates neutrophil-derived cytokine production via the activation of TLR4.Collectively these data suggest that extracellular Hsp72 is released from virally infected airway epithelial cells resulting in the recruitment and activation of neutrophils.
2009Chlamydial heat shock protein 60 induces acute pulmonary inflammation in mice via the Toll-like receptor 4- and MyD88-dependent pathway.Infect ImmunHeat shock protein 60 derived from Chlamydia pneumoniae (cHSP60) activates Toll-like receptor 4 (TLR4) signaling through the MyD88 pathway in vitro, but it is not known how cHSP60 contributes to C. pneumoniae-induced lung inflammation. We treated wild-type (WT), TLR2(-/-), TLR4(-/-), or MyD88(-/-) mice intratracheally (i.t.) with recombinant cHSP60 (50 microg), UV-killed C. pneumoniae (UVCP; 5 x 10(6) inclusion-forming units/mouse), lipopolysaccharide (2 microg), or phosphate-buffered saline (PBS) and sacrificed mice 24 h later. Bronchoalveolar lavage (BAL) was obtained to measure cell counts and cytokine levels, lungs were analyzed for histopathology, and lung homogenate chemokine concentrations were determined. Bone marrow-derived dendritic cells (BMDDCs) were generated and stimulated with live C. pneumoniae (multiplicity of infection [MOI], 5), UVCP (MOI, 5), or cHSP60 for 24 h, and the expression of costimulatory molecules (CD80 and CD86) was measured by fluorescence-activated cell sorting. cHSP60 induced acute lung inflammation with the same intensity as that of UVCP-induced inflammation in WT mice but not in TLR4(-/-) or MyD88(-/-) mice. cHSP60- and UVCP-induced lung inflammation was associated with increased numbers of cells in BAL, increased neutrophil recruitment, and elevated BAL interleukin-6 (IL-6) levels. Both cHSP60 and UVCP induced IL-6 release and CD80 and CD86 expression in WT cells but not in MyD88(-/-) BMDDCs. cHSP60 stimulated DC activation in a TLR4- and MyD88-dependent manner with an intensity similar to that induced by UVCP. These data suggest that cHSP60 promotes lung inflammation and DC activation via TLR4 and MyD88 and therefore may play a significant role in the pathogenesis of C. pneumoniae-induced chronic inflammatory lung diseases.
2009Cellular expression of A20 and ABIN-3 in response to Toll-like receptor-4 stimulation.Methods Mol BiolAlthough Toll-like receptor (TLR)-induced expression of several proinflammatory genes is required to provoke an efficient immune response, excessive or prolonged activation of TLR signaling can contribute to the development of septic shock and several inflammatory diseases. Given this inherent danger of unrestrained TLR signaling to the organism, it is not surprising that many negative feedback mechanisms have evolved to hold TLR signaling in check. In this context, TLR stimulation induces several negative regulators of TLR-induced signaling to nuclear factor (NF)-kappaB dependent gene expression. Here we describe the use of Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR) to study respectively the cellular protein and mRNA expression levels of the NF-kappaB inhibitory proteins A20 and ABIN-3 in response to TLR4 stimulation by lipopolysaccharide (LPS).
2010The roles of monocytic heat shock protein 60 and Toll-like receptors in the regional inflammation response to wear debris particles.J Biomed Mater Res AThe biological response to orthopaedic wear debris is central to peri-prosthetic tissue inflammation and osteolysis, through mechanisms that include local inflammatory cytokine production. In particular, interleukin-1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha|) are generated in high quantities following monocyte accumulation in periprosthetic inflammatory tissue, and these cytokine combine with other inflammatory mediators to trigger osteolysis. Since the precise mechanisms involved in debris-associated inflammation remain unclear, it is important to understand how wear debris particles initially interact with inflammatory cells. We have previously demonstrated that the severity of the inflammation response is influenced by the size, shape, and quantity of particles accumulated in tissues. The current in vitro and in vivo results indicate that heat-shock protein (Hsp) expression is elevated when monocytes are exposed to wear debris particles. We have also addressed the mechanisms by which heat-shock protein 60 (Hsp60) positively modulates inflammatory cytokines via Toll-like receptor-4 (TLR4) signal transduction pathway on mononuclear cells. Furthermore, down-regulation of TLR4 expression using antisense oligonucleotides targeted to TLR4 mRNA suppressed cytokine production in both exogenous Hsp60 and particles stimulated cultures. Collectively, these data indicate that monocytic Hsp60 is an additional inducible immunoregulatory mediator in response to particle-induced cell stress.
2009Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling.J ImmunolMacrophages are important mediators of chronic inflammation and are prominent in the synovial lining and sublining of patients with rheumatoid arthritis (RA). Recently, we demonstrated increased TLR2 and TLR4 expression and increased response to microbial TLR2 and TLR4 ligands in macrophages from the joints of RA. The current study characterized the expression of the 96-kDa heat shock glycoprotein (gp96) in the joints of RA and its role as an endogenous TLR ligand to promote innate immunity in RA. gp96 was increased in RA compared with osteoarthritis and arthritis-free control synovial tissues. The expression of gp96 strongly correlated with inflammation and synovial lining thickness. gp96 was increased in synovial fluid from the joints of RA compared with disease controls. Recombinant gp96 was a potent activator of macrophages and the activation was mediated primarily through TLR2 signaling. The cellular response to gp96 was significantly stronger with RA synovial macrophages compared with peripheral blood monocytes from RA or healthy controls. The transcription of TLR2, TNF-alpha, and IL-8, but not TLR4, was significantly induced by gp96, and the induction was significantly greater in purified RA synovial macrophages. The expression of TLR2, but not TLR4, on synovial fluid macrophages strongly correlated with the level of gp96 in the synovial fluid. The present study documents the potential role of gp96 as an endogenous TLR2 ligand in RA and provides insight into the mechanism by which gp96 promotes the chronic inflammation of RA, identifying gp96 as a potential new therapeutic target.
2009The Fasciola hepatica tegumental antigen suppresses dendritic cell maturation and function.Infect ImmunParasitic worms and molecules derived from them have powerful anti-inflammatory properties and are shown to have therapeutic effects on inflammatory diseases. The helminth Fasciola hepatica has been reported to suppress antigen-specific Th1 responses in concurrent bacterial infections, thus demonstrating its anti-inflammatory ability in vivo. Here, F. hepatica tegumental antigen (Teg) was shown to significantly suppress serum levels of gamma interferon (IFN-gamma) and interleukin-12p70 (IL-12p70) in a model of septic shock. Since dendritic cells (DCs) are a good source of IL-12p70 and critical in driving adaptive immunity, we investigated the effects of F. hepatica Teg on the activation and function of murine DCs. While Teg alone did not induce cytokine production or cell surface marker expression on DCs, it significantly suppressed cytokine production (IL-12p70, IL-6, IL-10, tumor necrosis factor alpha, and nitrite) and cell surface marker expression (CD80, CD86, and CD40) in DCs matured with a range of Toll-like receptor (TLR) and non-TLR ligands. Teg works independently of the TLR4 pathway, since it still functioned in DCs generated from TLR4 mutant and knockout mice. It impaired DC function by inhibiting their phagocytic capacity and their ability to prime T cells. It does not appear to target the common components (extracellular signal-regulated kinase, Jun N-terminal protein kinase, or p38) of the TLR pathways; however, it suppressed the active p65 subunit of the transcription factor NF-kappaB in mature DCs, which could explain the impairment of proinflammatory cytokine production. Overall, our results demonstrate the potent anti-inflammatory properties of F. hepatica Teg and its therapeutic potential as an anti-inflammatory agent.
2009Toll-like receptors 4 contribute to endothelial injury and inflammation in hemorrhagic shock in mice.Crit Care MedHemorrhagic shock followed by resuscitation (HS/R) promotes organ injury by priming cells of the innate immune system for inflammatory response. Toll-like receptors (TLRs) play an important role in signal transduction in shock/resuscitation conditions. Because proinflammatory mediators are a critical event in mesenteric endothelial injury induced by HS/R, we assessed the role of TLR4 or TLR2 in this setting.Laboratory investigation.Research laboratory at Rouen University Medical School.Male wild-type, TLR4(-/-) and TLR2(-/-) mice with the same C57BL/6 background.Mice were submitted to 30 minutes hemorrhagic shock followed by 1 hour resuscitation, after which mesenteric endothelial dysfunction, microvascular injury, and TNF[alpha] production were assessed.HS/R markedly decreased nitric oxide-mediated mesenteric relaxations induced by acetylcholine, assessed ex vivo on a myograph. By contrast, in TLR4-deficient mice, HS/R did not impair the nitric oxide-mediated responses to acetylcholine. No protection was observed in TLR2-deficient mice. TLR4-deficient mice also displayed a significant reduction in fluid resuscitation and TNF[alpha] systemic production.TLR4 contributes to mesenteric endothelial dysfunction after hemorrhagic shock. This early TLR4-induced vascular injury may be an important trigger of the systemic inflammatory response occurring in this disease.
2009Heat shock proteins and immune system.J Leukoc BiolHeat shock proteins (HSPs) such as HSP 60 (Hsp60), Hsp70, Hsp90, and gp96, have been reported to play important roles in antigen presentation and cross-presentation, activation of macrophages and lymphocytes, and activation and maturation of dendritic cells. HSPs contain peptide-binding domains that bind exposed hydrophobic residues of substrate proteins. As part of their molecular chaperone functions, HSPs bind and deliver chaperoned, antigenic peptides to MHC class I molecules at the cell surface for presentation to lymphocytes. HSPs also bind nonprotein molecules with exposed hydrophobic residues including lipid-based TLR ligands. Recombinant HSP products may be contaminated with pathogen-associated molecules that contain exposed hydrophobic residues such as LPS (a TLR4 ligand), lipoprotein (a TLR2 ligand), and flagellin (a TLR5 ligand). These contaminants appear to be responsible for most, if not all, reported in vitro cytokine effects of HSPs, as highly purified HSPs do not show any cytokine effects. We propose that HSPs are molecular chaperones that bind protein and nonprotein molecules with exposed hydrophobic residues. The reported antigen presentation and cross-presentation and in vitro HSP cytokine functions are a result of molecules bound to or chaperoned by HSPs but not a result of HSPs themselves.
2009New insight in LPS antagonist.Mini Rev Med ChemLipopolysaccharide (LPS) or endotoxin, the major constituent of the outer membrane of Gram negative bacteria, has been implicated as the bacterial product responsible for the clinical syndrome of sepsis. LPS binding to the host receptor Toll-like receptor 4 (TLR4) triggers an inflammatory reaction characterised by the release of large number of inflammatory mediators that allow the host to respond to the invading pathogen. When this production becomes un-controlled and excessive, it leads to the development of septic shock. Despite decades of efforts in supporting therapies, sepsis remains the leading cause of death amongst critically ill patients. Unfortunately, the major factor contributing to the high morbidity and mortality of sepsis is the lack of the effective targeted treatment. Indeed, over 30 drugs for the treatment of sepsis have been developed: many of these target specific inflammatory mediators and have thus been, in general, unsuccessful since sepsis relies on the cross talk of several cytokines and the block of a single factor has been proven to be ineffective. More successful strategies include those modulating the early phase of LPS signalling such as the ones that prevent the binding of LPS to host cells and the subsequent cascade of detrimental events. In this light, effective LPS antagonists would represent invaluable tools to efficaciously manage sepsis. This review discusses the evolution of naturally occurring and synthetic LPS antagonists with emphasis on the development of several natural new molecules.
2009Heat shock protein gp96 interacts with protein phosphatase 5 and controls toll-like receptor 2 (TLR2)-mediated activation of extracellular signal-regulated kinase (ERK) 1/2 in post-hypoxic kidney cells.J Biol ChemIschemia/reperfusion injury (IRI) induces an innate immune response, leading to an inflammatory reaction and tissue damage that have been attributed to engagement of the Toll-like receptor (TLR) 2 and 4. However, the respective roles of TLR2 and/or TLR4 in mediating downstream activation of mitogen-activated protein kinase (MAPK) pathways during IRI have not been fully elucidated. Here we show that extracellular signal-regulated kinase (ERK)1/2 is activated in both intact kidneys and cultured renal tubule epithelial cells (RTECs) from wildtype and Tlr4 knockout mice, but not those from Tlr2 knockout mice subjected to transient ischemia. Geldanamycin (GA), an inhibitor of heat shock protein 90 and reticulum endoplasmic-resident gp96, and gp96 mRNA silencing (siRNA), did not affect ERK1/2 activation in either post-hypoxic wild-type or Tlr4-deficient RTECs, but did restore its activation in post-hypoxic Tlr2-deficient RTECs. Immunoprecipitation studies revealed that gp96 co-immunoprecipitates with the serine-threonine protein phosphatase 5 (PP5), identified as a negative modulator of the mitogen extracellular kinase (MEK)-ERK pathway, in unstressed wild-type and post-hypoxic Tlr2-deficient RTECs. In contrast, PP5 co-immunoprecipitation with gp96 was strikingly reduced in post-hypoxic wild-type RTECs, suggesting that the inactivation of PP5 resulting from the dissociation of PP5 from gp96 allows the activation of ERK1/2 to occur. Inhibition of PP5 by okadaic acid, and Pp5 siRNA also restored TLR2-mediated phosphorylation of ERK1/2, and apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)-mediated apoptosis in post-hypoxic Tlr2-deficient RTECs. These findings indicate that gp96 interacts with PP5 and controls TLR2-mediated induction of ERK1/2 in post-hypoxic renal tubule cells.
2009Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control.J Biol ChemIRAK2, a member of the interleukin-1 receptor-associated kinase (IRAK) family, has been implicated in Toll-like receptor (TLR)-mediated signaling. We generated IRAK2-deficient mice to examine its function in detail. These mice are resistant to lipopolysaccharide-induced septic shock, because of impaired TLR4-mediated induction of pro-inflammatory cytokines and chemokines. Although IRAK2 deficiency did not affect TLR4-mediated NFkappaB activation, a reduction of lipopolysaccharide (LPS)-mediated mRNA stabilization contributed to the reduced cytokine and chemokine production observed in bone marrow-derived macrophages from IRAK2-deficient mice. Furthermore, the ratios of LPS-induced cytokine and chemokine mRNAs in translation-active (polysomal) versus translation-inactive (free ribosomes) pools were reduced in IRAK2-deficient macrophages compared with wild type macrophages. Importantly, LPS-induced phosphorylation of MKK3/6, MNK1, and eIF4E was significantly reduced in IRAK2-deficient macrophages compared with wild type macrophages. Moreover, LPS stimulation induced an interaction of IRAK2 with TRAF6, MKK3/6, and MK2, implicating a critical role for mitogen-activated protein kinase signaling in LPS-induced IRAK2-mediated post-transcriptional control. These results reveal that IRAK2 is required for LPS-mediated post-transcriptional control of cytokine and chemokine expression, which plays an essential role in TLR4-induced septic shock.
2009Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation.J ImmunolIt has long been established that lower vertebrates, most notably fish and amphibians, are resistant to the toxic effect of LPS. Furthermore, the lack of a TLR4 ortholog in some fish species and the lack of the essential costimulatory molecules for LPS activation via TLR4 (i.e., myeloid differentiation protein 2 (MD-2) and CD14) in all the fish genomes and expressed sequence tag databases available led us to hypothesize that the mechanism of LPS recognition in fish may be different from that of mammals. To shed light on the role of fish TLRs in LPS recognition, a dual-luciferase reporter assay to study NF-kappaB activation in whole zebrafish embryos was developed and three different bony fish models were studied: 1) the gilthead seabream (Sparus aurata, Perciformes), an immunological-tractable teleost model in which the presence of a TLR4 ortholog is unknown; 2) the spotted green pufferfish (Tetraodon nigroviridis, Tetraodontiformes), which lacks a TLR4 ortholog; and 3) the zebrafish (Danio rerio, Cypriniformes), which possesses two TLR4 orthologs. Our results show that LPS signaled via a TLR4- and MyD88-independent manner in fish, and, surprisingly, that the zebrafish TLR4 orthologs negatively regulated the MyD88-dependent signaling pathway. We think that the identification of TLR4 as a negative regulator of TLR signaling in the zebrafish, together with the absence of this receptor in most fish species, explains the resistance of fish to endotoxic shock and supports the idea that the TLR4 receptor complex for LPS recognition arose after the divergence of fish and tetrapods.
2009Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4.Proc Natl Acad Sci U S AToll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in gram-negative sepsis, we first showed that TLR4(-/-) and myeloid differentiation primary response gene 88 (MyD88)(-/-) mice were fully resistant to Escherichia coli-induced septic shock, whereas TLR2(-/-) and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1-334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for gram-negative sepsis.
2009Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway.J ImmunolExtracellular heat shock proteins (HSP) can activate dendritic cells (DC) and monocytes/macrophages, and HSP derived from tumor cells have been regarded as potent adjuvant facilitating presentation of tumor Ags and induction of antitumor immunity. However, the roles and the underlying mechanisms of releasable HSP in the induction of antitumor immunity have not been fully elucidated. In this study, we report that heat stress can induce the release of various HSP from tumor cells, which, in turn, activate tumor cells to produce chemokines for chemoattraction of DC and T cells via TLR4 signaling pathway. In vivo, we find that the infiltration and function of DC and T cells within tumor after local hyperthermia are increased significantly. We also provide evidence that HSP70 proteins released by tumor cells and TLR4 expressed by tumor cells/DC are essential for the chemoattraction of DC/T cells and for the subsequent induction of tumor-specific antitumor immunity. Therefore, our study suggests that heat stress-induced releasable HSP70 proteins from tumor cells play important roles in the initiation of antitumor immunity by inducing tumor cell production of chemokines and by activating the chemoattracted DC via TLR4 pathway.
2009TLR4 is essential in acute lung injury induced by unresuscitated hemorrhagic shock.J TraumaAcute lung injury (ALI) and acute respiratory distress syndrome in patients with hemorrhagic shock (HS) or resuscitation is associated with the expression of TLR4. However, the role of TLR4 in ALI induced by unresuscitated HS remains obscure.The lung pathologic change was observed by hematoxylin and eosin staining. Interleukin-1beta and tumor necrosis factor-alpha were analyzed by enzyme-linked immunosorbent assay. Polymorphonuclear leukocyte sequestration and lung leak were analyzed by pulmonary myeloperoxidase activity and Evans blue dye. The expressions of TLR4 mRNA and protein were analyzed by reverse transcription-polymerase chain reaction and Western blot, respectively. TLR4 distribution was analyzed by immunohistochemistry.Lung neutrophil accumulation and microvascular permeability were significantly increased after unresuscitated HS, meanwhile, lung interleukin-1beta and tumor necrosis factor-alpha were gradually augmented. TLR4 mRNA, TLR4 distribution and TLR4 protein were also significantly increased in TLR4 wt mice, however, no above-mentioned changes appeared in TLR4 mutant mice.TLR4 is strongly associated with the pathogenesis of ALI induced by unresuscitated HS, which may serve as a useful therapeutic target.
2009Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study.J TraumaGenetic variation contributes to risk and outcomes of sepsis. We sought to determine whether variation in inflammation related genes is associated with severity of sepsis in trauma patients.A cohort of severely injured Caucasian patients was studied and genotyped for candidate single nucleotide polymorphisms (SNPs). These were toll-like receptor 4 (TLR4) A896G, tumor necrosis factor-alpha G-308A, interleukin-6 G-174C, interleukin-1beta C-31T, and cluster of differentiation marker 14C-159T. SNP genotypes among patients with sepsis and complicated sepsis were analyzed by chi2 and logistic regression. Six haplotype-tagging SNPs in the TLR4 gene were subsequently examined to analyze their influence on TLR4 A896G SNPs relationship to sepsis severity.We enrolled 598 patients. Complicated sepsis developed in 147 (25%). Adjusting for independent risk factors, carriage of the variant TLR4 896 G allele was associated with decreased risk of complicated sepsis (odds ratio = 0.3, 95% confidence interval, 0.1-0.7, p = 0.008). Furthermore, two haplotypes seemed to better characterize this risk than the variant TLR4 896G allele. The variant TLR4 896G allele is linked to one common haplotype, which seems to confer a considerably reduced risk of complicated sepsis. (aOR = 0.2 95% confidence interval, 0.05-0.7, p = 0.01).Variation within TLR4 gene is associated with severity of posttraumatic sepsis. This risk may not be solely related to TLR4 A896G SNP. It is likely that other, uncharacterized variations in the TLR4 gene contribute to sepsis severity. A thorough evaluation of variability within the TLR4 gene is needed to characterize sepsis risk.
2009Heat shock proteins HSP27 and HSP70 are present in the skin and are important mediators of allergic contact hypersensitivity.J ImmunolProteomic analysis of murine skin has shown that a variety of heat shock proteins (HSPs) are constitutively expressed in the skin. Using murine allergic contact hypersensitivity as a model, we investigated the role of two heat shock proteins, HSP27 and HSP70, in the induction of cutaneous cell-mediated immune responses. Immunohistochemical examination of skin specimens showed that HSP27 was present in the epidermis and HSP70 was present in both the epidermis and dermis. Inhibition of HSP27 and HSP70 produced a reduction in the 1-fluoro-2,4-dinitrobenzene contact hypersensitivity response and resulted in the induction of Ag-specific unresponsiveness. Treatment of dendritic cell cultures with recombinant HSP27 caused in the up-regulation of IL-1beta, TNF-alpha, IL-6, IL-12p70, and IL-12p40 but not IL-23p19, which was inhibited when Abs to HSP27 were added. The 1-fluoro-2,4-dinitrobenzene-conjugated dendritic cells that had been treated with HSP27 had an increased capacity to initiate contact hypersensitivity responses compared with control dendritic cells. This augmented capacity required TLR4 signaling because neither cytokine production by dendritic cells nor the increased induction of contact hypersensitivity responses occurred in TLR4-deficient C3H/HeJ mice. Our findings indicate that a cascade of events occurs following initial interaction of hapten with the skin that includes increased activity of HSPs, their interaction with TLR4, and, in turn, increased production of cytokines that are known to enhance Ag presentation by T cells. The results suggest that HSPs form a link between adaptive and innate immunity during the early stages of contact hypersensitivity.
2009Interacting neuroendocrine and innate and acquired immune pathways regulate neutrophil mobilization from bone marrow following hemorrhagic shock.J ImmunolPolymorphonuclear neutrophils (PMN) are critical innate immune effector cells that either protect the host or exacerbate organ dysfunction by migrating to injured or inflamed tissues. Resuscitated hemorrhagic shock following major trauma promotes the development of organ inflammation by priming PMN migration and activation in response to a second, often trivial, stimulus (a so-called "two hit" phenomenon). PMN mobilization from bone marrow supports a sustained, hemorrhagic shock/resuscitation (HS/R)-primed migration of PMN. We addressed the role and mechanism of HS/R in regulating PMN egress from bone marrow. We demonstrate that HS/R through the alarmin HMGB1 induces IL-23 secretion from macrophages in an autocrine and TLR4 signaling-dependent manner. In turn IL-23, through an IL-17 G-CSF-mediated mechanism, induces PMN egress from bone marrow. We also show that beta-adrenergic receptor activation by catecholamine of macrophages mediates the HS/R-induced release of HMGB1. These data indicate that HS/R, a global ischemia/reperfusion stimulus, regulates PMN mobilization through a series of interacting pathways that include neuroendocrine and innate and acquired immune systems. Blocking this novel signaling axis may present a novel therapeutic target for posttrauma inflammation.
2009Immune complex/Ig negatively regulate TLR4-triggered inflammatory response in macrophages through Fc gamma RIIb-dependent PGE2 production.J ImmunolExcessive activation of TLR may induce endotoxin shock and inflammatory diseases, so the negative regulation of TLR-triggered inflammatory response attracts much attention. Nonpathogenic immune complex (IC) and Ig (IC/Ig) have been shown to play important roles in the regulation of immune responses and to be therapeutic in some kinds of autoimmune diseases. However, the role of IC/Ig in the regulation of TLR-triggered inflammatory responses and the underlying mechanisms remain to be fully understood. In this study we demonstrate that IC/Ig can significantly inhibit LPS-induced secretion of TNF-alpha and IL-6 from macrophages by preferentially inducing PGE(2). Pretreatment of mice with IC can protect wild-type mice, but not Fc gammaRIIb(-/-) mice, from lethal endotoxin shock, and significantly reduce the levels of serum TNF-alpha and IL-6 in wild-type mice but not in Fc gammaR IIb(-/-) mice. Furthermore, blockade of PGE(2) by celecoxib restores LPS-induced production of TNF-alpha and IL-6 in the presence of IC both in vitro and in vivo. Accordingly, blockade of PGE(2) production in vivo results in the increased sensitivity of IC-pretreated mice to lethal endotoxin shock. Therefore, IC/Ig can negatively regulate TLR4-triggered inflammatory response in macrophages through Fc gammaRIIb-dependent PGE(2). In addition, our results suggest that down-regulation of NF-kappaB activation and TLR4 expression but activation of protein kinase A pathway in macrophages by IC/Ig contribute to the negative regulatory process. Thus we provide new manner for the immune regulation and mechanistic explanation for nonpathogenic IC/Ig in the treatment of inflammatory or autoimmune diseases.
2008Phosphodiesterase 4 inhibition but not beta-adrenergic stimulation suppresses tumor necrosis factor-alpha release in peripheral blood mononuclear cells in septic shock.Crit CareStimulation of beta2-adrenergic receptors (beta2-ARs) inhibits tumor necrosis factor-alpha (TNF-alpha) release in monocytes. In septic shock, endogenous catecholamines induce beta2-AR downregulation, leading to an increased TNF-alpha release. The aims of this study were to analyze the molecular mechanisms of beta-adrenergic downregulation and to explore therapeutic interventions with maintained anti-inflammatory efficacy in septic shock using the inhibition of phosphodiesterase 4 (PDE4).We conducted in vitro stimulation of peripheral blood mononuclear cells of healthy volunteers (n = 20) and patients with septic shock (n = 20) with lipopolysaccharide (LPS) or Staphylococcus aureus enterotoxin B (SEB) without or with isoprenaline, forskolin (an activator of adenylate cyclase), or ropipram (an inhibitor of PDE4). We also conducted flow cytometric analysis of Toll-like receptor (TLR) 4 and TLR2 surface expression and intracellular TNF-alpha production of untreated and stimulated CD14+ monocytes. Protein expression of beta-ARs, of G proteins, of adenylate cyclase, and of TLRs was measured by Western blotting.Investigations were done by LPS (100 ng/mL) or SEB (10 ng/mL) when TLR4 and TLR2 were maximally expressed. LPS- or SEB-treated CD14+ monocytes of healthy volunteers were able to produce TNF-alpha. This effect was attenuated by isoprenaline, forskolin, or rolipram in a concentration-dependent manner. In CD14+ monocytes of patients with septic shock, the anti-inflammatory effect of isoprenaline was completely blunted whereas efficacy of forskolin and rolipram was maintained. CD14+ monocytes of healthy volunteers were compared with patients with septic shock: protein expression of beta2-ARs was reduced and inhibitory G protein was increased, whereas no changes in adenylate cyclase and stimulatory G protein were found.In septic shock, the anti-inflammatory effects of catecholamines are blunted by downregulation of beta2-ARs and upregulation of the inhibitory G protein in CD14+ monocytes. Beta-adrenergic downregulation is overcome by inhibitors of PDE4. These results provide a mechanistic rationale for the therapeutic use of selective PDE4 inhibitors in the treatment of septic shock.
2009Regulation of TLR4-mediated signaling by IBP/Def6, a novel activator of Rho GTPases.J Leukoc BiolTLRs play a fundamental role in innate immune responses. Although Rho GTPases have been implicated in TLR-mediated signaling pathways, the molecules that control their activation in response to TLR engagement are largely unknown. IFN regulatory factor-4-binding protein (IBP; which is encoded by the gene Def6) is a unique type of activator for Rac that plays a crucial role in TCR-mediated signaling and adaptive immune responses. Here, we demonstrate that IBP/Def6 also controls innate immune responses by modulating TLR-induced signaling events. Mice deficient in IBP/Def6 are protected from LPS-induced septic shock. This protection is associated with a decrease in the production of proinflammatory cytokines and is accompanied by diminished activation of MAPKs and NF-kappaB. Our results thus identify IBP/Def6 as a novel component of the TLR4-induced signaling cascade that controls the production of proinflammatory cytokines.
Tumor necrosis factor gene variation and the risk of mortality after burn injury: a cohort study.J Burn Care ResInfection risk and mortality after burn trauma are primarily determined by patient age, burn size and depth, and associated inhalation injury. Whether genetic differences contribute to otherwise unexpected variability in outcomes is unknown. We sought to determine whether there was an association between genetic variation in inflammation-related genes and outcomes after burn trauma. We evaluated patients with burns >or=15% TBSA at a single regional burn center from October 2003 to December 2005. Blood was collected on admission and DNA genotyping was performed. We genotyped single nucleotide polymorphism (SNPs) in toll-like receptor 4 (TLR4) A896G, tumor necrosis factor alpha (TNF-alpha) G-308A, Interleukin-6 (IL-6) G-174C, interleukin-1beta (IL-1beta) T-31C, and cluster of differentiation marker 14 (CD14) C-159T. We compared SNP genotypes between survivors and nonsurvivors by chi analysis and logistic regression. Sixty-nine subjects with a median age of 38 years and mean TBSA of 34% were enrolled. The case fatality was 17%. Septic shock developed in 7 (10%) patients. After adjustment for age, percent full-thickness burns, and inhalation injury, carriage of the TNF-alpha -308 variant allele was associated with increased risk of mortality (OR 10.7, 95% CI = 1.2-95.5, P = .034). None of the other SNPs evaluated were associated with mortality. Mortality after burn trauma is primarily determined by clinical factors, but the TNF-alpha -308 A allele seems to contribute to an increased mortality risk.
2008Hypothesis: combined inhibition of complement and CD14 as treatment regimen to attenuate the inflammatory response.Adv Exp Med BiolPattern recognition is an essential event in innate immunity. Complement and Toll-like receptors (TLR), including the CD14 molecule, are two important upstream components of the innate immune system, recognizing exogenous structures as well as endogenous ligands. They act partly independent in the inflammatory network, but also have several cross-talk mechanisms which are under current investigation. Complement is an essential part of innate immunity protecting the host against infection. However, it is a double-edged sword since inappropriate activation may damage the host. Uncontrolled systemic activation of complement, as seen in severe sepsis, may contribute to the breakdown of homeostatic mechanisms leading to the irreversible state of septic shock. Complement inhibition is promising for protection of lethal experimental sepsis, but clinical studies are missing. Lipopolysaccharide (LPS) has been implicated in the pathogenesis of gram-negative sepsis by inducing synthesis of pro-inflammatory cytokines through binding to CD14 and the TLR4/MD-2 complex. Neutralization of LPS or blocking of CD14 has been effective in preventing LPS-induced lethal shock in animal studies, but results from clinical studies have been disappointing, as for most other therapeutic strategies. Based on some recently published data and further pilot data obtained in our laboratory, we hypothesize that inhibition of complement combined with neutralization of CD14 may attenuate the uncontrolled inflammatory reaction which leads to breakdown of homeostasis during sepsis. We further postulate this regimen as an approach for efficient inhibition of the initial innate recognition, exogenous as well as endogenous, to prevent downstream activation of the inflammatory reaction in general.
[Systemic lupus erythematosus association with tuberculosis - critical review].Rev Port PneumolThe author provides a critical analysis of systemic lupus erythematosus associated with tuberculosis. A brief review of the lupus-tuberculosis association is also given, and stresses that extra-pulmonary TB is the most usual form of TB in these cases. Other issues considered are the heat shock proteins of Mycobacterium tuberculosis HSP70KDa and HSP65KDa families and TLR2, TLR4, TLR9 that can be involved in interaction between bacilli antigen and host tissue causing autoimmune induction by lupus. The author concludes that early diagnosis and appropriate management are mandatory in SLE associated with TB, in areas where TB is endemic.
2009Toll-like receptors in ischemia-reperfusion injury.ShockIschemia-reperfusion (I/R) injuries are implicated in a large array of pathological conditions such as myocardial infarction, cerebral stroke, and hepatic, renal, and intestinal ischemia, as well as following cardiovascular and transplant surgeries. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as one of the main contributors to pathogen-induced inflammation and, more recently, injury-induced inflammation. Endogenous ligands such as low-molecular hyaluronic acid, fibronectin, heat shock protein 70, and heparin sulfate were all found to be cleaved in the inflamed tissue and to activate TLR2 and TLR4, initiating an inflammatory response even in the absence of pathogens and infiltrating immune cells. In this review, we discuss the contribution of TLR activation in hepatic, renal, cerebral, intestinal, and myocardial I/R injuries. A greater understanding of the role of TLRs in I/R injuries may aid in the development of specific TLR-targeted therapeutics to treat these conditions.
2008Extracellular heat-shock protein 70 aggravates cerulein-induced pancreatitis through toll-like receptor-4 in mice.Chin Med J (Engl)In patients suffering from acute pancreatitis, the pathogenesis is not completely understood, and several recent studies in vitro suggested that heat shock proteins might play an important role in cell signaling. To investigate the possible role of extracellular heat shock protein 70 (Hsp70) in pancreatitis, toll-like receptor-4 (TLR4)-deficient and wild-type mice were administered with exogenous Hsp70 during the course of cerulein-induced pancreatitis (CIP).Acute pancreatitis was induced by 5 intraperitoneal injections of cerulein at hourly intervals, and then treated with recombinant Hsp70 through the caudal vein 4 hours after the start of cerulein injections. Subsequently serum amylase and serum cytokines levels were detected. Histologic alteration of the pancreas was evaluated. Tumor necrosis factor alpha (TNF-alpha) concentrations and myeloperoxidase (MPO) activity in both pancreas and lungs were analyzed. The nuclear factor kappa B (NF-kappaB) activation in pancreatic tissue was measured using a sensitive RelA enzyme-linked immunosorbent assay.Treatment with recombinant Hsp70 to wild-type mice in CIP resulted in significant aggravation of inflammation in pancreas, elevated levels of serum cytokines, up-regulation of pulmonary MPO activity and increase of lung tissues TNF-alpha concentrations. In contrast, treatment with Hsp70 to TLR4-deficient mice had little effect on serum cytokines levels, pancreatic inflammation, pulmonary MPO activity and TNF-alpha concentrations.The results suggest that extracellular Hsp70 might induce systemic inflammatory response syndrome (SIRS)-like response in vivo and TLR4 might be involved in the Hsp70-mediated activation of inflammatory reaction in the progression of CIP without infection.
2008FLN29 deficiency reveals its negative regulatory role in the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like helicase signaling pathway.J Biol ChemFLN29 was identified as an interferon (IFN)-inducible gene, and it has been shown to suppress Toll-like receptor 4-mediated NF-kappaB activation by binding to TRAF6. To elucidate the physiological roles of FLN29, we generated FLN29-deficient mice. FLN29 deficiency resulted in hyper-response to LPS both in vivo and in vitro, demonstrating the negative regulatory role of FLN29 in TLR4 signaling. Furthermore, we found that FLN29(-/-) mice exhibited increased susceptibility to poly(I:C)-induced septic shock compared with WT mice. FLN29(-/-) fibroblasts were highly resistant to vesicular stomatitis virus infection, and these cells produced more IFN-beta than WT cells did in response to not only intracellular poly(I:C) but also overexpression of IPS-1. Forced expression of FLN29 inhibited the IPS-1-dependent activation of both NF-kappaB and IRF3. We also found that FLN29 could interact with TRIF, IPS-1, TRAF3, and TRAF6. Together, these results suggest that FLN29, in addition to playing a negative regulatory role in the TLR4 signaling pathway, negatively regulates the RIG-I-like helicase signaling pathway at the level of IPS-1/TRAF6 and IPS-1/TRAF3 complexes.
2008Differential effects of GM-CSF and G-CSF on infiltration of dendritic cells during early left ventricular remodeling after myocardial infarction.J ImmunolSeveral lines of evidence suggest that the immune activation after myocardial infarction (MI) induces secondary myocardial injury. Although dendritic cells (DC) are potent regulators of immunity, their role in MI is still undetermined. We investigated the effect of DC modulation by CSF on left ventricular (LV) remodeling after MI. MI was induced by ligation of the left coronary artery in male Wistar rats. G-CSF (20 microg/kg/day, MI-G, n = 33), a GM-CSF inducer (romurtide, 200 microg/kg/day, MI-GM, n = 28), or saline (MI-C, n = 55) was administered for 7 days. On day 14, MI-G animals had higher LV max dP/dt and smaller LV dimensions, whereas MI-GM animals had lower LV max dP/dt and larger LV dimensions than did MI-C animals, despite similar infarct size. In MI-C, OX62(+) DC infiltrated the infarcted and border areas, peaking on day 7. Bromodeoxyuridine-positive DC were observed in the border area during convalescence. Infiltration by DC was decreased in MI-G animals and increased in MI-GM animals compared with MI-C (p < 0.05). In the infarcted area, the heat shock protein 70, TLR2 and TLR4, and IFN-gamma expression were reduced in MI-G, but increased in MI-GM in comparison with those in MI-C animals. IL-10 expression was higher in MI-G and lower in MI-GM than in MI-C animals. In conclusion, G-CSF improves and GM-CSF exacerbates early postinfarction LV remodeling in association with modulation of DC infiltration. Suppression of DC-mediated immunity could be a new strategy for the treatment of LV remodeling after MI.
2008Heat shock protein-antigen fusions lose their enhanced immunostimulatory capacity after endotoxin depletion.Mol ImmunolHeat shock proteins (HSPs) induce cross-presentation of antigens by dendritic cells (DC) as well as DC maturation. These properties make HSP antigen complexes good candidates to prime CD8 T cell responses against tumor-associated antigens. In this study, we analyzed four different members of the HSP70 family fused to a fragment of ovalbumin (OVA) as a model tumor antigen. E. coli-derived recombinant HSP70-OVA fusion proteins efficiently primed antigen-specific cytotoxic T cells in short-term in vivo immunization assays. Because of concerns that the adjuvant effect of HSPs may be due to endotoxin contamination, we studied this issue in detail. Induction of OVA-specific cytotoxicity was significantly decreased in mice deficient for the LPS receptor, TLR4. After careful removal of endotoxins, immunization with HSP70-OVA failed to prime cytotoxic T cell responses. However, we obtained strong in vivo kill responses when endotoxin-depleted HSP70-OVA was used in combination with the TLR9 ligand CpG oligodeoxynucleotide 1668. Importantly, prophylactic and therapeutic treatment with endotoxin-depleted HSP70-OVA together with CpG significantly delayed the outgrowth of OVA-expressing B16 melanoma cells. However, we were unable to detect significant differences in the magnitudes of immune responses against endotoxin-depleted recombinant OVA vs. endotoxin-depleted HSP70-OVA fusion protein. Thus, immunization with recombinant HSP70-antigen fusion protein does not provide an advantage over recombinant antigen alone when combined with a suitable adjuvant. Altogether, our data suggest that the adjuvant effect of the HSP70 part of the fusion protein is completely lost after endotoxin removal.
2008Unique properties of the chicken TLR4/MD-2 complex: selective lipopolysaccharide activation of the MyD88-dependent pathway.J ImmunolDuring evolution, mammals have evolved a powerful innate immune response to LPS. Chickens are much more resistant to LPS-induced septic shock. Herein we report that chickens sense LPS via orthologs of mammalian TLR4 and myeloid differentiation protein-2 (MD-2) rather than the previously implicated chicken TLR2 isoform type 2 (chTLR2t2) receptor. Cloning and expression of recombinant chTLR4 and chMD-2 in HeLa 57A cells activated NF-kappaB at concentrations of LPS as low as 100 pg/ml. Differential pairing of chicken and mammalian TLR4 and MD-2 indicated that the protein interaction was species-specific in contrast to the formation of functional human and murine chimeric complexes. The chicken LPS receptor responded to a wide variety of LPS derivatives and to the synthetic lipid A compounds 406 and 506. The LPS specificity resembled the functionality of the murine rather than the human TLR4/MD-2 complex. Polymorphism in chTLR4 (Tyr(383)His and Gln(611)Arg) did not influence the LPS response. Interestingly, LPS consistently failed to activate the MyD88-independent induction of IFN-beta in chicken cells, in contrast to the TLR3 agonist poly(I:C) that yielded a potent IFN-beta response. These results suggest that chicken lack a functional LPS-specific TRAM-TRIF (TRIF-related adapter molecule/TIR-domain-containing adapter-inducing IFN-beta) signaling pathway, which may explain their aberrant response to LPS compared with the mammalian species.
2009Acute stress-induced colonic tissue HSP70 expression requires commensal bacterial components and intrinsic glucocorticoid.Brain Behav ImmunInduction of heat shock protein (HSPs) has a protective effect in cells under stress. Physical stressors, such as restraint, induce HSPs in colonic tissue in vivo, but the mechanism of HSP induction is not yet clear. Because commensal bacteria support basal expression of colon epithelial HSP70, we postulated that stress responses may enhance the interaction of commensal bacteria and the colonic tissue. Restraining C57BL/6 mice for 2h effectively induced HSP70 in colonic epithelia. Both blockade of stress-induced glucocorticoid by RU486 or elimination of commensal bacteria by antibiotics independently abrogated restraint-induced HSP70 augmentation. Oral administration of LPS to commensal-depleted mice restored restraint-induced HSP70 augmentation. Because TLR4 expression was absent from the epithelial surface, and was limited to lamina propria and muscularis externa, we examined how LPS reaches the lamina propria. Alexa-LPS administered in the colonic lumen was only detected in the lamina propria of the restrained mice. Expression of the tight junction component ZO-1 in the epithelia, which regulates the passage of luminal substances through the epithelia, was reduced after restraint, but reversed by RU486. In conclusion, HSP70 induction in colonic epithelial cells under restraint requires both stress-induced glucocorticoid and luminal commensal bacteria, and LPS plays a significant role. Glucocorticoid-dependent attenuation of epithelial tight junction integrity may facilitate the access of LPS into the lamina propria, where TLR4, known to be required for HSP70 induction, is abundantly expressed. Sophisticated regulation of colonic protection against stressors involving the general stress response and the luminal environment has been demonstrated.
2008Lipopolysaccharide activates NF-kappaB by TLR4-Bcl10-dependent and independent pathways in colonic epithelial cells.Am J Physiol Gastrointest Liver PhysiolIn colonic epithelium, one of the pathways of lipopolysaccharide (LPS) activation of NF-kappaB and IL-8 is via Toll-like receptor (TLR)4, MyD88, IRAK1/4, and B-cell CLL/lymphoma 10 (Bcl10). However, this innate immune pathway accounts for only approximately 50% of the NF-kappaB activation, so additional mechanisms to explain the LPS-induced effects are required. In this report, we identify a second pathway of LPS-induced stimulation, mediated by reactive oxygen species (ROS), in human colonic epithelial tissue cells in tissue culture and in ex vivo mouse colonic tissue. Measurements of IL-8, KC, Bcl10, phospho-IkappaBalpha, nuclear NF-kappaB, and phosphorylated Hsp27 were performed by ELISA. The TLR4-Bcl10 pathway was inhibited by Bcl10 siRNA and in studies with colonic tissue from the TLR4-deficient mouse. The ROS pathway was inhibited by Tempol, a free radical scavenger, or by okadaic acid, an inhibitor of Hsp27 dephosphorylation by protein phosphatase 2A (PP2A). The ROS pathway was unaffected in the TLR4-deficient tissue or by silencing of Bcl10. The combination of exposure to the free radical scavenger Tempol and of TLR4 or Bcl10 suppression was required to completely inhibit the LPS-induced activation. The ROS pathway was associated with dephosphorylation of Hsp27. LPS appears to activate both the regulatory component of the IkappaBalpha-kinase (IKK) signalosome through Bcl10 interaction with Nemo (IKKgamma) and the catalytic component through Hsp27 interaction with IKKbeta. Since LPS exposure is associated with septic shock and the systemic inflammatory response syndrome, distinguishing between these two pathways of LPS activation may facilitate new approaches to prevention and treatment.
2008TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis.J Leukoc BiolFrancisella tularensis is the causative agent of tularemia, a severe, debilitating disease of humans and other mammals. As this microorganism is also classified as a "category-A pathogen" and a potential biowarfare agent, there is a need for an effective vaccine. Several antigens of F. tularensis, including the heat shock protein DnaK, have been proposed for use in a potential subunit vaccine. In this study, we characterized the innate immune response of murine bone marrow-derived dendritic cells (DC) to F. tularensis DnaK. Recombinant DnaK was produced using a bacterial expression system and purified using affinity, ion-exchange, and size-exclusion chromatography. DnaK induced the activation of MAPKs and NF-kappaB in DC and the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12 p40, as well as low levels of IL-10. DnaK induced phenotypic maturation of DC, as demonstrated by an up-regulation of costimulatory molecules CD40, CD80, and CD86. DnaK stimulated DC through TLR4 and the adapters MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) that mediated differential responses. DnaK induced activation of MAPKs and NF-kappaB in a MyD88- or TRIF-dependent manner. However, the presence of MyD88- and TRIF-dependent signaling pathways was essential for an optimal, DnaK-induced cytokine response in DC. In contrast, DnaK induced DC maturation in a TRIF-dependent, MyD88-independent manner. These results provide insight about the molecular interactions between an immunodominant antigen of F. tularensis and host immune cells, which is crucial for the rational design and development of a safe and efficacious vaccine against tularemia.
2008A novel TLR4-binding peptide that inhibits LPS-induced activation of NF-kappaB and in vivo toxicity.Eur J PharmacolLipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria. It is a ligand for Toll-like receptor 4 (TLR4), which plays an essential role in innate immunity. Macrophages and dendritic cells exposed to LPS overproduce proinflammatory mediators, leading to septic shock. In this study, we screened for peptides that associate with TLR4 with a yeast two-hybrid screen using the human TLR4 extracellular domain as bait. A peptide (STM28) isolated from the screen inhibited LPS-induced nuclear factor-kappaB (NF-kappaB) activation in human and mouse macrophage cells and interacted with TLR4 in yeast and mammalian cells. STM28 showed no inhibitory effects against NF-kappaB activation induced by TLR1/2, TLR3 and TLR9 ligands in a mouse macrophage cell line, RAW 264. In addition, STM28 suppressed LPS-induced tumor necrosis factor-alpha production by differentiated THP-1 cells. Moreover, LPS-induced lethality in d-galactosamine-sensitized mice was significantly repressed by STM28 in a dose-dependent manner. These results demonstrate that STM28 selectivity inhibits TLR4-induced macrophage activation, and suggest that STM28 may have utility as a novel therapeutic agent for Gram-negative bacterial sepsis.
2009Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects.Cell Stress ChaperonesOpen heart surgery is a unique model to study the interplay between cellular injury, regulation of inflammatory responses and tissue repair. Stress-inducible heat shock protein 70-kDa (Hsp70) provides a molecular link between these events. In addition to molecular chaperoning, Hsp70 exerts modulatory effects on endothelial cells and leukocytes involved in inflammatory networks. Hsp70 residing in the intracellular compartment is part of an inhibitory feedback loop that acts on nuclear factor kappaB (NF-kappaB). In contrast, extracellular Hsp70 is recognized by multiple germline-encoded immune receptors, e.g., Toll-like receptor (TLR) 2, TLR4, LOX-1, CD91, CD94, CCR5 and CD40. Hsp70 is thereby able to enhance chemotaxis, phagocytosis and cytolytic activity of innate immune cells and stimulate antigen-specific responses. These apparent contradictory pro- and anti-inflammatory effects of endogenous Hsp70 in the context of cardiac surgery are still not fully understood. An all-embracing model of the compartmentalized effects of endogenous Hsp70 in the orchestration of inflammatory responses in cardiac surgery is proposed.
2008Toxoplasma gondii-derived heat shock protein 70 induces lethal anaphylactic reaction through activation of cytosolic phospholipase A2 and platelet-activating factor via Toll-like receptor 4/myeloid differentiation factor 88.Microbiol ImmunolToxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) was proven to induce IFN-gamma-dependent lethal anaphylactic reaction in T. gondii-infected mice through an alternative PAF-mediated pathway, but not the classical immunoglobulin (Ig)E-dependent pathway. Although marked IFN-gamma production was observed by CD11b(+), CD11c(+), CD4(+) and CD8(+) splenocytes, CD11b(+) and CD11c(+) cells were shown to be the key effecter cells which generated pro-inflammatory lipid such as PAF and caused T.g.HSP70-induced anaphylactic reaction. In the present study, we found that the T.g.HSP70-induced anaphylactic reaction was not observed in TLR 4-deficient ((-/-)) mice, whereas it was observed in WT and TLR2(-/-) mice. The mRNA expression of PAF-AH, the main enzyme for PAF degradation, increased in T. gondii-infected WT and TLR2(-/-) but not in TLR4(-/-) mice after T.g.HSP70 injection. Furthermore, phosphorylation of cPLA(2), which is the key enzyme for pro-inflammatory lipid generation, was detected in CD11b(+) splenocytes of WT and TLR2(-/-) mice but not in TLR4(-/-) mice. Subsequently, cPLA(2) activation was suppressed by inhibiting the TLR4-directed p38 and p44/42 MAPK pathways. However, T.g.HSP70-induced anaphylactic reaction was observed in TRIF(-/-) mice, but not in MyD88(-/-) mice. These findings indicate the cPLA(2) activated-PAF production via TLR4/MyD88-dependent, but not TRIF-dependent, signaling pathway in T.g.HSP70-induced anaphylactic reaction in T. gondii-infected mice.
2008TLR4-induced IFN-gamma production increases TLR2 sensitivity and drives Gram-negative sepsis in mice.J Exp MedGram-negative bacterial infection is a major cause of sepsis and septic shock. An important inducer of inflammation underlying both syndromes is the cellular recognition of bacterial products through pattern recognition receptors (PRRs), including Toll-like receptors (TLRs). We identified a novel antagonistic mAb (named 1A6) that recognizes the extracellular portion of the TLR4-MD-2 complex. If applied to mice before infection with clinical isolates of Salmonella enterica or Escherichia coli and subsequent antibiotic therapy, 1A6 prevented otherwise fatal shock, whereas application of 1A6 after infection was ineffective. In contrast, coapplication of 1A6 and an anti-TLR2 mAb up to 4 h after infection with Gram-negative bacteria, in combination with the start of antibiotic therapy (mimicking clinical conditions), provided robust protection. Consistent with our findings in mice, dual blockade of TLR2 and TLR4 inhibited TNF-alpha release from human peripheral blood mononuclear cells upon Gram-negative bacterial infection/antibiotic therapy. Both murine splenocytes and human PBMCs released IFN-gamma in a TLR4-dependent manner, leading to enhanced surface TLR2 expression and sensitivity for TLR2 ligands. Our results implicate TLR2 as an important, TLR4-driven sensor of Gram-negative bacterial infection and provide a rationale for blockade of both TLRs, in addition to antibiotic therapy for the treatment of Gram-negative bacterial infection.
[The role of TLR4 receptor in the stress response of lymphocytes].BiofizikaIn vitro effects of low-level electromagnetic waves (8.18 GHz, frequency swings within 1 s, intensity 1 microW/cm, exposure for 1 h) and low-energy laser light (He-Ne laser with 632.8 nm, 0.2 mW/cm, dose 1.2 x 10(-2) J/cm2) on the expression of receptor protein TLR4, which is known as a part of the system for microbal toxin recognition, were studied in mouse lymphocytes. In addition, TLR4 expression was examined in situations when stress responses to low-level nonionizing radiation were modified by the antibiotic geldanamycin, which suppresses the activity of the heat shock protein Hsp90. It was found that low-level microwaves significantly raised the amount of TLR4; in contrast, laser light decreased the expression of the receptor in lymphocytes. In cells pretreated with geldanamycin, the TLR4 expression in irradiated cells was reduced to minimum levels, much lower than control values. The results showed that TLR4, which is involved in specific binding of toxin from gram-negative bacteria, can regulate cell responses to signals of other origin, in particular to nonionizig radiation, including low-level microwaves and laser light.
2008Toll-like receptor 4-mediated growth of endometriosis by human heat-shock protein 70.Hum ReprodWe investigated the role of human heat-shock protein 70 (Hsp70) in Toll-like receptor 4 (TLR4)-mediated growth of endometriosis.TLR4 expression was examined in macrophages (M) isolated in primary culture from the peritoneal fluid of women with and without endometriosis. The production of a number of macromolecules by non-treated M, Hsp70-treated M and after treatment with anti-TLR4 antibody was examined by enzyme linked immunosorbent assay (ELISA). The single and combined effects of Hsp70 and lipopolysaccharide (LPS) on the growth of endometrial stromal cells were analyzed by 5-bromo-2-deoxyuridine (BrdU) incorporation study. Hsp70 levels in eutopic and ectopic endometria were measured by ELISA.TLR4 was detected in isolated M at protein and gene level. Hsp70 (10 microg/ml) significantly stimulated the production of hepatocyte growth factor, vascular endothelial cell growth factor, interleukin-6 and tumor necrosis factor alpha by M derived from women with endometriosis compared with M derived from women with no endometriosis (P < 0.05 for each). This effect of Hsp70 was abrogated after pretreatment of M with anti-TLR4 antibody. BrdU incorporation indicated that Hsp70 significantly enhanced the growth of endometrial stromal cells ( approximately 50% increase) from women with endometriosis compared to non-treated cells. A synergistic effect on cell proliferation was observed between exogenous Hsp70 and LPS and this was significantly suppressed by pretreatment of cells with anti-TLR4 antibody (P < 0.05). Tissue levels of Hsp70 were significantly higher in the eutopic endometria (P < 0.05) and opaque red lesions (P < 0.01) derived from women with endometriosis than from other peritoneal lesions or from women with no endometriosis.A prominent stress reaction was observed in blood-filled opaque red peritoneal lesions. Human Hsp70 induces pelvic inflammation and may be involved in TLR4-mediated growth of endometrial cells derived from women with endometriosis.
2008Association of Toll-like receptor 4 gene polymorphisms with normal tension glaucoma.Invest Ophthalmol Vis SciToll-like receptor 4 (TLR4) is a transmembrane receptor that mediates immune responses to exogenous and endogenous ligands and interacts with heat shock proteins, which are reportedly involved in normal tension glaucoma (NTG). This study was undertaken to investigate whether TLR4 polymorphisms are associated with NTG.Two hundred fifty Japanese patients with NTG and 318 Japanese healthy control subjects were recruited. Eight single-nucleotide polymorphisms (SNPs) in the TLR4 gene were genotyped, and allelic and phenotypic diversity was assessed between cases and control subjects.Strong linkage disequilibrium was observed among all SNPs (D' >or= 0.85), which were located in one haplotype block. With respect to allelic diversity, the minor allele of three SNPs (rs10759930, rs1927914, and rs7037117) carried a significantly increased risk of NTG. With regard to genotypic diversity, individuals with the minor allele of six SNPs (rs10759930, rs1927914, rs1927911, rs12377632, rs2149356, and rs7037117) had a 1.47- to 1.65-fold increased risk of NTG. rs7037117, located in the 3'-untranslated region of TLR4, was most strongly associated with NTG, and when incorporated into a haplotype with rs10759930, the strongest association was detected (P = 0.0038, P(c) = 0.0095).Multiple SNPs in the TLR4 gene are associated with the risk of NTG. This finding suggests that the ligands and/or cytokines involved in the TLR4 signaling network may be risk factors for the development of NTG.
2008Cell surface molecular chaperones as endogenous modulators of the innate immune response.Novartis Found SympMammalian responses to bacterial products can lead to an uncontrolled inflammatory response that can be deadly for the host. It has been shown that the innate immune system employs at least three cell surface receptors, TLR4, CD14 and MD2, in order to recognize bacterial products. We have previously shown that heat shock proteins (HSPs) are also involved in the innate immune recognition. HSPs are a family of highly conserved proteins that act as molecular chaperones and assist in proper folding, assembly and intracellular trafficking of proteins. How HSPs reach the cell surface and how they are involved in the innate immune response still remain unclear. In the present study we investigated their association with the TLR4/CD14/MD2 complex in response to bacterial products and provide evidence that the Hsp70 and Hsp90 associate with TLR4 on the cell surface in response to stimulation by bacterial products. These associations seem to take place within lipid rafts. The addition of exogenous recombinant Hsp70 to cells in vitro results in a dose-responsive inhibition of the inflammatory signal cascade and cytokine production. Our studies reveal that HSPs may play an important role as endogenous regulators of the innate immune response.
2008Immunogenic cancer cell death: a key-lock paradigm.Curr Opin ImmunolPhysiological cell death, which occurs as a continuous byproduct of cellular turnover, is non-immunogenic or even tolerogenic, thereby avoiding autoimmunity. By contrast, cancer cell death elicited by radiotherapy and some chemotherapeutic agents such as anthracyclines is immunogenic. Recent data suggest that innate and cognate immune responses elicited by such anti-cancer agents are required for an optimal therapeutic outcome, underscoring the clinical relevance of immunogenic cell death. Here we discuss the concept that immunogenic death involves changes in the composition of the cell surface, as well as the release of soluble immunogenic signals that occur in a defined temporal sequence. This 'key' then operates on a series of receptors expressed by dendritic cells (DC, the 'lock') to allow for the presentation of tumor antigens to T cells and for the initiation of a productive immune response. Immunogenic cell death is characterized by the early cell surface exposure of chaperones including calreticulin and/or heat shock proteins, which determine the uptake of tumor antigens and/or affect DC maturation. Moreover, the late release of High mobility group box 1 (HMGB1), which acts on toll-like receptor 4 (TLR4), is required for optimal presentation of antigens from dying tumor cells. Nonetheless, numerous details on the molecular events that define immunogenicity remain to be defined, both at the level of the dying cancer cells and at the level of the responding innate effectors.
2008Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction.J Cereb Blood Flow MetabIn the present study, we observed the expression of toll-like receptor 4 (TLR4) and its downstream signal pathway in peripheral blood monocytes (PBMs) from patients with acute cerebral infarct (ACI). The expression of TLR4 and MyD88 by PBMs was determined by flow cytometry and reverse transcriptase-polymerase chain reaction, and nuclear factor-kappaB (NF-kappaB) activity was detected by electrophoretic mobility shift assay. Ischemia/reperfusion injury-induced cerebral edema, infarction area, and neurologic impairment scores were determined in MyD88 gene knockout mice. The results indicated a significant increase in circulating TLR4(+) monocytes in ACI patients as compared with the control group and the transient ischemia attack (TIA) group. This change paralleled an elevation in TLR4mRNA transcription and serum tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 in the ACI and TIA groups. Correlation analysis showed TLR4 expression to significantly correlate with cytokine levels and stroke severity. MyD88mRNA differed insignificantly among the three groups. Compared with wild-type mice, 6 h of cerebral ischemia followed by 24 h of reperfusion did not significantly change cerebral edema, cerebral infarction area, and neurologic impairment scores in MyD88 gene knockout mice. Compared with the control group, serum heat shock protein (HSP) 60 increased significantly in the ACI and TIA groups, leading to NF-kappaB activation in TLR4/CD14-transfected HEK293 cells. It is suggested that upregulated TLR4 expression on PMBs may act as one of the peripheral mechanisms of inflammatory injury after ACI. Moreover, circulating HSP60 may be a ligand for TLR4, which is involved in the peripheral mechanism of inflammatory injury after ACI, possibly through an MyD88-independent signal pathway.
2008Activation of hepatocytes by extracellular heat shock protein 72.Am J Physiol Cell PhysiolHeat shock protein (HSP) 72 is released by cells during stress and injury. HSP-72 also stimulates the release of cytokines in macrophages by binding to Toll-like receptors (TLR) 2 and 4. Circulating levels of HSP-72 increase during hepatic ischemia-reperfusion injury. The role of extracellular HSP-72 (eHSP-72) in the injury response to ischemia-reperfusion is unknown. Therefore, the objective of the present study was to determine whether eHSP-72 has any direct effects on hepatocytes. Primary mouse hepatocytes were treated with purified human recombinant HSP-72. Conditioned media were evaluated by ELISA for the cytokines, TNF-alpha, IL-6, and macrophage inflammatory protein 2 (MIP-2). Stimulation of hepatocytes with eHSP-72 did not induce production of TNFalpha or IL-6 but resulted in dose-dependent increases in MIP-2 production. To evaluate the pathway responsible for this response, expression of TLR2 and TLR4 was confirmed on hepatocytes by immunohistochemistry. Hepatocyte production of MIP-2 was significantly decreased in hepatocytes obtained from TLR2 or TLR4 knockout mice. MIP-2 production was found to be partially dependent on NF-kappaB because inhibition of NF-kappaB with Bay 11-7085 significantly decreased eHSP-72-induced MIP-2 production. Inhibitors of p38 mitogen-activated protein kinase or c-Jun NH(2)-terminal kinase had no effect on production of MIP-2 induced by eHSP-72. The data suggest that eHSP-72 binds to TLR2 and TLR4 on hepatocytes and signals through NF-kappaB to increase MIP-2 production. The fact that eHSP-72 did not increase TNF-alpha or IL-6 production may be indicative of a highly regulated signaling pathway downstream from TLR.
2008Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases.Pharm ResSepsis remains the most common cause of death in intensive care units in the USA, with a current estimate of at least 750,000 cases per year, and 215,000 deaths annually. Despite extensive research still we do not quite understand the cellular and molecular mechanisms that are involved in triggering and propagation of septic injury. Endotoxin (lipopolysaccharide from Gram-negative bacteria, or LPS) has been implicated as a major cause of this syndrome. Inflammatory shock as a consequence of LPS release remains a serious clinical concern. In humans, inflammatory responses to LPS result in the release of cytokines and other cell mediators from monocytes and macrophages, which can cause fever, shock, organ failure and death. A number of different approaches have been investigated to try to treat and/or prevent the septic shock associated with infections caused by Gram-negative bacteria, including blockage of one or more of the cytokines induced by LPS. Recently several novel amphipathic compounds have been developed as direct LPS antagonists at the LPS receptor, TLR4. This review article will outline the current knowledge on the TLR4-LPS synthesis and discuss the signaling, in vitro pre-clinical and in vivo clinical evaluation of TLR4 antagonists and their potential use in sepsis and a variety of diseases such as atherosclerosis as well as hepatic and renal malfunction.
2008Murine bactericidal/permeability-increasing protein inhibits the endotoxic activity of lipopolysaccharide and gram-negative bacteria.J ImmunolRecognition of LPS by TLR4 initiates inflammatory responses inducing potent antimicrobial immunity. However, uncontrolled inflammatory responses can be detrimental. To prevent the development of septic shock during an infection with Gram-negative bacteria, the immune system has developed mechanisms to neutralize LPS by specialized proteins. In this study, we report the recombinant expression and functional characterization of the mouse homolog of human bactericidal/permeability-increasing protein (BPI). Purified recombinant mouse BPI was able to neutralize LPS-mediated activation of macrophages and to block LPS-dependent maturation of dendritic cells. Recombinant mouse BPI neutralized the capacity of Gram-negative bacteria to activate immune cells, but did not influence the stimulatory properties of Gram-positive bacteria. Unlike human BPI, mouse BPI failed to kill or inhibit the growth of Pseudomonas aeruginosa. Together, these data demonstrate that murine BPI is a potent LPS-neutralizing protein that may limit innate immune responses during Gram-negative infections.
2008Comparison of the immunostimulatory and proinflammatory activities of candidate Gram-positive endotoxins, lipoteichoic acid, peptidoglycan, and lipopeptides, in murine and human cells.Immunol LettThe role of lipopolysaccharide (LPS) in the pathogenesis of Gram-negative septic shock is well established. The corresponding proinflammatory and immunostimulatory molecule(s) on the Gram-positive bacteria is less well understood, and its identification and characterization would be a key prerequisite in designing specific sequestrants of the Gram-positive endotoxin(s). We report in this paper the comparison of NF-kappaB-, cytokine- and chemokine-inducing activities of the TLR2 ligands, lipoteichoic acid (LTA), peptidoglycan (PGN), and lipopeptides, to LPS, a prototype TLR4 agonist, in murine macrophage cell-lines as well as in human blood. In murine cells, di- and triacyl liopopeptides are equipotent in their NF-kappaB inducing activity relative to LPS, but elicit much lower proinflammatory cytokines. However, both LPS and the lipopeptides potently induce the secretion of a pattern of chemokines that is suggestive of the engagement of a TLR4-independent TRIF pathway. In human blood, although the lipopeptides induce p38 MAP kinase phosphorylation and CD11b upregulation in granulocytes at ng/ml concentrations, they do not elicit proinflammatory cytokine production even at very high doses; LTA, however, activates neutrophils and induces cytokine secretion, although its potency is considerably lower than that of LPS, presumably due to its binding to plasma proteins. We conclude that, in human blood, the pattern of immunostimulation and proinflammatory mediator production elicited by LTA parallels that of LPS.
2008Effect of plasma phospholipid transfer protein deficiency on lethal endotoxemia in mice.J Biol ChemLipopolysaccharides (LPS) are components of Gram-negative bacteria. The cellular response from the host to LPS is mediated through stepwise interactions involving the lipopolysaccharide-binding protein (LBP), CD14, and MD-2, which produces the rearrangement of TLR4. In addition to LBP, the lipid transfer/lipopolysaccharide-binding protein gene family includes the phospholipid transfer protein (PLTP). Here we show that the intravascular redistribution of LPS from the plasma lipoprotein-free fraction toward circulating lipoproteins is delayed in PLTP-deficient mice. In agreement with earlier in vitro studies, which predicted the neutralization of the endotoxic properties of LPS when associated with lipoproteins, significant increases in the plasma concentration of proinflammatory cytokines were found in PLTP-deficient as compared with wild type mice. Similar inflammatory damage occurred in tissues from wild type and PLTP-deficient mice 24 h after one single intraperitoneal injection of LPS but with a more severe accumulation of red blood cells in glomeruli of LPS-injected PLTP-deficient mice. Complementary ex vivo experiments on isolated splenocytes from wild type and PLTP-deficient mice further supported the ability of cell-derived PLTP to prevent LPS-mediated inflammation and cytotoxicity when combined with lipoprotein acceptors. Finally, PLTP deficiency in mice led to a significant increase in LPS-induced mortality. It is concluded that increasing circulating levels of PLTP may constitute a new and promising strategy in preventing endotoxic shock.
2008Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion.Am J Physiol Heart Circ PhysiolPrevious studies showed that Toll-like receptor 4 (TLR4) modulates the myocardial inflammatory response to ischemia-reperfusion injury, and we recently found that cytokines link TLR4 to postischemic cardiac dysfunction. Although TLR4 can be activated in cultured cells by endogenous agents including heat shock protein 70, how it is activated during myocardial ischemia-reperfusion is unknown. In the present study, we examined 1) whether heat shock cognate protein 70 (HSC70), which is constitutively expressed in the myocardium, is released during ischemia-reperfusion; 2) whether extracellular HSC70 induces the myocardial inflammatory response and modulates cardiac function; and 3) whether HSC70 exerts these effects via TLR4. We subjected isolated mouse hearts to global ischemia-reperfusion via the Langendorff technique. Immunoblotting and immunostaining detected the release of HSC70 from the myocardium during reperfusion. Treatment with an antibody specific to HSC70 suppressed myocardial cytokine expression and improved cardiac functional recovery after ischemia-reperfusion. Recombinant HSC70 induced NF-kappaB activation and cytokine expression and depressed myocardial contractility in a TLR4-dependent manner. These effects required the substrate-binding domain of HSC70. Fluorescence resonance energy transfer analysis of isolated macrophages demonstrated that extracellular HSC70 interacts with TLR4. Therefore, this study demonstrates for the first time that 1) the myocardium releases HSC70 during ischemia-reperfusion, 2) extracellular HSC70 contributes to the postischemic myocardial inflammatory response and to cardiac dysfunction, 3) HSC70 exerts these effects through a TLR4-dependent mechanism, and 4) the substrate-binding domain of HSC70 is required to induce these effects. Thus extracellular HSC70 plays a critical role in regulating the myocardial innate immune response and cardiac function after ischemia-reperfusion.
2008Mycobacterium tuberculosis heat shock protein 60 modulates immune response to PPD by manipulating the surface expression of TLR2 on macrophages.Cell MicrobiolThe T-helper (Th) 1 T-cell response to purified protein derivative (PPD) is known to be suppressed in tuberculosis patients which favours intracellular survival of the bacilli. We demonstrate that the Mycobacterium tuberculosis heat shock protein 60 (Mtbhsp60) plays an important role to skew the anti-PPD T-cell response towards the Th2 type when macrophages were used as antigen presenting cells. We found that the PPD-induced IL-12 p40 was downregulated in macrophages by Mtbhsp60. The Mtbhsp60 preferentially induced Toll-like receptor (TLR) 2 without affecting TLR4 expression on macrophages. Interaction of Mtbhsp60 with TLR2 resulted in significant suppression of nuclear c-rel and consequently IL-12 p40 levels in PPD-activated macrophages. Our findings reveal a unique role of the Mtbhsp60 favouring development of Th2 type response by upregulating surface expression of TLR2 on macrophages which could be a survival strategy adopted by the bacilli.
2008Release of heat shock protein 70 and the effects of extracellular heat shock protein 70 on the production of IL-10 in fibroblast-like synoviocytes.Cell Stress ChaperonesIt has recently been suggested that heat shock protein (Hsp) 70, an intracellular protein, can be released into the extracellular compartment and exert important immunomodulatory functions. Although elevated Hsp70 has been found in synovial fluid from patients with rheumatoid arthritis (RA), its sources and extracellular functions remain unclear. In this study, we explored whether stress response such as heat stress or exposure to tumor necrosis factor-alpha (TNF-alpha) could induce Hsp70 release from RA fibroblast-like synoviocytes (FLSs) and whether extracellular Hsp70 would stimulate cytokine production in RA FLSs. Cultured FLSs were obtained from patients with RA. The expression of intracellular Hsp70 was studied by Western blot. Hsp70 release and the production of interleukin (IL)-6, IL-8, and IL-10 by RA FLSs were studied by specific enzyme-linked immunosorbent assays. The levels of Toll-like receptor (TLR) 2 and 4 mRNA and protein in FLSs were analyzed using reverse transcription-polymerase chain reaction and Western blotting. Treatment with sublethal heat shock or TNF-alpha results in the up-regulation of intracellular Hsp70 in FLSs and Hsp70 release from RA FLSs. In vitro studies show that extracellular Hsp70 can induce anti-inflammatory cytokine IL-10 production in FLSs. The mRNA and protein expression of TLR2 and TLR4 was demonstrated in FLSs, and TLR4 blocking abrogated the up-regulatory effects of Hsp70 on IL-10 production. Thus, these results lend support to the hypothesis that Hsp70 is actively released from FLSs in response to heat shock or TNF-alpha and Hsp70 may be a major paracrine/autocrine inducer of IL-10 production in FLSs via TLR4.
2008The functional variant (Asp299gly) of toll-like receptor 4 (TLR4) influences TLR4-mediated cytokine production in rheumatoid arthritis.J RheumatolTo investigate functional consequences of the Toll-like receptor 4 (TLR4) variant (Asp299Gly) in rheumatoid arthritis (RA).Peripheral blood mononuclear cells from 28 patients with RA carrying or not carrying the TLR4 variant were incubated with lipopolysaccharide (LPS) and heat shock protein B8 (HSPB8). Concentrations of interleukin 6 (IL-6), tumor necrosis factor-alpha(TNF-alpha), and IL-10 were determined along with TLR4 and CD14 expression.TLR4 expression was similar in patients carrying or not carrying the variant. In contrast, both LPS and HSPB8 resulted in significantly lower secretion of IL-6, TNF-alpha, and IL-10 in those who carried the variant, whereas the frequency of CD14+ cells was higher in these individuals.TLR4 variant clearly reduces its potency to mediate signaling. Correction for CD14+ cells is necessary in comparable experiments.
2008Role of toll-like receptors in immune responses to chlamydial infections.Curr Pharm DesChlamydiae are important human pathogens which are leading causative agents for a variety of disease conditions including ocular, respiratory and sexually transmitted diseases, thus causing significant morbidity worldwide. Many of the human diseases caused by Chlamydia species are considered to be immunopathologically mediated. Toll like receptors (TLRs) have emerged as one of the major components of the immune system. Recognition of pathogen associated molecular patterns (PAMPs) by TLRs results in the activation of signaling events that induce the expression of effector molecules such as cytokines and chemokines which control the activation of adaptive immune responses. The precise immune mechanisms involved in resistance or pathogenesis to chlamydial infection, especially in the TLR signaling and downstream events during the innate phase of infection initiating the adaptive immune responses remains largely unknown. This review focuses on elaborating the current knowledge on the role of TLRs in immune responses to chlamydial infection. Although chlamydial components like lipopolysaccharide (LPS) and chlamydial heat shock protein 60 (cHSP60) are recognized by TLR4, the intact organisms stimulates the innate immune cells through TLR2, which also plays an important role as a PRR for Chlamydia. While the individual role of different TLRs such as TLR2, TLR4 and TLR9 in chlamydial infection is becoming delineated, studies have demonstrated the essential role of the TLR adapter molecule MyD88 in the generation of immune responses to Chlamydia infection. Given that there is no effective vaccine available for Chlamydia till date, a better understanding of the immunological and molecular mechanisms mediated by TLRs will greatly aid in possibly exploiting these molecules as immunotherapeutic targets.
2008A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS.J NeurosciInfection, ischemia, trauma, and neoplasia elicit a similar inflammatory response in the CNS characterized by activation of microglia, the resident CNS monocyte. The molecular events leading from CNS injury to the activation of innate immunity is not well understood. We show here that the intracellular chaperone heat shock protein 60 (HSP60) serves as a signal of CNS injury by activating microglia through a toll-like receptor 4 (TLR4)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathway. HSP60 is released from CNS cells undergoing necrotic or apoptotic cell death and specifically binds to microglia. HSP60-induced synthesis of neurotoxic nitric oxide by microglia is dependent on TLR4. HSP60 induces extensive axonal loss and neuronal death in CNS cultures from wild-type but not TLR4 or MyD88 loss-of-function mutant mice. This is the first evidence of an endogenous molecular pathway common to many forms of neuronal injury that bidirectionally links CNS inflammation with neurodegeneration.
2008Rarity of TLR4 Asp299Gly and Thr399Ile polymorphisms in the Korean population.Yonsei Med JActivation of the innate immune system and chronic low-grade inflammation are thought to be involved in the pathogenesis of atherosclerosis and also thought to be associated with type 2 diabetes and its complications. As a receptor for bacterial lipopolysaccharide and heat-shock proteins, Toll-like receptor 4 (TLR4) is one of the central regulators of the immune response. Recent studies have reported an association between TLR4 polymorphisms and diabetes and its complications in Caucasian populations.In this study, we analyzed the association between TLR4 gene polymorphisms in patients with features of type 2 diabetes and healthy controls in Korea. Two polymorphisms of the TLR4 gene (Asp299Gly and Thr399Ile) were examined in 225 diabetic patients and 153 healthy controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and single-strand conformation polymorphism (SSCP).No Asp299Gly or Thr399Ile mutations were detected in any of the 378 subjects. Seven subjects from each group who had slightly different SSCP patterns were selected for sequencing, but we found no TLR4 polymorphisms on Exon3. The Asp299Gly and Thr399Ile TLR4 gene polymorphisms were absent in both groups, which was similar to the results for Japanese and Chinese Han subjects.Our data and other Asian data suggest that a racial difference can be found in the frequency of the TLR4 polymorphism.
2008Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis.Crit CareInfection control depends on adequate microbe recognition and cell activation, yet inflammatory response may lead to organ dysfunction in sepsis. The aims of this study were to evaluate cell activation in the context of sepsis and its correlation with organ dysfunction.A total of 41 patients were prospectively enrolled: 14 with sepsis, 12 with severe sepsis and 15 with septic shock. A total of 17 healthy volunteers were included as a control group. Patients were admitted to the Intensive Care Units and Emergency Rooms of Hospital Sao Paulo (Federal University of Sao Paulo) and Hospital Santa Marcelina, Sao Paulo, Brazil. Toll-like receptor (TLR)2, TLR4, CD11b, CD11c and CD66b expression on neutrophil surfaces and oxidative metabolism measured by non-fluorescent dichlorofluorescein (DCFH) oxidation in neutrophils and monocytes, using whole blood, were evaluated using flow cytometry. Organ dysfunction was measured using the sepsis-associated organ failure assessment (SOFA) score.TLR2 expression on neutrophils was found to be downregulated in septic shock patients compared to healthy volunteers (p = 0.05). No differences were found in CD11b and CD11c expression. CD66b expression was increased in the patient group compared to the control group (p = 0.01). Neutrophil and monocyte oxidative burst was increased in septic patients compared to the control group at baseline and after stimulation with phorbol myristate acetate (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP), lipopolysaccharide (LPS) and Staphylococcus aureus (p < 0.001 and p < 0.01, respectively, for neutrophils and monocytes in all tested conditions). A strong correlation was observed between neutrophil and monocyte oxidative metabolism. A SOFA score of 7 discriminated patients between survivors and non-survivors (area under the curve for reactive oxygen species (ROS) was 0.78; p = 0.02). ROS generation in patients with sepsis and septic shock with SOFA scores > 7 was higher than in patients with SOFA scores < 7, both in neutrophils and monocytes. However, oxidative burst in patients with sepsis was as high as in septic shock.Surface receptors expression on neutrophils may be modulated across the continuum of sepsis, and enhanced or decreased expression may be found depending on the receptor considered. ROS generation is upregulated both in neutrophils and monocytes in septic patients, and it is differently modulated depending on the stage of the disease and the stimuli used.
2008Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism.Cardiovasc ResThe ability of lipopolysaccharide (LPS) pre-treatment to induce cardioprotection following ischaemia/reperfusion (I/R) has been well documented; however, the mechanisms have not been fully elucidated. LPS is a Toll-like receptor 4 (TLR4) ligand. Recent evidence indicates that there is cross-talk between the TLR and phosphoinositide 3-kinase/Akt (PI3K/Akt) signalling pathways. We hypothesized that activation of PI3K/Akt signalling plays a critical role in LPS-induced cardioprotection.To evaluate this hypothesis, we pre-treated mice with LPS 24 h before the hearts were subjected to ischaemia (45 min) and reperfusion (4 h). We examined activation of the PI3K/Akt/GSK-3beta signalling pathway. The effect of PI3K/Akt inhibition on LPS-induced cardioprotection was also evaluated. LPS pre-treatment significantly reduced infarct size (71.25%) compared with the untreated group (9.3+/-1.58 vs. 32.3+/-2.92%, P<0.01). Cardiac myocyte apoptosis and caspase-3 activity in LPS-pre-treated mice were significantly reduced following I/R. LPS pre-treatment significantly increased the levels of phospho-Akt, phospho-GSK-3beta, and heat shock protein 27 in the myocardium. Pharmacological inhibition of PI3K by LY294002 or genetic modulation employing kinase-defective Akt transgenic mice abolished the cardioprotection induced by LPS.These results indicate that LPS-induced cardioprotection in I/R injury is mediated through a PI3K/Akt-dependent mechanism.
2008IRAK-4 kinase activity-dependent and -independent regulation of lipopolysaccharide-inducible genes.Eur J ImmunolIRAK-4 kinase inactive (IRAK-4 KD) knock-in mice display defects in TLR- and IL-1 receptor signaling and are resistant to LPS-induced shock. In the present study we examined the LPS-induced response in IRAK-4 KD mice in more detail. We show that IRAK-4 kinase activity is required for certain aspects of TLR-mediated signaling but not for others. We found that IRAK-4 KD cells displayed reduced JNK and p38 signaling, while NF-kappaB was activated to a normal level but with delayed kinetics compared to wild-type cells. TLR4-mediated IRF3 activation was intact in these cells. Comprehensive analysis of expression of LPS-inducible genes by microarray demonstrated that IRAK-4 KD cells were severely impaired in the expression of many pro-inflammatory genes, suggesting their dependence on IRAK-4 kinase activity. In contrast, the expression of a subset of LPS-induced genes of anti-viral response was not affected by IRAK-4 kinase deficiency. Additionally, we demonstrate that LPS-activated early expression and production of some cytokines, e.g., TNF-alpha, is partially induced in the absence of IRAK-4 kinase activity. This suggests that the partially unaffected TLR4-mediated signaling could still drive expression of these genes in early phases and that IRAK-4 kinase activity is important for a more sustained anti-bacterial response.
2008Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12.Int ImmunolHeat shock protein (Hsp) 60 is thought to function as endogenous danger signal by activating professional antigen-presenting cells (APC) through toll-like receptor (TLR) 4 and CD14, a mechanism that is also used by bacterial LPS. We recently showed that Hsp60 binds LPS and enhances LPS-induced immune stimulation. On the other hand, we also observed immune stimulation by Hsp60 independent of LPS which was partially mediated by Hsp60-induced IFN alpha. Here, we study the mechanisms involved in immune stimulation mediated by endotoxin-free Hsp60. We show that T cell co-stimulation induced by LPS-free Hsp60 was independent of TLR4 and the TLR-associated myeloide differentiation factor 88-signaling pathway. LPS-free Hsp60 did not induce IL-6, IL-12 or tumor necrosis factor alpha production in APC nor were these cytokines needed for Hsp60-mediated T cell co-stimulation in the absence of LPS. In contrast to endotoxin-free Hsp60, T cell co-stimulation induced by LPS or Hsp60/LPS complexes strictly depended on IL-12 and functional TLR-4. Furthermore, we show that LPS-free Hsp60 enhances IFN alpha expression in APC and that this cytokine represents one important mediator in immune stimulation by Hsp60 in the absence of LPS. Taken together, we provide evidence that endotoxin-free Hsp60 and LPS or Hsp60/LPS complexes employ different signaling mechanisms to transduce co-stimulatory signals.
2008Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice.J ImmunolIn this study, the effect of Lactobacillus plantarum lipoteichoic acid (pLTA) on LPS-induced MAPK activation, NF-kappaB activation, and the expression of TNF-alpha and IL-1R-associated kinase M (IRAK-M) was examined. The expression of the pattern recognition receptor and the survival rate of mice were also examined. pLTA pretreatment inhibited the phosphorylation of ERK, JNK, and p38 kinase. It also inhibited the degradation of IkappaBalpha and IkappaBbeta, as well as the activation of the LPS-induced TNF-alpha factor in response to subsequent LPS stimulation. These changes were accompanied by the suppression of the LPS-induced expression of TLR4, NOD1, and NOD2, and the induction of IRAK-M, with a concurrent reduction of TNF-alpha secretion. Furthermore, the overexpression of pattern recognition receptors such as TLR4, NOD1, and NOD2 and the degradation of IRAK-M by transient transfection were found to reinstate the production of TNF-alpha after LPS restimulation. In addition, the i.p. injection of pLTA suppressed fatality, and decreased the level of TNF-alpha in the blood, in LPS-induced endotoxin shock mice. In conclusion, these data extend our understanding of the pLTA tolerance mechanism, which is related to the inhibition of LPS-induced endotoxin shock, and suggest that pLTA may have promise as a new therapeutic agent for LPS-induced septic shock.
2008Pneumococcal capsular polysaccharide is immunogenic when present on the surface of macrophages and dendritic cells: TLR4 signaling induced by a conjugate vaccine or by lipopolysaccharide is conducive.J ImmunolPreviously, we reported that a peptide, p458, from the sequence of the mammalian 60-kDa heat shock protein (hsp60) molecule can serve as a carrier in conjugate vaccines with capsular polysaccharide (CPS) molecules of various bacteria. These conjugate vaccines were effective injected in PBS without added adjuvants. We now report that p458 conjugated to pneumococcal CPS type 4 (PS4) manifests innate adjuvant effects: it stimulated mouse macrophages to secrete IL-12 and induced the late appearance of PS4 on the macrophage surface in a TLR4-dependent manner; PS4 alone or conjugated to other carriers did not stimulate macrophages in vitro. The injection of macrophages manifesting PS4 on the surface into mice induced long-term resistance to lethal Streptococcus pneumoniae challenge. The TLR4 ligand LPS could also induce the late appearance on the surface of unconjugated PS4 and resistance to challenge in injected mice. Resistance was not induced by macrophages containing only internalized PS4 or by pulsed macrophages that had been lysed. Glutaraldehyde-fixed macrophages pulsed with PS4 did induce resistance to lethal challenge. Moreover, bone marrow-derived dendritic cells activated by LPS and pulsed with unconjugated CPS were also effective in inducing resistance to lethal challenge. Resistance induced by the PS4-pulsed bone marrow-derived dendritic cell was specific for pneumococcal CPS serotypes (type 3 or type 4) and was associated with the induction of CPS-specific IgG and IgM Abs.
2008Association of reduced heme oxygenase-1 with excessive Toll-like receptor 4 expression in peripheral blood mononuclear cells in Behçet's disease.Arthritis Res TherToll-like receptors (TLRs) mediate signaling that triggers activation of the innate immune system, whereas heme oxygenase (HO)-1 (an inducible heme-degrading enzyme that is induced by various stresses) suppresses inflammatory responses. We investigated the interaction between TLR and HO-1 in an inflammatory disorder, namely Behçet's disease.Thirty-three patients with Behçet's disease and 30 healthy control individuals were included in the study. Expression levels of HO-1, TLR2 and TLR4 mRNA were semiquantitatively analyzed using a real-time PCR technique, and HO-1 protein level was determined by immunoblotting in peripheral blood mononuclear cells (PBMCs) and polymorphonuclear leukocytes. In some experiments, cells were stimulated with lipopolysaccharide or heat shock protein-60; these proteins are known to be ligands for TLR2 and 4.Levels of expression of HO-1 mRNA were significantly reduced in PBMCs from patients with active Behçet's disease, whereas those of TLR4, but not TLR2, were increased in PBMCs, regardless of disease activity. Moreover, HO-1 expression in PBMCs from patients with Behçet's disease was repressed in the presence of either lipopolysaccharide or heat shock protein-60.The results suggest that upregulated TLR4 is associated with HO-1 reduction in PBMCs from patients with Behçet's disease, leading to augmented inflammatory responses.
2008Expression of heat shock protein receptors on fibroblast-like synovial cells derived from rheumatoid arthritis-affected joints.Rheumatol IntWe examined the membrane expression of inducible Hsp70 and HSP receptors like TLR2, TLR4, CD14, CD36, CD40 and CD91 on fibroblast-like synovial cells (SC) derived from synovial tissue in 23 patients with rheumatoid arthritis (RA), who underwent synovectomy by using flow cytometric analysis. For comparison, autologous skin fibroblasts (SF) derived from the operation wound were tested. Significantly higher Hsp70 expression was found on synovial cells than on skin fibroblasts (median SC 21.4% x SF 5.0%, P < 0.001). Both synovial cells and skin fibroblasts expressed high levels of cell surface CD91 (median SC 80.2% x SF 79.2%), however, no or low levels of CD14, CD40, TLR2, TLR4 and CD36. Further, we observed high co-expression of CD91 and Hsp70 on RA synovial cells (median 18.6%), while skin fibroblasts showed only background Hsp70 expression (median 3.9%, P < 0.001). Since we demonstrated the high prevalence of inducible Hsp70 in RA synovial fluids, we speculate that Hsp70 might be captured onto the membrane of synovial cells from the extracellular space via the CD91 receptor. The significance of the Hsp70 interaction with synovial cells via CD91 remains undefined, but may mediate other non-immune purposes.
2007Geranylgeranylacetone ameliorates inflammatory response to lipopolysaccharide (LPS) in murine macrophages: inhibition of LPS binding to the cell surface.J Clin Biochem NutrWe investigated whether pretreatment with geranylgeranylacetone (GGA), a potent heat shock protein (HSP) inducer, could inhibit proinflammatory cytokine liberation and nitric oxide (NO) production in lipopolysaccharide (LPS)-treated murine macrophages. The levels of NO and tumor necrosis factor-alpha (TNF-alpha) released from murine macrophage RAW 264 cells were increased dose- and time-dependently following treatment with LPS (1 microg/ml). GGA (80 microM) treatment 2 h before LPS addition significantly suppressed TNF-alpha and NO productions at 12 h and 24 h after LPS, respectively, indicating that GGA inhibits activation of macrophages. However, replacement by fresh culture medium before LPS treatment abolished the inhibitory effect of GGA on NO production in LPS-treated cells. Furthermore, GGA inhibited both HSP70 and inducible NO synthase expressions induced by LPS treatment despite an HSP inducer. When it was examined whether GGA interacts with LPS and/or affects expression of Toll-like receptor 4 (TLR4) and CD14 on the cell surface, GGA inhibited the binding of LPS to the cell surface, while GGA did not affect TLR4 and CD14 expressions. These results indicate that GGA suppresses the binding of LPS to the cell surface of macrophages, resulting in inhibiting signal transduction downstream of TLR4.
2008Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent.J ImmunolAcute cigarette smoke exposure of the airways (two cigarettes twice daily for three days) induces acute inflammation in mice. In this study, we show that airway inflammation is dependent on Toll-like receptor 4 and IL-1R1 signaling. Cigarette smoke induced a significant recruitment of neutrophils in the bronchoalveolar space and pulmonary parenchyma, which was reduced in TLR4-, MyD88-, and IL-1R1-deficient mice. Diminished neutrophil influx was associated with reduced IL-1, IL-6, and keratinocyte-derived chemokine levels and matrix metalloproteinase-9 activity in the bronchoalveolar space. Further, cigarette smoke condensate (CSC) induced a macrophage proinflammatory response in vitro, which was dependent on MyD88, IL-1R1, and TLR4 signaling, but not attributable to LPS. Heat shock protein 70, a known TLR4 agonist, was induced in the airways upon smoke exposure, which probably activates the innate immune system via TLR4/MyD88, resulting in airway inflammation. CSC-activated macrophages released mature IL-1beta only in presence of ATP, whereas CSC alone promoted the TLR4/MyD88 signaling dependent production of IL-1alpha and pro-IL-1beta implicating cooperation between TLRs and the inflammasome. In conclusion, acute cigarette exposure results in LPS-independent TLR4 activation, leading to IL-1 production and IL-1R1 signaling, which is crucial for cigarette smoke induced inflammation leading to chronic obstructive pulmonary disease with emphysema.
2008The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14.J ImmunolChlamydiae components and signaling pathway(s) responsible for the production of proinflammatory cytokines by human monocytes/macrophages are not clearly identified. To this aim, Chlamydia trachomatis-inactivated elementary bodies (EB) as well as the following seven individual Ags were tested for their ability to induce the production of proinflammatory cytokines by human monocytes/macrophages and THP-1 cells: purified LPS, recombinant heat shock protein (rhsp)70, rhsp60, rhsp10, recombinant polypeptide encoded by open reading frame 3 of the plasmid (rpgp3), recombinant macrophage infectivity potentiator (rMip), and recombinant outer membrane protein 2 (rOmp2). Aside from EB, rMip displayed the highest ability to induce release of IL-1beta, TNF-alpha, IL-6, and IL-8. rMip proinflammatory activity could not be attributed to Escherichia coli LPS contamination as determined by the Limulus Amoebocyte lysate assay, insensitivity to polymyxin B (50 microg/ml), and different serum requirement. We have recently demonstrated that Mip is a "classical" bacterial lipoprotein, exposed at the surface of EB. The proinflammatory activity of EB was significantly attenuated in the presence of polyclonal Ab to rMip. Native Mip was able to induce TNF-alpha and IL-8 secretion, whereas a nonlipidated C20A rMip variant was not. Proinflammatory activity of rMip was unaffected by heat or proteinase K treatments but was greatly reduced by treatment with lipases, supporting a role of lipid modification in this process. Stimulating pathways appeared to involve TLR2/TLR1/TLR6 with the help of CD14 but not TLR4. These data support a role of Mip lipoprotein in pathogenesis of C. trachomatis-induced inflammatory responses.
2007[Study on the expressions and roles of renal heat shock protein 72 and Toll-like receptor 4 in hepatorenal syndrome in rat].Zhongguo Wei Zhong Bing Ji Jiu Yi XueTo explore the expressions and roles of renal heat shock protein 72(HSP72) and Toll-like receptor 4(TLR4) during development of hepatorenal syndrome in rat.Following bile duct ligation (BDL), a biliary cirrhosis and hepatorenal syndrome rat model was reproduced. The blood, the renal and hepatic tissues of the rats were examined at 1, 2, 4 and 6 weeks (6 rats were used in each week) after BDL. Blood was withdrawn from the femoral vein and centrifuged. The plasma concentrations of alanine aminotransferase (ALT), total bilirubin (TBil), blood urea nitrogen (BUN) and creatinine (Cr) were measured, and those of the HSP72 and tumor necrosis factor-alpha (TNF-alpha) were assessed with enzyme linked immunosorbent assay (ELISA). After weighing liver and kidney and expressions of HSP72 and TLR4 in renal tissue were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. All data were compared with control group (C group).The plasma levels of ALT, TBil at each week and of BUN, Cr at 4 and 6 weeks were increased significantly (all P<0.05). The concentration of plasma HSP72 and the expressions of renal HSP72 mRNA and protein were lower (especially at 4 and 6 weeks, both P<0.01) in BDL rats compared with sham operation rats. But the plasma TNF-alpha levels and renal TLR4 (mRNA and protein) expressions were significantly higher than those of sham operation rats (all P<0.01).Decreased expression of renal HSP72 may contribute to activate the TLR4- initiating inflammatory signal pathway, attributing partly to the pathogenesis of hepatorenal syndrome in biliary cirrhosis.
2008TNF-alpha induction by Pseudomonas aeruginosa lipopolysaccharide or slime-glycolipoprotein in human monocytes is regulated at the level of Mitogen-activated Protein Kinase activity: a distinct role of Toll-like receptor 2 and 4.Scand J ImmunolTNF-alpha production has a central role in the development and progression of Pseudomonas aeruginosa septic shock. We have previously shown that P. aeruginosa slime-glycolipoprotein (slime-GLP) is the most potent stimulant compared to P. aeruginosa lipopolysaccharide (LPS), for TNF-alpha production and NF-kB activation in human monocytes. Herein, we show that secretion of TNF-alpha by fresh human monocytes, induced by P. aeruginosa slime-GLP, LPS or viable bacteria, was paralleled by phosphorylation and/or activation of Mitogen-activated Protein Kinases (MAPKs) ERK1/2, p38 as well as c-Jun NH(2)-terminal kinase. TNF-alpha levels were significantly reduced by ERK1/2 inhibitor (PD98059), or p38 inhibitor (SB203580). Combination of both inhibitors almost abolished TNF-alpha induction. Pseudomonas aeruginosa slime-GLP differed from the P. aeruginosa-LPS only regarding the strength of p38 and ERK1/2 activation, with slime-GLP leading to a stronger activation of p38 and ERK1/2. Involvement of TLR2 and TLR4 for phosphorylation of p38 and ERK1/2 was shown using specific blocking anti-TLR2 and anti-TLR4 antibodies. Activation of both p38 and ERK1/2 induced by P. aeruginosa slime-GLP was dramatically reduced in the presence of anti-TLR2 and to a lesser degree in the presence of anti-TLR4, whereas the P. aeruginosa-LPS-induced stimulation was inhibited only in the presence of anti-TLR4. Our data show that P. aeruginosa viable bacteria, through slime-GLP, stimulate specific members of the MAPKs more efficiently than the P. aeruginosa-LPS, involving mainly TLR2.
2008Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide "sensing apparatus".Eur J ImmunolRecognition of bacterial lipopolysaccharide (LPS) by the innate immune system involves at least three receptor molecules: CD14, TLR4 and MD-2. Additional receptor components such as heat shock proteins, chemokine receptor 4 (CXCR4), or CD55 have been suggested to be part of this activation cluster; possibly acting as additional LPS transfer molecules. Our group has previously identified CXCR4 as a component of the "LPS-sensing apparatus". In this study we aimed to elucidate the role that CXCR4 plays in innate immune responses to LPS. Here we demonstrate that CXCR4 transfection results in responsiveness to LPS. Fluorescence correlation spectroscopy experiments further showed that LPS directly interacts with CXCR4. Our data suggest that CXCR4 is not only involved in LPS binding but is also responsible for triggering signalling, especially mitogen-activated protein kinases in response to LPS. Finally, co-clustering of CXCR4 with other LPS receptors seems to be crucial for LPS signalling, thus suggesting that CXCR4 is a functional part of the multimeric LPS "sensing apparatus".
The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock.J Cell Mol MedCompound K (C-K), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. Here, we describe a novel therapeutic role for C-K in the treatment of lethal sepsis through the modulation of Toll-like receptor (TLR) 4-associated signalling via glucocorticoid receptor (GR) binding. In mononuclear phagocytes, C-K significantly repressed the activation of TLR4/lipopolysaccharide (LPS)-induced NF-kappaB and mitogen-activated protein kinases (MAPKs), as well as the secretion of pro-inflammatory cytokines. However C-K did not affect the TLR3-mediated expression of interferon-beta or the nuclear translocation of IRF-3. C-K competed with the synthetic glucocorticoid dexamethasone for binding to GR and activated glucocorticoid responsive element (GRE)-containing reporter plasmids in a dose-dependent manner. In addition, the blockade of GR with either the GR antagonist RU486 or a siRNA against GR substantially reversed the anti-inflammatory effects of C-K. Furthermore, TLR4-dependent repression of inflammatory response genes by C-K was mediated through the disruption of p65/interferon regulatory factor complexes. Importantly, pre- or post-treatment with C-K significantly rescued mice from Gram-negative bacterial LPS-induced lethal shock by lowering their systemic inflammatory cytokine levels and by reversing the lethal sequelae of sepsis. Collectively, these results demonstrate that C-K, as a functional ligand of GR, regulates distinct TLR4-mediated inflammatory responses, and suggest a novel therapy for Gram-negative septic shock.
2008Early events in the recognition of danger signals after tissue injury.J Leukoc BiolThe systemic inflammatory response observed in the setting of overwhelming infection bears striking similarities to that observed in the setting of severe traumatic injury from a clinical and physiologic standpoint. Recent observations have demonstrated that these disparate clinical entities share common mediators on a molecular level. TLRs, specifically TLR4, and the endogenous molecule high-mobility group box 1 are among the mediators that are known to play a role in inflammation in the setting of sepsis. Evidence is accumulating that demonstrates that these mediators also play a role in the host response to tissue injury. Here, we highlight findings from the 7th World Conference on Trauma, Shock, Inflammation and Sepsis in Munich, Germany, in the context of this growing body of literature.
2008Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity.Biol ReprodThough gender-based differences in the development of protective or pathological adaptive host responses have been widely noted, it is becoming apparent that sex may also influence the early perception of microbial challenges and the generation of inflammatory immune responses. These differences may be due to the actions of reproductive hormones, and such a hypothesis is supported by the presence of receptors for these hormones in a variety of immune cell types. Androgens such as testosterone have been shown to decrease immune functions, including cytokine production. However, the mechanisms by which testosterone limits such responses remain undefined. In this study, we have investigated the acute effects of testosterone on the level of expression of a key trigger for inflammation and innate immunity, Toll-like receptor 4 (TLR4), on isolated mouse macrophages. We show that in vitro testosterone treatment of macrophages, generated in the absence of androgen, elicits a modest but significant decrease in TLR4 expression and sensitivity to a TLR4-specific ligand. In addition, we have studied the effect of in vivo removal of endogenous testosterone on TLR4 expression and endotoxin susceptibility. We report that orchidectomized mice were significantly more susceptible to endotoxic shock and show that macrophages isolated from these animals have significantly higher TLR4 cell surface expression than those derived from sham gonadectomized mice. Importantly, these effects were not apparent in orchidectomized animals that received exogenous testosterone treatment. As such, these data may represent an important mechanism underlying the immunosuppressive effects of testosterone.
2007Comparison of expression of heat-shock protein 60, Toll-like receptors 2 and 4, and T-cell receptor gammadelta in plaque and guttate psoriasis.J Cutan PatholPsoriasis is a chronic skin disease that appears to be autoimmune in nature. Recently, it is thought that microbial pathogens of skin can affect the pathogenesis of psoriasis by inducing autoimmunity. Heat-shock proteins (HSPs) are known to play an important role in immune and inflammatory responses of the skin including psoriasis. Recent studies have suggested that Toll-like receptors (TLR) 2, 4 and gammadelta T-cell receptors (TCR-gammadelta) may recognize HSP60 as a ligand and consequently activate the immune system.The biopsy specimens of 12 of guttate psoriasis, 12 of plaque psoriasis and five of normal skin were studied using immunohistochemical staining. The expressions of HSP60, TLR2 and TLR4 were evaluated using an immunostaining-intensity-distribution (IID) index and TCR-gammadelta positive cells were counted.The expression of HSP60 was significantly higher in guttate and plaque psoriasis than in normal skin. The expression of TLR4 was higher in guttate psoriasis than in plaque psoriasis and normal skin. The expression of TCR-gammadelta was higher in guttate and plaque psoriasis than in normal skin, but there was no correlation found between the expression of HSP60 and TLRs 2 and 4, or between that of HSP60 and TCR-gammadelta.HSP60 may be related to the pathogenesis of both guttate and plaque psoriasis and TLR4 may be related to the pathogenesis of guttate psoriasis.
2007Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism.J ImmunolHeat shock proteins are generally regarded as intracellular proteins acting as molecular chaperones; however, Hsp72 is also detected in the extracellular compartment. Hsp72 has been identified in the bronchoalveolar lavage fluid (BALF) of patients with acute lung injury. To address whether Hsp72 directly activated airway epithelium, human bronchial epithelial cells (16HBE14o-) were treated with recombinant Hsp72. Hsp72 induced a dose-dependent increase in IL-8 expression, which was inhibited by the NF-kappaB inhibitor parthenolide. Hsp72 induced activation of NF-kappaB, as evidenced by NF-kappaB trans-activation and by p65 RelA and p50 NF-kappaB1 binding to DNA. Endotoxin contamination of the Hsp72 preparation was not responsible for these effects. Next, BALB/c mice were challenged with a single intratracheal inhalation of Hsp72 and killed 4 h later. Hsp72 induced significant up-regulation of KC, TNF-alpha, neutrophil recruitment, and myeloperoxidase in the BALF. A similar challenge with Hsp72 in TLR4 mutant mice did not stimulate the inflammatory response, stressing the importance of TLR4 in Hsp72-mediated lung inflammation. Last, cultured mouse tracheal epithelial cells (MTEC) from BALB/c and TLR4 mutant and wild-type mice were treated ex vivo with Hsp72. Hsp72 induced a significant increase in KC expression from BALB/c and wild-type MTEC in an NF-kappaB-dependent manner; however, TLR4 mutant MTEC had minimal cytokine release. Taken together, these data suggest that Hsp72 is released and biologically active in the BALF and can regulate airway epithelial cell cytokine expression in a TLR4 and NF-kappaB-dependent mechanism.
2007TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock.J ImmunolOveractivation of the immune system upon acute bacterial infection leads to septic shock. Specific bacterial products potently stimulate immune cells via toll-like receptors (TLRs). Gram-negative bacteria induce a predominantly TLR4-driven signal through LPS release. To neutralize LPS signaling in experimental models of sepsis, we generated mAbs toward the TLR4/myeloid differentiation protein-2 (MD-2) complex. The binding properties of an array of selected rat mAbs differed in respect to their specificity for TLR4/MD-2 complex. The specificity of one such mAb, 5E3, to murine TLR4 was confirmed by its recognition of an epitope within the second quarter of the ectodomain. 5E3 inhibited LPS-dependent cell activation in vitro and prevented proinflammatory cytokine production in vivo following LPS challenge in a dose-dependent manner. Furthermore, 5E3 protected mice from lethal shock-like syndrome when applied using both preventative and therapeutic protocols. Most notably, in the colon ascendens stent peritonitis model of polymicrobial abdominal sepsis, administration of a single dose of 5E3 (50 mug) protected mice against mortality. These results demonstrate that neutralizing TLR4/MD-2 is highly efficacious in protecting against bacterial infection-induced toxemia and offers TLR4/MD-2 mAb treatment as a potential therapy for numerous clinical indications.
2008Systemic inflammation and end organ damage following trauma involves functional TLR4 signaling in both bone marrow-derived cells and parenchymal cells.J Leukoc BiolEndogenous damage-associated molecular pattern (DAMP) molecules are released from cells during traumatic injury, allowing them to interact with pattern recognition receptors such as the toll-like receptors (TLRs) on other cells and subsequently, to stimulate inflammatory signaling. TLR4, in particular, plays a key role in systemic and remote organ responses to hemorrhagic shock (HS) and peripheral tissue injury in the form of bilateral femur fracture. TLR4 chimeric mice were generated to investigate the cell lineage in which functional TLR4 is needed to initiate the injury response to trauma. Chimeric mice were generated by adoptive bone marrow (BM) transfer, whereby donor marrow was given to an irradiated host using reciprocal combinations of TLR4 wild-type (WT; C3H/HeOuJ) and TLR4 mutant (Mu; C3H/HeJ) mice. After a period of engraftment, chimeric mice were then subjected to HS or bilateral femur fracture. Control groups, including TLR4-WT mice receiving WT BM and TLR4-Mu mice receiving Mu BM, responded to injury in a similar pattern to unaltered HeOuJ and HeJ mice, and protection was afforded to those mice lacking functional TLR4. In contrast, TLR4-WT mice receiving Mu BM and TLR4-Mu mice receiving WT BM demonstrated intermediate inflammatory and cellular damage profiles. These data demonstrate that functional TLR4 is required in BM-derived cells and parenchymal cells for an optimal inflammatory response to trauma.
2007TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans.Proc Natl Acad Sci U S AInfectious diseases exert a constant evolutionary pressure on the genetic makeup of our innate immune system. Polymorphisms in Toll-like receptor 4 (TLR4) have been related to susceptibility to Gram-negative infections and septic shock. Here we show that two polymorphisms of TLR4, Asp299Gly and Thr399Ile, have unique distributions in populations from Africa, Asia, and Europe. Genetic and functional studies are compatible with a model in which the nonsynonymous polymorphism Asp299Gly has evolved as a protective allele against malaria, explaining its high prevalence in subSaharan Africa. However, the same allele could have been disadvantageous after migration of modern humans into Eurasia, putatively because of increased susceptibility to severe bacterial infections. In contrast, the Asp299Gly allele, when present in cosegregation with Thr399Ile to form the Asp299Gly/Thr399Ile haplotype, shows selective neutrality. Polymorphisms in TLR4 exemplify how the interaction between our innate immune system and the infectious pressures in particular environments may have shaped the genetic variations and function of our immune system during the out-of-Africa migration of modern humans.
2007The IFN-inducible GTPase LRG47 (Irgm1) negatively regulates TLR4-triggered proinflammatory cytokine production and prevents endotoxemia.J ImmunolLRG47/Irgm1, a 47-kDa IFN-inducible GTPase, plays a major role in regulating host resistance as well as the hemopoietic response to intracellular pathogens. LRG47 expression in macrophages has been shown previously to be stimulated in vitro by bacterial LPS, a TLR4 ligand. In this study, we demonstrate that induction of LRG47 by LPS is not dependent on MyD88 signaling, but rather, requires STAT-1 and IFN-beta. In addition, LRG47-deficient mice are highly susceptible to LPS, but not TLR2 ligand-induced shock, an outcome that correlates with enhanced proinflammatory cytokine production in vitro and in vivo. Further analysis revealed that LPS-stimulated LRG47-deficient macrophages display enhanced phosphorylation of p38, a downstream response associated with TLR4/MyD88 rather than IFN-beta/STAT-1 signaling. In contrast, LPS-induced phosphorylation of IFN regulatory factor-3 and expression of IFN-beta or the type I IFN-regulated genes, CCL5 and CCL10, were unaltered in LRG47(-/-) cells. Together, these observations indicate that in LPS-stimulated murine macrophages LRG47 is induced by IFN-beta and negatively regulates TLR4 signaling to prevent excess proinflammatory cytokine production and shock. Thus, our findings reveal a new host-protective function for this GTPase in the response to pathogenic encounter.
2007Common TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis.BMC Infect DisSeveral studies have investigated single nucleotide polymorphisms (SNPs) in candidate genes associated with sepsis and septic shock with conflicting results. Only few studies have combined the analysis of multiple SNPs in the same population.Clinical data and DNA from consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-alpha, (TNF-alpha), interleukin-1 beta (IL-1 beta), plasminogen activator-1 (PAI-1), urokinase plasminogen activator (uPA), CD14 and toll-like receptor 4 (TLR4) was done.Of 319 adults, 74% had sepsis, 19% had severe sepsis and 7% were in septic shock. No correlation between severity or outcome of sepsis was observed for the analyzed SNPs of TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 or TLR-4. In multivariate Cox proportional hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality.We did not find any association between TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis.
2008Influence of plasma cholesterol and triglyceride concentrations and eritoran (E5564) micelle size on its plasma pharmacokinetics and ex vivo activity following single intravenous bolus dose into healthy female rabbits.Pharm ResEritoran (E5564) is a glycophospholipid that acts as a toll-like receptor 4 (TLR4) antagonist that is being tested as a treatment for severe sepsis and septic shock. In the blood, eritoran binds to plasma lipoproteins altering its pharmacokinetic and pharmacodynamic (PD) effects in vivo. The purpose of this study was to determine the influence of changes in plasma cholesterol and triglyceride concentrations on the plasma pharmacokinetics and ex vivo activity of eritoran following single intravenous bolus dosing of eritoran to healthy female rabbits fed either a regular chow diet or a cholesterol-enriched diet. This was done with eritoran administered as stable micelle formulations of mean hydrodynamic diameters of 8 or 27 nm).Female New Zealand White rabbits were fed a standard diet for 7 days and then randomly assigned either a regular chow diet [regular-diet (n = 9)] or a cholesterol-enriched diet [cholesterol-diet (n = 12)] for an additional 7 days. Following feeding of these diets a single intravenous bolus dose of eritoran (0.5 mg/kg) formulated into either "small micelles" (8 nm in diameter) or "large micelles" (27 nm in diameter) was administered to regular-fed and cholesterol-fed rabbits. Serial blood samples were obtained prior to eritoran administration and at the following times post injection: 0.083 (5 min), 1, 2, 4, 8, 10, 24, 48 and 72 h. Plasma was analyzed for eritoran concentrations using LC/MS/MS. Total plasma cholesterol (TC) and triglyceride (TG) levels were quantified using enzymatic kits. Plasma eritoran pharmacokinetic (PK) parameters were estimated by non-compartmental analysis using the WinNonlin nonlinear estimation program. To analyze PD activity, whole blood obtained at 0.083 (5 min), 2, 24, 48 and 72 h following eritoran administration was assessed for ex vivo activity by measuring the ability of 1 and 10 ng/ml LPS to elicit TNF-alpha release.Total plasma cholesterol and triglyceride levels were significantly higher in cholesterol-fed rabbits compared to the rabbits fed a regular chow diet. Diet had no effect on the estimated plasma PK parameters. However, PD activity of both small and large micelle eritoran as measured by an ex vivo challenge dose of 1 ng/ml LPS was reduced in blood of cholesterol-fed rabbits compared to normal-fed rabbits. Comparison of PK parameters for small and large micelles indicated that small micelles had increased AUC(0-72 h), decreased plasma clearance and increased initial concentration (measured at 5 min post administration) compared to the large micelle formulation. Consistent with this observation, eritoran formulated into small micelles had significantly greater ex vivo activity than large micelles and was independent of TC and TG concentrations.These findings suggest that plasma pharmacokinetics and activity of eritoran maybe influenced by eritoran micelle size and plasma TC and TG concentrations.
2007Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells.Eur J ImmunolCirculating heat shock protein (HSP)-27 is associated with tumor progression and increased post-injury infection. Extracellular HSP-27 might alter monocyte (MO)-derived DC and/or MPhi function to mediate immunosuppression. HSP-27 treatment inhibited expression of CD1a and CD1b/c, antigen uptake, and allogeneic T cell induction (MLR) by IL-4 + GM-CSF-differentiated human DC while increasing some MPhi characteristics ( upward arrowCD14, upward arrowCD16, upward arrowCD163). MO cytokine receptor profiles elicited by 24-h exogenous HSP-27 treatment remained supportive of immature DC (iDC) emergence ( upward arrowIL-4R, downward arrowIL-6R, downward arrowM-CSFR). IL-10, IL-6, and M-CSF (which promote MPhi differentiation) were significantly increased in IL-4 + GM-CSF + HSP-27 MO-->iDC differentiation cultures. However, HSP-27 treatment during MO differentiation to DC increased programmed cell death ligand 1 coinhibitor and depressed CD86 costimulator expression in parallel to decreased iDC MLR activity. This suggested that increased MPhi differentiation was not solely responsible for HSP-27 reduction of differentiating DC activity. HSP-27 treatment actually depressed the phagocytic capacity of MO differentiated to MPhi by IL-10 or M-CSF culture. CD163 (hemoglobin receptor) expression was depressed on M-CSF + HSP-27 MO-derived MPhi. HSP-27-mediated inhibition of MO-->iDC differentiation was reversed by p38alpha & beta inhibitor (SB202190) addition or TLR4 receptor modulation. HSP-27 impaired appropriate MO-->iDC and MO-->MPhi differentiation modulating expression of receptors necessary for their proper functions. This suggests that endogenous HSP-27 has immunoregulatory activities which could contribute to immunopathology.
2007Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock.Nat MedTo identify new components that regulate the inflammatory cascade during sepsis, we characterized the functions of myeloid-related protein-8 (Mrp8, S100A8) and myeloid-related protein-14 (Mrp14, S100A9), two abundant cytoplasmic proteins of phagocytes. We now demonstrate that mice lacking Mrp8-Mrp14 complexes are protected from endotoxin-induced lethal shock and Escherichia coli-induced abdominal sepsis. Both proteins are released during activation of phagocytes, and Mrp8-Mrp14 complexes amplify the endotoxin-triggered inflammatory responses of phagocytes. Mrp8 is the active component that induces intracellular translocation of myeloid differentiation primary response protein 88 and activation of interleukin-1 receptor-associated kinase-1 and nuclear factor-kappaB, resulting in elevated expression of tumor necrosis factor-alpha (TNF-alpha). Using phagocytes expressing a nonfunctional Toll-like receptor 4 (TLR4), HEK293 cells transfected with TLR4, CD14 and MD2, and by surface plasmon resonance studies in vitro, we demonstrate that Mrp8 specifically interacts with the TLR4-MD2 complex, thus representing an endogenous ligand of TLR4. Therefore Mrp8-Mrp14 complexes are new inflammatory components that amplify phagocyte activation during sepsis upstream of TNFalpha-dependent effects.
2007Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome.Clin Vaccine ImmunolThe development of new protein subunit vaccines has stimulated the search for improved adjuvants to replace traditional aluminum-containing products. We investigated the adjuvant effects of a synthetic Toll-like receptor 4 (TLR4) agonist on vaccine efficacy in an experimental model of toxic shock syndrome. The TLR4 agonist E6020 has a simplified structure consisting of a hexa-acylated acyclic backbone. The vaccine examined is a recombinantly attenuated form of staphylococcal enterotoxin B (STEBVax). Using cells stably transfected with TLRs, E6020 transduced signals only through TLR4, suggesting monospecificity, while Escherichia coli 055:B5 lipopolysaccharide activated both the TLR2/6 heterodimer and TLR4. Coadministration of E6020 with STEBVax, by the intramuscular or intranasal route, induced significant levels of immunoglobulin G (IgG) in BALB/c mice. Further, increased IgG production resulted from the combination of E6020 with aluminum hydroxide adjuvant (AH). The antibody response to the vaccine coadministered with E6020 was a mixed Th1/Th2 response, as opposed to the Th2-biased response obtained with AH. Mice vaccinated with STEBVax coadministered with AH, TLR4 agonists, or a combination of both adjuvants were protected from toxic shock. Our data demonstrate the effectiveness of the synthetic TLR4 agonist E6020 as an alternative adjuvant for protein subunit vaccines that may also be used in combination with traditional aluminum-containing adjuvants.
2007Systemic inflammation and remote organ injury following trauma require HMGB1.Am J Physiol Regul Integr Comp PhysiolHigh-mobility group box 1 (HMGB1) is a 30-kDa DNA-binding protein that displays proinflammatory cytokine-like properties. HMGB1-dependent inflammatory processes have been demonstrated in models of sterile injury, including ischemia-reperfusion injury and hemorrhagic shock. Here, we tested the hypothesis that the systemic inflammatory response and associated remote organ injury that occur after peripheral tissue injury are highly dependent on HMGB1. Toll-like receptor 4 (TLR4) wild-type (WT) mice subjected to bilateral femur fracture after treatment with neutralizing antibodies to HMGB1 had lower serum IL-6 and IL-10 levels compared with mice treated with nonimmune control IgG. Similarly, compared with injured mice treated with control IgG, anti-HMGB1 antibody-treated mice had lower serum alanine aminotransferase levels and decreased hepatic and gut mucosal NF-kappaB DNA binding. TLR4 mutant (C3H/HeJ) mice subjected to bilateral femur fracture had less systemic inflammation and liver injury than WT controls. Residual trauma-induced systemic inflammation and hepatocellular injury were not ameliorated by treatment with a polyclonal anti-HMGB1 antibody, even though HMGB1 levels were transiently elevated just 1 h after injury in both WT and C3H/HeJ mice. Collectively, these data demonstrate a critical role for a TLR4-HMGB1 pathway in the initiation of systemic inflammation and end-organ injury following isolated peripheral tissue injury.
2007Brief, large tidal volume ventilation initiates lung injury and a systemic response in fetal sheep.Am J Respir Crit Care MedPremature infants are exposed to potentially injurious ventilation in the delivery room. Assessments of lung injury are confounded by effects of subsequent ventilatory support.To evaluate the injury response to a brief period of large tidal volume (Vt) ventilation, simulating neonatal resuscitation in preterm neonates.Preterm lambs (129 d gestation; term is150 d) were ventilated (Vt = 15 ml/kg, no positive end-expiratory pressure) for 15 minutes to simulate delivery room resuscitation, either with the placental circulation intact (fetal resuscitation [ FR]) or after delivery (neonatal resuscitation [NR]). After the initial 15 minutes, lambs received surfactant and were maintained with either ventilatory support (FR-VS and NR-VS) or placental support (FR-PS) for 2 hours, 45 minutes. A control group received no resuscitation and was maintained with placental support. Samples of bronchoalveolar lavage fluid, lung, and liver were analyzed.Inflammatory cells and protein in bronchoalveolar lavage fluid, heat shock protein-70 immunostaining, IL-1beta, IL-6, IL-8, monocyte chemotactic protein-1, serum amyloid A (SAA)-3, Toll-like receptor (TLR)-2, and TLR4 mRNA in the lungs were increased in the FR-PS group compared with control animals. There were further elevations in neutrophils, IL-6, and IL-8 mRNA in the FR-VS and NR-VS groups compared with FR-PS. SAA3, TLR2, and TLR4 mRNA increased in the liver in all resuscitation groups relative to control animals.Ventilation for 15 minutes with a Vt of 15 ml/kg initiates an injurious process in the preterm lung and a hepatic acute-phase response. Subsequent ventilatory support causes further increases in some injury indicators.
2007Heme oxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury: inhibition of type-1 interferon signaling.TransplantationToll-like receptor (TLR)-4 signaling plays a key role in initiating exogenous antigen-independent innate immunity-dominated liver ischemia/reperfusion injury (IRI). Heme oxygenase (HO)-1, a heat-shock protein 32, exerts potent adaptive anti-oxidant and anti-inflammatory functions. Signal transducers and activator of transcription (STAT)-1 activation triggers interferon (IFN)-inducible protein 10 (CXCL-10), one of major products of type-1 IFN pathway downstream of TLR4. This study focuses on the role of type-1 IFN pathway in the mechanism of HO-1 cytoprotection during liver IRI.Cobalt protoporphyrin (CoPP)-induced HO-1 overexpression ameliorated liver damage in a well-defined mouse model of liver warm IRI, as evidenced by improved hepatic function (serum alanine aminotransferase levels) and liver histology (Suzuki's scores). HO-1 downregulated phospho-STAT-1 and its key product, CXCL-10. In contrast, TLR4 expression remained elevated regardless of the IRI status. To dissect the mechanism of HO-1 upon CXCL-10, we cultured RW 264.7 (macrophage) cells with exogenous rIFN-beta to stimulate CXCL-10 production via TLR4 pathway in vitro. Indeed, CoPP-induced HO-1 suppressed otherwise highly upregulated rIFN-beta-triggered CXCL-10. Moreover, consistent with our in vitro data, CoPP pretreatment diminished rIFN-beta-induced CXCL-10 production in normal mouse livers.Hepatic IRI activates TLR4 signaling in vivo to elaborate CXCL-10. HO-1 overexpression downregulates activation of STAT1 via type-1 IFN pathway downstream of TLR4, which in turn decreases CXCL-10 production. This study provides evidence for a novel mechanism by which HO-1 exerts adaptive cytoprotective and anti-inflammatory functions in the context of innate TLR4 activation.
2007Toll-like receptor 4 signal transduction inhibitor, M62812, suppresses endothelial cell and leukocyte activation and prevents lethal septic shock in mice.Eur J PharmacolSepsis occurs when microbes activate toll-like receptors (TLRs) stimulating widespread inflammation and activating coagulation cascades. TLR4 signal transduction has been recognized as a key pathway for lipopolysaccharide (LPS)-induced activation of various cells and an attractive target for treatment of sepsis. We found a new benzisothiazole derivative, M62812 that inhibits TLR4 signal transduction. This compound suppressed LPS-induced upregulation of inflammatory cytokines, adhesion molecules and procoagulant activity in human vascular endothelial cells and peripheral mononuclear cells. The half maximal inhibitory concentrations in these assays ranged from 1 to 3 microg/ml. Single intravenous administration of M62812 (10-20 mg/kg) protected mice from lethality and reduced inflammatory and coagulatory parameters in a murine d-galactosamine-sensitized endotoxin shock model. M62812 (20 mg/kg) also prevented mice from lethality in a murine cecal ligation and puncture model. These results suggest that inhibition of TLR4 signal transduction can suppress coagulation as well as inflammation during sepsis and may be clinically beneficial in sepsis treatment.
2007Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease.J EndocrinolPathogens are sensed by pattern recognition receptors (PRRs), which are germ line-encoded receptors, including transmembrane Toll-like receptors (TLRs) and cytosolic nucleotide oligomerisation domain (NOD) proteins, containing leucine-rich repeats (NLRs). Activation of PRRs by specific pathogen-associated molecular patterns (PAMPs) results in genomic responses in host cells involving activation transcription factors and the induction of genes. There are now at least 10 TLRs in humans and 13 in mice, and 2 NLRs (NOD1 and NOD2). TLR signalling is via interactions with adaptor proteins including MyD88 and toll-receptor associated activator of interferon (TRIF). NOD signalling is via the inflammasome and involves activation of Rip-like interactive clarp kinase (RICK). Bacterial lipopolysaccharide (LPS) from Gram-negative bacteria is the best-studied PAMP and is activated by or 'sensed' by TLR4. Lipoteichoic acid (LTA) from Gram-positive bacteria is sensed by TLR2. TLR4 and TLR2 have different signalling cascades, although activation of either results in symptoms of sepsis and shock. This review describes the rapidly expanding field of pathogen-sensing receptors and uses LPS and LTA as examples of how these pathways parallel and diverge from each other. The role of pathogen-sensing pathways in disease is also discussed.
2007Endothelial cells' activation and apoptosis induced by a subset of antibodies against human cytomegalovirus: relevance to the pathogenesis of atherosclerosis.PLoS OneHuman cytomegalovirus (hCMV) is involved in the pathogenesis of atherosclerosis. We have previously shown in patients with atherosclerosis that antibodies directed against the hCMV-derived proteins US28 and UL122 are able to induce endothelial cell damage and apoptosis of non-stressed endothelial cells through cross-rection with normally expressed surface molecules. Our aim was to dissect the molecular basis of such interaction and to investigate mechanisms linking innate immunity to atherosclerosis.We analysed the gene expression profiles in endothelial cells stimulated with antibodies affinity-purified against either the UL122 or the US28 peptides using the microarray technology. Microarray results were validated by quantitative PCR and by detection of proteins in the medium. Supernatant of endothelial cells incubated with antibodies was analysed also for the presence of Heat Shock Protein (HSP)60 and was used to assess stimulation of Toll-Like Receptor-4 (TLR4). Antibodies against UL122 and US28 induced the expression of genes encoding for adhesion molecules, chemokines, growth factors and molecules involved in the apoptotis process together with other genes known to be involved in the initiation and progression of the atherosclerotic process. HSP60 was released in the medium of cells incubated with anti-US28 antibodies and was able to engage TLR4.Antibodies directed against hCMV modulate the expression of genes coding for molecules involved in activation and apoptosis of endothelial cells, processes known to play a pivotal role in the pathogenesis of atherosclerosis. Moreover, endothelial cells exposed to such antibodies express HSP60 on the cell surface and release HSP60 in the medium able to activate TLR4. These data confirm that antibodies directed against hCMV-derived proteins US28 and UL122 purified from patients with coronary artery disease induce endothelial cell damage and support the hypothesis that hCMV infection may play a crucial role in mediating the atherosclerotic process.
2007Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling.J ImmunolHemorrhagic shock/resuscitation (HS/R)-induced generation of reactive oxygen species (ROS) plays an important role in posthemorrhage inflammation and tissue injury. We have recently reported that HS/R-activated neutrophils (PMN), through release of ROS, serve an important signaling function in mediating alveolar macrophage priming and lung inflammation. PMN NAD(P)H oxidase has been thought to be an important source of ROS following HS/R. TLR4 sits at the interface of microbial and sterile inflammation by mediating responses to both bacterial endotoxin and multiple endogenous ligands, including high-mobility group box 1 (HMGB1). Recent studies have implicated HMGB1 as an early mediator of inflammation after HS/R and organ ischemia/reperfusion. In the present study, we tested the hypothesis that HS/R activates NAD(P)H oxidase in PMN through HMGB1/TLR4 signaling. We demonstrated that HS/R induced PMN NAD(P)H oxidase activation, in the form of phosphorylation of p47phox subunit of NAD(P)H oxidase, in wild-type mice; this induction was significantly diminished in TLR4-mutant C3H/HeJ mice. HMGB1 levels in lungs, liver, and serum were increased as early as 2 h after HS/R. Neutralizing Ab to HMGB1 prevented HS/R-induced phosphorylation of p47phox in PMN. In addition, in vitro stimulation of PMN with recombinant HMGB1 caused TLR4-dependent activation of NAD(P)H oxidase as well as increased ROS production through both MyD88-IRAK4-p38 MAPK and MyD88-IRAK4-Akt signaling pathways. Thus, PMN NAD(P)H oxidase activation, induced by HS/R and as mediated by HMGB1/TLR4 signaling, is an important mechanism responsible for PMN-mediated inflammation and organ injury after hemorrhage.
2007Exposure to bacterial DNA before hemorrhagic shock strongly aggravates systemic inflammation and gut barrier loss via an IFN-gamma-dependent route.Ann SurgTo investigate the role of bacterial DNA in development of an excessive inflammatory response and loss of gut barrier loss following systemic hypotension.Bacterial infection may contribute to development of inflammatory complications following major surgery; however, the pathogenesis is not clear. A common denominator of bacterial infection is bacterial DNA characterized by unmethylated CpG motifs. Recently, it has been shown that bacterial DNA or synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG-ODN) are immunostimulatory leading to release of inflammatory mediators.Rats were exposed to CpG-ODN prior to a nonlethal hemorrhagic shock. The role of interferon-gamma (IFN-gamma) was investigated by administration of anti IFN-gamma antibodies.Exposure to CpG-ODN prior to hemorrhagic shock significantly augmented shock-induced release of IFN-gamma, tumor necrosis factor-alpha (TNF-alpha) (P < 0.05), interleukin (IL)-6 (P < 0.05), and nitrite levels (P < 0.05), while there was a defective IL-10 response (P < 0.05). Simultaneously, expression of Toll-like receptor (TLR) 4 in the liver was markedly enhanced. Furthermore, intestinal permeability for HRP significantly increased and bacterial translocation was enhanced in hemorrhagic shock rats pretreated with CpG-ODN. Interestingly, inhibition of IFN-gamma in CpG-treated animals reduced TNF-alpha (P < 0.05), IL-6 (P < 0.05), nitrite (P < 0.05), and intestinal permeability following hemorrhagic shock (P < 0.05) and down-regulated expression of TLR4.Exposure to bacterial DNA strongly aggravates the inflammatory response, disrupts the intestinal barrier, and up-regulates TLR4 expression in the liver following hemorrhagic shock. These effects are mediated via an IFN-gamma-dependent route. In the clinical setting, bacterial DNA may be important in development of inflammatory complications in surgical patients with bacterial infection.
2007Unraveling the lethal synergism between Trypanosoma cruzi infection and LPS: a role for increased macrophage reactivity.Eur J ImmunolVarious infections sensitize to lethal shock by promoting hyperactivation of macrophages to LPS stimulation. Although macrophages are thought to be deactivated upon contact with apoptotic cells during Trypanosoma cruzi infection, T. cruzi infection also sensitizes mice to endotoxemia. Herein, we studied the mechanisms of sensitization to endotoxemia in T. cruzi-infected mice in order to solve the paradox. Live (but not fixed) trypomastigotes from various stocks sensitized mice to endotoxemia. Mice deficient in glycolipid recognition (TLR2(-/-) and CD1d(-/-)) were sensitized by infection to challenge with LPS. Infected mice hyperproduced TNF and IL-10 upon LPS challenge. Infected TNF-R1(-/-), macrophage migration inhibitory factor (MIF)(-/-) and IFN-gamma(-/-) mice were lethally sensitized, but infected TNF-R1(-/-) mice administered anti-MIF survived shock with LPS. Macrophages from infected mice hyperproduced TNF in response to LPS stimulation and displayed increased expression of TLR4 compared to non-infected controls. Treatment with the PGE(2) synthesis inhibitor acetylsalicylic acid (AAS) in vivo reduced parasitemia and enhanced LPS-stimulated production of TNF by macrophages, but the effect was less in infected mice than in normal mice. Nevertheless, AAS treatment did not increase the susceptibility of infected mice to sublethal shock with LPS. Our results point to independent MIF and TNF/TNF-R1 lethal pathways and suggest a role for hyperactivated macrophages in T. cruzi-sensitized LPS-induced shock.
2007Shrimp (Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice.Int ImmunopharmacolWe investigated the efficacy of amino acids 55-76 of the synthetic shrimp anti-lipopolysaccharide factor peptide (SALF(55-76) cyclic peptide), the C-terminal part of the shrimp anti-lipopolysaccharide factor. This study was conducted to elucidate the effects of the antiseptic action of this peptide. The SALF(55-76) cyclic peptide was tested against bacterial clinical isolates and showed broad-spectrum antimicrobial activity. Transmission electron microscopic (TEM) examination of SALF(55-76) cyclic peptide-treated Pseudomonas aeruginosa showed that severe swelling preceded cell death and breakage of the outer membrane; the intracellular inclusion was found to have effluxed extracellularly. When mice were treated with the SALF(55-76) cyclic peptide before bacterial challenge with P. aeruginosa, the peptide highly protected mice against death by sepsis. The P. aeruginosa recovered from SALF(55-76) cyclic peptide-treated mice after 4 h exhibited reduced bacterial growth similar to that recovered from vancomycin-treated mice. In addition, the syntheses of inflammatory cytokines, such as interleukin (IL)-2, IL-4, IL-10, IL-12, IL-13, interferon-gamma, and tumor necrosis factor [TNF]-alpha, were significantly upregulated 4 h after SALF(55-76) cyclic peptide treatment except for IL-4 in the liver. The expressions of Toll-like receptor 4 (Tlr4), Irf3, myd88, and Tram, were considerably elevated, but only Tlr4 existed in the spleen 4 h after SALF(55-76) cyclic peptide treatment. The prophylactic administration of SALF(55-76) cyclic peptide was begun the TNF-alpha response in comparison to untreated mice by an ELISA analysis. Due to its multifunctional properties, the SALF(55-76) cyclic peptide may become an important prophylaxis against and therapy for bacterial infectious diseases, as well as for septic shock.
2007Structure and function of Toll receptors and their ligands.Annu Rev BiochemThe Toll family of class I transmembrane receptors recognizes and responds to diverse structures associated with pathogenic microorganisms. These receptors mediate initial responses in innate immunity and are required for the development of the adaptive immune response. Toll receptor signaling pathways are also implicated in serious autoimmune diseases such as endotoxic shock and thus are important therapeutic targets. In this review we discuss how microbial structures as different as nucleic acids and lipoproteins can be recognized by the extracellular domains of Toll receptors. We review recent evidence that the mechanism of signal transduction is complex and involves sequential changes in the conformation of the receptor induced by binding of the ligand. Finally, we assess the emerging area of cross talk in the Toll pathways. Recent work suggests that signaling through TLR4 in response to endotoxin is modified by inputs from at least two other pathways acting through beta2 integrins and protein kinase Cepsilon.
2007Cellular recognition of trimyristoylated peptide or enterobacterial lipopolysaccharide via both TLR2 and TLR4.J Biol ChemEvidence for specific and direct bacterial product recognition through toll-like receptors (TLRs) has been emphasized recently. We analyzed lipopeptide analogues and enterobacterial lipopolysaccharide (eLPS) for their potential to activate cells through TLR2 and TLR4. Whereas bacterial protein palmitoylated at its N-terminal cysteine and N-terminal peptides derived thereof are known to induce TLR2-mediated cell activation, a synthetic acylhexapeptide mimicking a bacterial lipoprotein subpopulation for which N-terminal trimyristoylation is characteristic (Myr(3)CSK(4)) activated cells not only through TLR2 but also through TLR4. Conversely, highly purified eLPS triggered cell activation through overexpressed TLR2 in the absence of TLR4 expression if CD14 was coexpressed. Accordingly, TLR2(-/-) macrophages prepared upon gene targeting responded to Myr(3)CSK(4) challenge, whereas TLR2(-/-)/TLR4(d/d) cells were unresponsive. Through interferon-gamma (IFNgamma) priming, macrophages lacking expression of functional TLR4 and/or MD-2 acquired sensitivity to eLPS, whereas TLR2/TLR4 double deficient cells did not. Not only TLR2(-/-) mice but also TLR4(-/-) mice were resistant to Myr(3)CSK(4) challenge-induced fatal shock. d-Galactosamine-sensitized mice expressing defective TLR4 or lacking TLR4 expression acquired susceptibility to eLPS-driven toxemia upon IFNgamma priming, whereas double deficient mice did not. Immunization toward ovalbumin using Myr(3)CSK(4) as adjuvant was ineffective in TLR2(-/-)/TLR4(-/-) mice yet effective in wild-type, TLR2(-/-), or TLR4(-/-) mice as shown by analysis of ovalbumin-specific serum Ig concentration. A compound such as Myr(3)CSK(4) whose stimulatory activity is mediated by both TLR2 and TLR4 might constitute a preferable adjuvant. On the other hand, simultaneous blockage of both of the two TLRs might effectively inhibit infection-induced pathology.
2007Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children.Pediatr ResInnate immunity and urinary tract response play a central role in the development of urinary tract infection (UTI). Heat shock protein (HSP) 72 and Toll-like receptor (TLR) 4 are among the key elements of innate defence mechanisms. This study assesses the role of HSPA1B A(1267)G and TLR4 A(896)G polymorphisms using allele-specific polymerase chain reaction in 103 patients treated with recurrent UTI. Allelic prevalence was compared with reference values of 235 healthy controls. Clinical data were also statistically evaluated. TLR4 (896)AG genotype and TLR4 (896)G allele had also higher prevalence in UTI patients versus controls (p = 0.031 and 0.041, respectively). Our data indicates a relationship between the carrier status of HSPA1B (1267)G and TLR4 (896)G alleles and the development of recurrent UTI in childhood independently of other renal abnormalities, while raising further questions about the clinical and therapeutic relevance of these polymorphisms in everyday pediatric nephrology.
2007TLR4 hyperresponsiveness via cell surface expression of heat shock protein gp96 potentiates suppressive function of regulatory T cells.J ImmunolAs one of the main mediators of the endoplasmic reticulum unfolded protein response, heat shock protein gp96 is also an obligate chaperone for multiple TLRs including TLR4. We demonstrated recently that enforced cell surface expression of gp96 in a transgenic (Tg) mouse (96tm-Tg) conferred hyperresponsiveness to LPS and induced TLR4-dependent lupus-like autoimmune diseases. In this study, we investigated the function of CD4(+)CD25(+) Foxp3(+) regulatory T cells (T(reg)) in these mice in light of the important roles of T(reg) in the maintenance of peripheral tolerance against self-Ag as well as the increasing appreciation of TLR signaling on the regulation of T(reg). We found that the development of T(reg) was not impaired in 96tm-Tg mice. Contrary to the prediction of dampened T(reg) activity, we discovered that the suppressive functions of T(reg) were increased in 96tm-Tg mice. Inactivation of T(reg) during the neonatal stage of life exacerbated not only organ-specific diseases but also systemic autoimmune diseases. By crossing 96tm-Tg mice into the TLR4 null background, we demonstrated the critical roles of TLR4 in the amplification of T(reg) suppressive function. These findings illustrate that gp96 plays dual roles in regulating immune responses by augmenting proinflammatory responses and inducing T(reg) function, both of which are dependent on its ability to chaperone TLR4. Our study provides strong support to the notion of compensatory T(reg) activation by TLR ligation to dampen inflammation and autoimmune diseases.
2007TLR2-dependent recognition of Streptococcus suis is modulated by the presence of capsular polysaccharide which modifies macrophage responsiveness.Int ImmunolStreptococcus suis capsular type 2 is an important swine pathogen and an agent of zoonosis. Although meningitis is the most common form of disease, septicemia and septic shock are also frequently reported. Despite reports that CD14 is involved in the recognition of encapsulated S. suis by host cells, the mechanisms underlying exacerbated release of pro-inflammatory cytokines, which may have a negative impact on disease outcome, are unclear. Here, we demonstrated that stimulation of human monocytes by whole encapsulated S. suis or its purified cell wall components influences the relative expression of Toll-like receptor (TLR)-2 and CD14 mRNA. Moreover, this stimulation triggered the release of cytokines (tumor necrosis factor-alpha, IL-1beta and IL-6) and chemokines (IL-8 and monocyte chemoattractant protein-1), which was significantly reduced by antibody-mediated blocking of TLR2 but not TLR4. Mouse macrophages deficient in TLR2 also showed impaired cytokine responses to encapsulated bacteria. Given that this response was completely abrogated in myeloid differentiation factor 88 (MyD88)-deficient macrophages, other TLRs might also be involved. Furthermore, we demonstrated that the presence of capsular polysaccharide (CPS)-modulated S. suis interactions with TLRs. In the absence of CPS, uncovered cell wall components induced cytokine and chemokine production via TLR2-dependent as well as -independent pathways, whereas CPS contributes to MCP-1 production in a MyD88-independent manner. Overall, this study contributes to a better understanding of the inflammatory processes induced by an encapsulated pathogen and suggests that the relative expression of CPS, known to be modulated during bacterial invasion and dissemination in the host, might alter interactions with host cells and, consequently, the outcome of the inflammatory response.
2007Stimulation of cysteinyl leukotriene production in mast cells by heat shock and acetylsalicylic acid.Eur J PharmacolImmunoglobulin (Ig) E-dependent activation of mast cells is central to the allergic response. The engagement of IgE-occupied receptors initiates a series of molecular events that causes the release of preformed, and de novo synthesis of, allergic mediators. Cysteinyl leukotrienes are able to contract airway smooth muscle and increase mucus secretion and vascular permeability and recruit eosinophils. Mast cells have also recently been recognized as active participants in innate immune responses. Heat stress can modulate innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). We previously demonstrated that treatment of mast cells with heat shock or acetylsalicylic acid results in an increase of TNF-alpha and IL-6 release. This effect was paralleled by expression of HSP70. In the current study, we further investigated the effects of heat shock and acetylsalicylic acid on the activation of mast cells and the release of cysteinyl leukotrienes. In mouse mast cells, derived from a culture of bone marrow cells, responsiveness to heat shock, acetylsalicylic acid and exogenous or endogenous HSP70 was monitored by measuring leukotriene C4 release. We show that after heat shock treatment and exposure to acetylsalicylic acid leukotriene production was increased. Moreover, exogenous rHSP70 also induced leukotriene production. Because it has been reported that leukotriene production in mast cells may be mediated by Toll like receptor (TLR) activation, and HSP70 also activates TLRs signaling, we further explored these issues by using mast cells that are not able to produce HSP70, i.e. heat shock factor-1 (HSF-1) knockout cells. We found that in HSF-1 knockout bone marrow derived mast cells, heat shock and acetylsalicylic acid failed to induce release of leukotrienes. Moreover, in wild type cells the surface expression of TLR4 was attenuated, whereas the intracellular expression was up-regulated. We conclude that heat shock and acetylsalicylic acid induce the production and release of heat shock proteins from mast cells, which in turn stimulate leukotriene synthesis through activation of TLR4.
2007The inflammatory response to ischemic acute kidney injury: a result of the 'right stuff' in the 'wrong place'?Curr Opin Nephrol HypertensIschemic acute kidney injury may be exacerbated by an inflammatory response. How injury elicits inflammation remains a major question in understanding acute kidney injury. The present review examines the hypothesis that molecules released by injured cells elicit inflammation.After necrotic death, intracellular molecules find their way into the extracellular space. These molecules include heat shock proteins and HMGB1. Receptors for these proteins include TLR4, TLR2, CD91 and RAGE. These proinflammatory mechanisms may be so useful that nature has evolved mechanisms for programming necrotic death via poly(ADP-ribose) polymerase and cyclophilin D. In addition, apoptosis may also elicit inflammation.The concepts discussed in this review are important for clinical medicine. Drugs and genetic manipulation may ameliorate ischemic kidney injury by regulating the inflammatory response to cell injury.
2007Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages.Immunitygp96 is an endoplasmic reticulum chaperone for cell-surface Toll-like receptors (TLRs). Little is known about its roles in chaperoning other TLRs or in the biology of macrophage in vivo. We generated a macrophage-specific gp96-deficient mouse. Despite normal development and activation by interferon-gamma, tumor necrosis factor-alpha, and interleukin-1beta, the mutant macrophages failed to respond to ligands of both cell-surface and intracellular TLRs including TLR2, TLR4, TLR5, TLR7, and TLR9. Furthermore, we found that TLR4 and TLR9 preferentially interacted with a super-glycosylated gp96 species. The categorical loss of TLRs in gp96-deficient macrophages operationally created a conditional and cell-specific TLR null mouse. These mice were resistant to endotoxin shock but were highly susceptible to Listeria monocytogenes. Our results demonstrate that gp96 is the master chaperone for TLRs and that macrophages, but not other myeloid cells, are the dominant source of proinflammatory cytokines during endotoxemia and Listeria infections.
2007TLR4 regulates Kupffer cell chemokine production, systemic inflammation and lung neutrophil infiltration following trauma-hemorrhage.Mol ImmunolToll-like receptors (TLR) recognize not only microbial products, but also danger signals released from damaged tissues. Although we have previously shown that TLR4 is upregulated following trauma hemorrhage, the exact role of TLR4 in the posttraumatic immune response is unclear. To study this, C3H/HeOuJ (functional TLR4) or C3H/HeJ (TLR4 mutant) mice were subjected to laparotomy and hemorrhagic shock followed by resuscitation with 4x the shed blood volume in the form of Ringer's lactate. Sham operated mice underwent same surgical procedure, but neither hemorrhage nor resuscitation was performed. Four hours after resuscitation, the mice were sacrificed, plasma and lungs were collected and Kupffer cells were isolated. Plasma chemokine (MCP-1 and KC) levels, Kupffer cell chemokine production, and lung chemokine content were determined. Lung neutrophil infiltration was assessed by tissue content of myeloperoxidase. The chemokine levels in plasma, Kupffer cell supernatants and lung tissue were elevated in C3H/HeOuJ mice subjected to trauma hemorrhage compared to shams. No such changes were observed in C3H/HeJ mice undergoing trauma hemorrhage. Mice with functional TLR4 expression showed elevated lung neutrophil infiltration following trauma hemorrhage, which was not observed in TLR4 mutant mice. These findings suggest that functional TLR4 signaling is critical in mediating the inflammatory response following trauma hemorrhage. Thus, modulation of the TLR4 after injury may serve as a future therapeutic target in trauma patients.
2007Inhibition of lipid A-mediated type I interferon induction by bactericidal/permeability-increasing protein (BPI).Biochem Biophys Res CommunLipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3. Here we showed that chemically synthesized TLR4-agonistic lipid A analogues but not antagonistic lipid A activate IFN-beta promoter in TLR4-expressing HEK293 cells. The amplitude of IFN-beta promoter activation was in parallel with that of NF-kappaB. LPS-binding protein (LBP) was required for efficient IFN-beta induction in this system, and this LBP activity was antagonized by bactericidal/permeability-increasing protein (BPI). Thus, we first show that BPI blocks the TLR4 responses by exogenous administration of BPI to lipid A-sensitive cells. Although the functional mechanism whereby extra-cellular BPI modulates the intra-cellular signal pathways selected by the TLR adaptors, MyD88 and TICAM-1 (TRIF), remains unknown, we infer that the lipid A portion of LPS participates in LBP-amplified IFN-beta induction and that BPI binding to LPS leads to inhibition of the activation of NF-kappaB and IFN-beta by LPS or agonistic lipid A via TLR4 in an extrinsic mode. BPI may serve as a therapeutic potential against endotoxin shock by acting as a regulator for the MyD88- and TICAM-1 pathways in the LPS-TLR4 signaling.
2007Selective NOD1 agonists cause shock and organ injury/dysfunction in vivo.Am J Respir Crit Care MedNLRs (nucleotide oligomerisation domain [NOD] proteins containing a leucine-rich repeat) are cytosolic pattern recognition receptors. NOD1 senses diaminopimelic acid-containing peptidoglycan present in gram-negative bacteria, whereas NOD2 senses the muramyl dipeptide (MDP) present in most organisms. Bacteria are the most common cause of septic shock, which is characterized clinically by hypotension resistant to vasopressor agents. In animal models, gram-negative septic shock is mimicked by lipopolysaccharide (LPS), which signals through Toll-like receptor 4 (TLR4) and its adaptor MyD88. The role of NLRs in the pathophysiology of septic shock is not known.To compare the effects of selective NOD1 agonists with LPS in vivo.Vascular smooth muscle cells or whole aortas from wild-type or genetically modified mice were stimulated in vitro with agonists of NOD1 (FK565) or NOD2 (MDP). Vasoconstriction was measured using wire myography. Nitric oxide (NO) formation was measured using Griess reaction and NO synthase-II protein by Western blotting. In vivo, blood pressure, heart rate, and urine output were measured in sham-, LPS-, or FK565-treated animals. Biomarkers of end-organ injury, coagulation activation, NO, and cytokines were measured in plasma.FK565, but not MDP, induced NO synthase-II protein/activity in vascular smooth muscle and vascular hyporeactivity to pressor agents. FK565 had no effect on vessels from NOD1(-/-) mice, but was active in vessels from TLR4(-/-), TLR2(-/-), or MyD88(-/-) mice. FK565 induced hypotension, increased heart rate, and caused multiple (renal, liver) injury and dysfunction in vivo.Activation of NOD1 induces shock and multiple organ injury/dysfunction.
2006Innate immunity SNPs are associated with risk for severe sepsis after burn injury.Clin Med ResTo analyze allelic association with clinical outcome in a cohort of burn patients.Two hundred twenty-eight individuals with burns > or =15% total body surface area without significant non-burn related trauma who survived >48 hours post-admission were enrolled. One hundred fifty-nine of these patients were analyzed previously.Candidate polymorphisms within interleukin-1 beta (IL-1beta), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha), cellular differentiation marker 14 (CD14) and toll-like receptor 4 (TLR4) were evaluated by logistic regression analysis for association with increased risk for severe sepsis (sepsis plus organ dysfunction or shock).After adjustment for age, burn size, ethnicity, gender and inhalation injury, alleles at TNF-alpha (308G, p=0.013), TLR4 (+896G, p=0.027), IL-6 (174C, p=0.040) and CD14 (159C, p=0.047) were significantly associated with an increased risk for severe sepsis.Carriage of variant alleles at immune response genes were associated with increased risk for severe sepsis after burn injury.
2006Exercise and Toll-like receptors.Exerc Immunol RevToll-like receptors (TLRs) are highly conserved trans-membrane proteins that play an important role in the detection and recognition of microbial pathogens. The key product of TLR signalling in antigen presenting cells is the production of inflammatory cytokines and proteins. The TLR pathway plays an important role in mediating whole body inflammation, which has been implicated in the development of chronic disease. An accumulation of chronic, low-grade inflammation is common in individuals that live a sedentary lifestyle; however, the mechanism underlying this connection is not fully understood. There is evidence to show that TLRs may be involved in the link between a sedentary lifestyle, inflammation, and disease. Recent studies have shown that both acute aerobic and chronic resistance exercise resulted in decreased monocyte cell-surface expression of TLRs. Furthermore, a period of chronic exercise training decreases both inflammatory cytokine production and the cell-surface expression of TLR4 on monocytes. These effects may contribute to post-exercise immunodepression and the reported higher susceptibility to infection in athletes. However over the long-term, a decrease in TLR expression may represent a beneficial effect because it decreases the inflammatory capacity of leukocytes, thus altering whole body chronic inflammation. The precise physiological stimulus mediating an exercise-induced decrease in cell-surface TLR expression is not known; however a number of possible signals have been implicated including anti-inflammatory cytokines, stress hormones and heat shock proteins.
2007Flagellin contamination of recombinant heat shock protein 70 is responsible for its activity on T cells.J Biol ChemHeat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli DeltafliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.
2007Elucidation of toll-like receptor and adapter protein signaling in vascular dysfunction induced by gram-positive Staphylococcus aureus or gram-negative Escherichia coli.ShockPathogens contain specific pathogen-associated molecular patterns, which activate pattern recognition receptors of the innate immune system such as Toll-like receptors (TLRs). Although there is a clear evidence of how macrophages sense pathogens, we know less about such processes in vessels. This is critical to understand because activation of vascular cells and the subsequent induction of inflammatory genes by bacteria are crucial events in the development of septic shock. In the current study we have used genetically modified mice to investigate the role of TLRs, adapter proteins, tumor necrosis factor alpha (TNFalpha), and nitric oxide synthase II (NOSII) in vascular dysfunction induced by Gram-positive (Staphylococcus aureus) or Gram-negative (Escherichia coli) bacteria. Our data show that Gram-positive S. aureus or Gram-negative E. coli causes vascular dysfunction via the induction of NOSII. For S. aureus, this process requires TLR2, TLR6, myeloid differentiation factor 88 (MyD88) adapter-like, MyD88, and TNF, but not TLR4 or TLR1. Vascular dysfunction induced by E. coli requires TLR4 but has no requirement for TLR2, TLR1, TLR6, or TNF, and a partial but incomplete requirement of MyD88 and TIR domain-containing adapter inducing interferon-beta. Staphylococcus aureus induced NOSII protein expression in vascular smooth muscle cells but not in macrophages, whereas E. coli induced NOSII in both cell types. Our data are the first to establish the definitive roles of specific TLRs in the sensing of Gram-positive and Gram-negative bacteria by vessels and demonstrate that macrophages and blood vessels may differ in their response to pathogens.
2007Vitamin E inhibits endotoxin-mediated transport of phosphatases to lipid rafts.ShockThe production and release of inflammatory mediators is regulated by the coordinated activity of kinases and phosphatases. These proteins are known to regulate one another through an unknown mechanism. Previously, we have demonstrated that autocrine release of oxidants regulates macrophage activation in a similar fashion. The purpose of this study is to determine if attenuated oxidant activity by antioxidant exposure can regulate endotoxin-mediated kinase and phosphatase activity. Human promonocytic THP-1 cells were stimulated with lipopolysaccharide. Selected cells were pretreated with alpha-tocopherol succinate, LY294002, or an AKT inhibitor (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate). Lipid raft and cellular protein were analyzed for lipid raft toll-like receptor 4 (TLR4) receptor formation and mitogen-activated protein kinase (MAPK) activation. Harvested supernatants were analyzed for tumor necrosis factor (TNF)-alpha production. Lipopolysaccharide stimulation led to the lipid raft mobilization of TLR4 and heat shock protein 70. This was followed by lipid raft mobilization of SH related complex homology 2 domain-containing inositol-5-phosphate (SHIP), activation of the MAPK, and production of TNF-alpha. Pretreatment with alpha-tocopherol succinate did not affect mobilization of TLR4 or heat shock protein 70, but did result in attenuated mobilization of SHIP, activation of the MAPK, and production of TNF-alpha. In addition, alpha-tocopherol succinate was associated with increased activation of the counter-regulatory kinase protein kinase B. Pretreatment with LY294002 or 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate reversed the effects of alpha-tocopherol succinate. Thus, it seems that endotoxin-mediated activation requires the coordinated activity of kinases and phosphatases. Antioxidant exposure in the form of vitamin E seems to attenuate endotoxin-mediated SHIP activation resulting in increased AKT activity, and attenuated MAPK activation and TNF-alpha production.
2007The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage.J Cell PhysiolSevere injury deranges immune function and increases the risk of sepsis and multiple organ failure. Kupffer cells play a major role in mediating posttraumatic immune responses, in part via different Toll-like receptors (TLR). Although mitogen-activated protein kinases (MAPK) are key elements in the TLR signaling pathway, it remains unclear whether the activation of different MAPK are TLR specific. Male C3H/HeN mice underwent midline laparotomy (i.e., soft tissue injury), hemorrhagic shock (MAP approximately 35 mm Hg for 90 min), and resuscitation. Kupffer cells were isolated 2 h thereafter, lysed and immunoblotted with antibodies to p38, ERK1/2, or JNK proteins. In addition, cells were preincubated with specific inhibitors of p38, ERK1/2, or JNK MAPK followed by stimulation with the TLR2 agonist, zymosan; the TLR4 agonist, LPS; or the TLR9 agonist, CpG DNA. Cytokine (TNF-alpha, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and KC) production was determined by cytometric bead array after 24 h in culture. MAPK activity as well as TNF-alpha, MCP-1, and KC production by Kupffer cells were significantly increased following trauma-hemorrhage. TLR4 activation by LPS stimulation increased the levels of all measured cytokines. CpG-stimulated TLR9 signaling increased TNF-alpha and IL-6 levels; however, it had no effect on chemokine production. Selective MAPK inhibition demonstrated that chemokine production was mediated via p38 and JNK MAPK activation in TLR2, -4, and -9 signaling. In contrast, TNF-alpha and IL-6 production was differentially regulated by MAPK depending on the TLR pathway stimulated. Thus, Kupffer cell TLR signaling employs different MAPK pathways in eliciting cytokine and chemokine responses following trauma-hemorrhage.
2006Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation.J Heart Lung TransplantInnate immunity is the first line of host defense against invading microorganisms, which is mediated by specific pathogen recognition molecules called toll-like receptors (TLRs). TLRs can also recognize endogenous "danger" signals, resulting in cytokine production and activation of the adaptive immune system. We hypothesized that gene expression of TLRs during lung transplantation may be affected by the donor condition and the ischemia-reperfusion process, which may subsequently influence graft function.Lung biopsies from 14 patients were collected before and after reperfusion, and mRNA levels of TLRs, cytokines (interleukin [IL]-1beta, IL-6, IL-8, IL-10 and interferon-gamma) and heat-shock protein 70 (HSP70) were measured by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR).In cold-preserved donor lungs, all TLRs (except TLR3) showed significant correlations with one another and also with the cytokines examined. Expression of several TLRs and cytokines correlated with the intubation time of donors. TLR4 gene expression correlated closely with IL-8 before and after reperfusion (p
2006Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells.J ImmunolRecent data suggest that heat shock protein-70 (HSP-70), an intracellular protein, can exist in the extracellular compartment and signal through the CD14/TLR4 pathway. In this study, we tested the hypothesis that extracellular HSP-70 induces endotoxin (LPS) tolerance. Using human monocyte cell line (THP-1), initial dose-response experiments were conducted to determine a subthreshold concentration of HSP-70 that does not induce NF-kappaB activity. Differentiated THP-1 cells were preconditioned with subthreshold concentration (0.03 microg/ml HSP-70) for 18 h, followed by LPS stimulation (1 microg/ml) for 4 h. Preconditioning with HSP-70 decreased subsequent LPS-mediated NF-kappaB-dependent promoter activity and was accompanied by significant decreases of supernatant TNF levels. Furthermore, human monocytes isolated from human volunteers, subsequently preconditioned with HSP-70, demonstrated LPS tolerance as evidenced by abrogated supernatant TNF levels. Additional experiments were conducted to exclude the possibility of endotoxin contamination of HSP-70 by boiling HSP-70 at 100 degrees C for 1 h or preconditioning with equivalent concentrations of endotoxin as present in the HSP-70 preparation. These experiments indicated that induction of tolerance was not secondary to endotoxin contamination. Neutralization experiments with an anti-HSP-70 Ab confirmed the specificity of HSP-70 in tolerance induction. Preconditioning with HSP-70 attenuated cytosolic degradation of inhibitor kappaB-alpha and inhibited activation of inhibitor kappaB kinase following LPS stimulation. HSP-70 preconditioning decreased phosphorylation of the p65 subunit of NF-kappaB following LPS stimulation. These data suggest a novel role for extracellular HSP-70 in modifying mononuclear cell responses to subsequent LPS challenge.
2006Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage.ShockThe systemic inflammatory response syndrome initiated by infection shares many features in common with the trauma-induced systemic response. The toll-like receptors (TLRs) stand at the interface of innate immune activation in the settings of both infection and sterile injury by responding to a variety of microbial and endogenous ligands alike. Recently, a body of literature has evolved describing a key role for TLRs in acute injury using rodent models of hemorrhagic shock, ischemia and reperfusion, tissue trauma and wound repair, and various toxic exposures. This review will detail the observations implicating a TLR family member, TLR4, as a key component of the initial injury response.
2006Enhanced expression of intracellular heme oxygenase-1 in deactivated monocytes from patients with severe systemic inflammatory response syndrome.J TraumaMonocyte deactivation is an important contributor to infectious susceptibility in critically ill patients. However, the mechanism of monocyte deactivation has not been fully elucidated. Recently, intracellular heme oxygenese-1 (HO-1), an anti-inflammatory heat-shock protein, was reported to be activated by Toll-like receptors (TLRs), and to inhibit inflammatory cytokine production such as that of TNF-alpha. In the present study, we evaluated the expression of intracellular HO-1 and TLRs in monocytes from patients with severe systemic inflammatory response syndrome (SIRS) and examined the role of HO-1 in monocyte deactivation.Twenty-seven patients who fulfilled the criteria for severe SIRS and had a serum C-reactive protein (CRP) level >10 mg/dL were included in this study. The cause of SIRS was sepsis in 16 patients, trauma in 7, and other in 4. Expression of intracellular HO-1, surface TLR2 and TLR4, and intracellular cytokines (TNF-alpha, Interleukin-6) stimulated via TLR activation were measured in circulating monocytes by flow cytometry. Intracellular HO-1 expression was evaluated in normal monocytes stimulated with patient serum. Serum cytokine levels were also measured. Patient data were compared with data from healthy volunteers (n = 16).Cytoplasmic HO-1 was clearly detected by fluorescence microscopy. Expression of HO-1, TLR2, and TLR4 in monocytes was significantly enhanced in patients with severe SIRS compared with that in healthy volunteers, whereas intracellular TNF-alpha expression with peptidoglycan was significantly decreased (p < 0.05) in patients compared with that in healthy volunteers. HO-1 expression was significantly enhanced in normal monocytes stimulated with patient serum. Intracellular HO-1 levels were positively related to serum TNF-alpha levels in patients (r = 0.46).Expression of intracellular HO-1 and of TLRs was enhanced in deactivated monocytes from patients with SIRS. Increased production of intracellular HO-1 in response to serum factors may play a role in monocyte deactivation after systemic inflammation.
2006Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation.J Leukoc BiolEndotoxin tolerance is characterized by attenuated macrophage activation to subsequent LPS challenge and can be reversed through nonspecific protein kinase C (PKC) activation, and activation by LPS within naïve cells requires the activation of the cell surface receptors CD14 and TLR4 on lipid rafts. The effect of PKC activation and endotoxin tolerance on lipid raft receptor complex assembly is unknown and the focus of this study. Tolerance was induced in THP-1 cells through LPS pre-exposure. Naïve and tolerant cells were stimulated with LPS, with or without PMA pretreatment to activate PKC. TLR4 surface expression and LPS binding were determined by flow cytometry and immunohistochemistry. Cellular and lipid raft protein was analyzed for the presence and activation of the TLR4 complex components. Harvested supernatants were examined for TNF-alpha production. Total TLR4 surface expression and LPS binding were not affected by tolerance induction. LPS stimulation of naïve cells resulted in TLR4 and heat shock protein (HSP)70 lipid raft mobilization, MAPK activation, and TNF-alpha production. LPS stimulation of tolerant cells was associated with attenuation of all of these cellular events. Although PKC activation by PMA had no effect on naïve cells, it did result in reversal in tolerance-induced suppression of TLR4 and HSP70 lipid raft mobilization, MAPK activation, and TNF-alpha production. In addition, the effects associated with PMA were reversed with exposure to a myristoylated PKC-zeta pseudosubstrate. Thus, endotoxin tolerance appears to be induced through attenuated TLR4 formation following LPS stimulation. This complex formation appears to be PKC-dependent, and restoration of PKC activity reverses tolerance.
2006[Expression of Toll-like receptor 2/4 mRNA in myocardium in mice with hemorrhagic shock].Zhongguo Wei Zhong Bing Ji Jiu Yi XueTo investigate the effect of hemorrhagic shock without resuscitation on expression of Toll-like receptor (TLR) in myocardium of rats and its significance.Forty-five C57BL/6 mice were randomly divided into 3 groups: hemorrhagic group, sham operation group and lipopolysaccharide (LPS) group, with 15 mice in each group. The hemorrhagic shock mouse model was reproduced by heart puncture. Expression levels of TLR2 mRNA and TLR4 mRNA were determined by reverse transcription-polymerase chain reaction (RT-PCR). Left ventricular end-systolic pressure (LVESP) was determined and adopted as an index of left ventricle contractile function.(1)Both hemorrhagic shock and LPS challenge led to a reduction in arterial blood pressure in mice when compared with sham operation group. Both hemorrhagic shock and LPS challenge could result in left ventricle contractile dysfunction when compared with sham operation group. (2)Expression levels for TLR2 and TLR4 genes were upregulated in myocardium to various extents after hemorrhagic shock and LPS challenge, while in contrast the changes were absent in sham operation group.(1)The up-regulation of TLR2 and TLR4 genes is closely related with hemorrhagic shock and LPS-induced left ventricle contractile dysfunction, and there may exist a difference in signal transduction pathway between the two pathological conditions. (2)The host ability of innate immune response may be reinforced by the up-regulation of TLR2 and TLR4, whereas overexpression of them may also impair the function of tissues or organs.
2007Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy.Cancer Immunol ImmunotherCancer therapies, which deliver a rapidly induced massive tumor tissue injury, such as photodynamic therapy (PDT), provoke a strong host response raised for dealing with the inflicted local trauma. Activated complement system was identified as an important element of host response elicited by tumor PDT. The expression of genes encoding complement proteins C3, C5, and C9 was studied following tumor PDT mediated by photosensitizer Photofrin using mouse Lewis lung carcinoma (LLC) model. Treated tumors and the livers of host mice were collected at different times after PDT and the expression of the investigated genes was analyzed by RT-PCR. The results show a significant up-regulation of C3, C5, and C9 genes in PDT-treated tumors at 24 h after therapy, while no significant increase in the expression of these genes was found in the liver tissues. The expression of C3, C5, and C9 genes also became up-regulated in untreated tumor-associated macrophages (TAMs) co-incubated in vitro with PDT-treated LLC cells. This effect was abolished or drastically reduced in the presence of antibodies blocking heat shock protein 70 (HSP70), Toll-like receptor (TLR) 2 and TLR4, and specific peptide inhibitors of TIRAP adapter protein and transcription factor NF-kappaB. The presented study reveals that complement genes C3, C5, and C9 become up-regulated in tumors treated by PDT, but not in the host's liver. Tumor-localized up-regulation of these genes can be largely attributed to monocytes/macrophages invading the treated lesion after PDT. This effect appears to be induced by the recognition of danger signals from PDT-treated tumor cells such as HSP70 by TAMs that involve the TLR2- and TLR4-triggered signal transduction pathways leading to the activation of NF-kappaB.
2006Activation of common antiviral pathways can potentiate inflammatory responses to septic shock.ShockInduction of the antiviral cytokine interferon alpha/beta (IFN-alpha/beta) is common in many viral infections. The impact of ongoing antiviral responses on subsequent bacterial infection is not well understood. In human disease, bacterial superinfection complicating a viral infection can result in significant morbidity and mortality. We injected mice with polyinosinic-polycytidylic (PIC) acid, a TLR3 ligand and known IFN-alpha/beta inducer as well as nuclear factor kappaB (NF-kappaB) activator to simulate very early antiviral pathways. We then challenged mice with an in vivo septic shock model characterized by slowly evolving bacterial infection to simulate bacterial superinfection early during a viral infection. Our data demonstrated robust induction of IFN-alpha in serum within 24 h of PIC injection with IFN-alpha/beta-dependent major histocompatibility antigen class II up-regulation on peritoneal macrophages. PIC pretreatment before septic shock resulted in augmented tumor necrosis factor alpha and interleukins 6 and 10 and heightened lethality compared with septic shock alone. Intact IFN-alpha/beta signaling was necessary for augmentation of the inflammatory response to in vivo septic shock and to both TLR2 and TLR4 agonists in vitro. To assess the NF-kappaB contribution to PIC-modulated inflammatory responses to septic shock, we treated with parthenolide, an NF-kappaB inhibitor before PIC and septic shock. Parthenolide did not inhibit IFN-alpha induction by PIC. Inhibition of NF-kappaB by parthenolide did reduce IFN-alpha-mediated potentiation of the cytokine response and lethality from septic shock. Our data demonstrate that pathways activated early during many viral infections can have a detrimental impact on the outcome of subsequent bacterial infection. These pathways may be critical to understanding the heightened morbidity and mortality from bacterial superinfection after viral infection in human disease.
2006Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages.J Exp MedOxidative stress generated by ischemia/reperfusion is known to prime inflammatory cells for increased responsiveness to subsequent stimuli, such as lipopolysaccharide (LPS). The mechanism(s) underlying this effect remains poorly elucidated. These studies show that alveolar macrophages recovered from rodents subjected to hemorrhagic shock/resuscitation expressed increased surface levels of Toll-like receptor 4 (TLR4), an effect inhibited by adding the antioxidant N-acetylcysteine to the resuscitation fluid. Consistent with a role for oxidative stress in this effect, in vitro H2O2 treatment of RAW 264.7 macrophages similarly caused an increase in surface TLR4. The H2O2-induced increase in surface TLR4 was prevented by depleting intracellular calcium or disrupting the cytoskeleton, suggesting the involvement of receptor exocytosis. Further, fluorescent resonance energy transfer between TLR4 and the raft marker GM1 as well as biochemical analysis of the raft components demonstrated that oxidative stress redistributes TLR4 to lipid rafts in the plasma membrane. Preventing the oxidant-induced movement of TLR4 to lipid rafts using methyl-beta-cyclodextrin precluded the increased responsiveness of cells to LPS after H2O2 treatment. Collectively, these studies suggest a novel mechanism whereby oxidative stress might prime the responsiveness of cells of the innate immune system.
2006Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4.Microbes InfectHeat shock proteins (HSPs) of endogenous and exogenous origin are suspected contributors to the initiation and aggravation of vascular pathologies like atherosclerosis and restenosis. Toll-like receptors (TLRs) 2 and 4 are well-known receptors for exogenous pathogen-associated molecular patterns and have recently been thought to play a role in HSP60-induced cellular activation. We hypothesized that human HSP60 directly stimulates venous smooth muscle cell (VSMC) proliferation through a TLR-dependent mechanism. Localization of HSP60, TLR2 and TLR4 was studied in failed venous grafts and normal venous tissue by double immunostaining. In vitro VSMCs were incubated for 48 h with recombinant human HSP60. In other experiments, VSMCs were pre-incubated for 30 min with specific anti-TLR2 and anti-TLR4 antibodies. VSMC proliferation was determined by Ki67 immunoreactivity, and mean values were compared between experimental and control groups. In addition, human embryonic kidney (HEK) cells transfected with human TLR2 or TLR4/MD-2 were exposed to HSP60 for 48 h, and proliferation was determined by using a hemocytometer. Co-localization of HSP60 and TLRs was detected in all neointimal lesions but was virtually absent in normal veins. Human HSP60 stimulated VSMC proliferation in a concentration-dependent fashion. In addition, TLR2 and TLR4 antibodies attenuated VSMC proliferation. The role of TLR-mediated stimulation of cell proliferation by HSP60 was supported by the significant increase in proliferation of transfected HEK cells. These findings provide supporting evidence for the role of HSP60 and TLR2 and TLR4 in vascular disease. Moreover, our data surpass the infection- and autoimmunity-based hypotheses of cardiovascular disease and suggest an additional HSP60-related autocrine process.
2006Induction of Porphyromonas gingivalis GroEL signaling via binding to Toll-like receptors 2 and 4.Oral Microbiol ImmunolHeat shock protein 60 (HSP60) has been recognized as an important molecule in infectious and autoimmune diseases. Although Porphyromonas gingivalis GroEL, a homologue of HSP60, is a potent stimulator of inflammatory cytokines, its receptor and signaling mechanisms are not yet understood in detail. In this study, we investigated whether the Toll-like receptor (TLR) family plays a functional role as a P. gingivalis GroEL receptor.Human macrophage-like THP-1 cells were used and the nuclear factor-kappaB (NF-kappaB) activity of cells stimulated with a recombinant P. gingivalis GroEL was measured with a luciferase assay. Flow cytometry analysis was used to determine the binding to THP-1 cells of fluorescein isothiocyanate (FITC)-labeled GroEL. In addition, anti-human TLR (anti-hTLR)2 and anti-hTLR4 monoclonal antibodies were used to assess the functional role of TLR2 and TLR4 as the receptors for GroEL.We observed by luciferase assay that the purified recombinant GroEL was able to stimulate NF-kappaB transcriptional activity in THP-1 cells. Flow cytometry analysis showed that the FITC-labeled GroEL bound to THP-1 cells in a dose-dependent fashion. Our binding competition analysis with FITC-labeled and unlabeled GroEL showed that it bound to the cells as a specific mode of action. On the other hand, GroEL-stimulated NF-kappaB transcriptional activity was significantly inhibited by anti-hTLR2 and anti-hTLR4 antibodies and was inhibited more strongly by a combination of both antibodies.Our present study demonstrates that P. gingivalis GroEL induces its intracellular signaling cascade in THP-1 cells via TLR2 or TLR4 and via a combination of both receptors.
2006Preparation and characterization of truncated human lipopolysaccharide-binding protein in Escherichia coli.Protein Expr PurifLipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.
2006Role of Toll-like receptor 4 for the pathogenesis of acute lung injury in Gram-negative sepsis.Eur J AnaesthesiolProinflammatory cytokines as well as nitric oxide (NO) play a major role in mediating the response to lipopolysaccharide (LPS). The present study tested the hypothesis that LPS induces proinflammatory cytokines in the lung via the Toll-like receptor 4 (TLR4)/CD14 signalling cascade.Control mice and TLR4-deficient (TLR4-D) mice were used to test TLR4-mediated effects of LPS. Both strains received either Escherichia coli LPS (20 mg kg-1 intraperitoneal) or saline and their lungs were collected at different time points. Pulmonary nuclear factor kappaB (NFkappaB) activation was investigated with electromobility shift assay. mRNA expression of inflammatory mediators and their corresponding receptors were detected with Ribonuclease Protection Assay. Protein expression was detected by ELISA and western blotting. Inducible NO synthase (iNOS) expression was monitored by RT-PCR and iNOS activity by conversion of l-arginine to citrulline. Immune cells were sampled by bronchoalveolar lavage (BAL) and classified.LPS application induced CD14-, but not TLR4 protein expression in control mice. Activation of pulmonary NFkappaB was observed within 60 min in control, but not in TLR4-D mice. Six hours of LPS administration induced a significant increase in pulmonary tumour necrosis factor alpha-, interleukin-1beta- and interleukin-6 mRNA and protein expression in control mice compared to TLR4-D mice. Furthermore, LPS induced a significantly higher increase of the iNOS expression and catalytic activity in control mice than in TLR4-D mice. BAL revealed an increase in total cell count in all LPS treated mice.Our findings suggest that TLR4 plays a key role for regulating the expression of relevant cytokines within the lung during endotoxic shock.
2006Chlamydia heat shock protein 60 induces trophoblast apoptosis through TLR4.J ImmunolIntrauterine infection affects placental development and function, and subsequently may lead to complications such as preterm delivery, intrauterine growth retardation, and preeclampsia; however, the molecular mechanisms are not clearly known. TLRs mediate innate immune responses in placenta, and recently, TLR2-induced trophoblast apoptosis has been suggested to play a role in infection-induced preterm delivery. Chlamydia trachomatis is the etiological agent of the most prevalent sexually transmitted bacterial infection in the United States. In this study, we show that in vitro chlamydial heat shock protein 60 induces apoptosis in primary human trophoblasts, placental fibroblasts, and the JEG3 trophoblast cell line, and that TLR4 mediates this event. We observed a host cell type-dependent apoptotic response. In primary placental fibroblasts, chlamydial heat shock protein 60-induced apoptosis was caspase dependent, whereas in JEG3 trophoblast cell lines it was caspase independent. These data suggest that TLR4 stimulation induces apoptosis in placenta, and this could provide a novel mechanism of pathogenesis for poor fertility and pregnancy outcome in women with persistent chlamydia infection.
2006Wolbachia endosymbiotic bacteria of Brugia malayi mediate macrophage tolerance to TLR- and CD40-specific stimuli in a MyD88/TLR2-dependent manner.J ImmunolLymphatic filarial nematodes are able to down-regulate parasite-specific and nonspecific responses of lymphocytes and APC. Lymphatic filariae are reliant on Wolbachia endosymbiotic bacteria for development and survival. We tested the hypothesis that repeated exposure to Wolbachia endosymbionts would drive macrophage tolerance in vitro and in vivo. We pre-exposed murine peritoneal-elicited macrophages to soluble extracts of Brugia malayi female worms (BMFE) before restimulating with BMFE or TLR agonists. BMFE tolerized macrophages (in terms of IFN-beta, IL-1beta, IL-6, IL-12p40, and TNF-alpha inflammatory cytokine production) in a dose-dependent manner toward self, LPS, MyD88-dependent TLR2 or TLR9 ligands (peptidoglycan, triacyl lipopeptide, CpG DNA) and the MyD88-independent/TRIF-dependent TLR3 ligand, polyinosinic-polycytidylic acid. This was accompanied with down-regulation in surface expression of TLR4 and up-regulation of CD14, CD40, and TLR2. BMFE tolerance extended to CD40 activation in vitro and systemic inflammation following lethal challenge in an in vivo model of endotoxin shock. The mechanism of BMFE-mediated macrophage tolerance was dependent on MyD88 and TLR2 but not TLR4. Evidence that desensitization was driven by Wolbachia-specific ligands was determined by use of extracts from Wolbachia-depleted B. malayi, aposymbiotic filarial species, and a cell line stably infected with Wolbachia pipientis. Our data promote a role for Wolbachia in contributing toward the dysregulated and tolerized immunological phenotype that accompanies the majority of human filarial infections.
2006Neutrophil function in severe sepsis.Endocr Metab Immune Disord Drug TargetsSepsis and septic shock continue to be a major cause of morbidity and mortality in critically ill patients. During the onset of sepsis, several inflammatory mediators, including cytokines, chemokines and nitric oxide are released systemically and mediate most of the pathophysiological events present in sepsis and septic shock, such as cardiovascular dysfunction and target-organ lesions. Polymorphonuclear leukocytes are critical effector cells during the inflammatory process and their migration to the infection focus is extremely important for the local control of bacterial growth and consequently for the prevention of bacterial dissemination. In experimental models and in human sepsis a profound failure of neutrophil migration to the infection focus is observed. It seems that the failure of neutrophil migration is dependent on toll-like receptor 4 (TLR4) and mediated by cytokines and chemokines, which induce the production of nitric oxide that inhibits neutrophil adhesion to venular endothelium and also the neutrophil chemotactic ability.
2006Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling.J ImmunolTLR4 is the signal-transducing receptor for structurally diverse microbial molecules such as bacterial LPS, respiratory syncytial virus fusion (F) protein, and chlamydial heat shock protein 60. Previous studies associated two polymorphic mutations in the extracellular domain of TLR4 (Asp(299)Gly and Thr(399)Ile) with decreased LPS responsiveness. To analyze the molecular basis for diminished responsiveness, site-specific mutations (singly or coexpressed) were introduced into untagged and epitope (Flag)-tagged wild-type (WT) TLR4 expression vectors to permit a direct comparison of WT and mutant signal transduction. Coexpression of WT TLR4, CD14, and MD-2 expression vectors in HEK293T cells was first optimized to achieve optimal LPS-induced NF-kappaB reporter gene expression. Surprisingly, transfection of cells with MD-2 at high input levels often used in the literature suppressed LPS-induced signaling, whereas supraoptimal CD14 levels did not. Under conditions where WT and polymorphic variants were comparably expressed, significant differences in NF-kappaB activation were observed in response to LPS and two structurally unrelated TLR4 agonists, chlamydial heat shock protein 60 and RSV F protein, with the double, cosegregating mutant TLR4 exhibiting the greatest deficiency. Overexpression of Flag-tagged WT and mutant vectors at input levels resulting in agonist-independent signaling led to equivalent NF-kappaB signaling, suggesting that these mutations in TLR4 affect appropriate interaction with agonist or coreceptor. These data provide new insights into the importance of stoichiometry among the components of the TLR4/MD-2/CD14 complex. A structural model that accounts for the diminished responsiveness of mutant TLR4 polymorphisms to structurally unrelated TLR4 agonists is proposed.
2006Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses.J Biol ChemActivation of dendritic cells by ligands for Toll-like receptors (TLR) is a crucial event in the initiation of innate and adaptive immune responses. Several classes of TLR ligands have been identified that interact with distinct members of the TLR-family. TLR4 ligands include lipopolysaccharide derived from different Gram-negative bacteria and viral proteins. Recent reports have demonstrated the TLR-mediated activation of dendritic cells by heat shock proteins (HSPs). However, doubts were raised as to what extent this effect was due to lipopolysaccharide contaminations of the HSP preparations. We re-examined this phenomenon using Gp96 or its N-terminal domain, nominally endotoxin-free (<0.5 enzyme units/mg). As described previously, innate immune cells are activated by Gp96 at high concentrations (> or =50 microg/ml) but not at lower concentrations. However, preincubation of low amounts of Gp96 with TLR2 and TLR4 ligands at concentrations unable to activate dendritic cells by themselves results in the production of high levels of proinflammatory cytokines, up-regulation of activation markers, and amplification of T cell activation. Our results provide significant new insights into the mechanism of HSP-mediated dendritic cell activation and present a new function of HSPs in the amplification of dendritic cell activation by bacterial products and induction of adaptive immune responses.
2006A cyanobacterial LPS antagonist prevents endotoxin shock and blocks sustained TLR4 stimulation required for cytokine expression.J Exp MedToll-like receptors (TLRs) function as primary sensors that elicit coordinated innate immune defenses through recognition of microbial products and induction of immune and proinflammatory genes. Here we report the identification and biological characterization of a lipopolysaccharide (LPS)-like molecule extracted from the cyanobacterium Oscillatoria Planktothrix FP1 (cyanobacterial product [CyP]) that is not stimulatory per se but acts as a potent and selective antagonist of bacterial LPS. CyP binds to MD-2 and efficiently competes with LPS for binding to the TLR4-MD-2 receptor complex. The addition of CyP together with LPS completely inhibited both MyD88- and TRIF-dependent pathways and suppressed the whole LPS-induced gene transcription program in human dendritic cells (DCs). CyP protected mice from endotoxin shock in spite of a lower capacity to inhibit LPS stimulation of mouse DCs. Interestingly, the delayed addition of CyP to DCs responding to LPS strongly inhibited signaling and cytokine production by immediate down-regulation of inflammatory cytokine mRNAs while not affecting other aspects of DC maturation, such as expression of major histocompatibility complex molecules, costimulatory molecules, and CCR7. Collectively, these results indicate that CyP is a potent competitive inhibitor of LPS in vitro and in vivo and reveal the requirement of sustained TLR4 stimulation for induction of cytokine genes in human DCs.
2006Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction.Eur J Heart FailRecent studies have shown that heat shock protein (HSP) 70 may serve as a "damage signal" to the immune system and could be the endogenous ligand for Toll-like receptor (TLR) 4 mediating synthesis of inflammatory cytokines.To explore the relationship between circulating HSP70 levels and activation of monocyte TLR4 and myocardial damage after AMI.This study examined circulating HSP70 and monocyte TLR4 levels in 52 patients with AMI and 20 controls, and analyzed ex vivo inflammatory cytokine productions using HSP70-stimulated monocytes. Circulating HSP70 levels were higher in AMI patients on day 1 after onset than in controls and remained elevated in AMI patients 14 days after onset. HSP70 levels were positively correlated with monocyte TLR4, plasma interleukin-6 and tumor necrosis factor-alpha levels in AMI patients. HSP70 levels 14 days after onset were higher in AMI patients with heart failure (n=15) than in those without heart failure. In our in vitro study, HSP70-stimulated monocytes resulted in dose-dependent TLR4 expression and release of inflammatory cytokines. TLR4 antibody inhibited inflammatory cytokines release.Elevated circulating levels of HSP70 may be involved in TLR4 signal-mediated immune response and the progression of heart failure after AMI.
2006Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis.J ImmunolDendritic cells (DCs) are specialized APCs that can be activated upon pathogen recognition as well as recognition of endogenous ligands, which are released during inflammation and cell stress. The recognition of exogenous and endogenous ligands depends on TLRs, which are abundantly expressed in synovial tissue from rheumatoid arthritis (RA) patients. Furthermore TLR ligands are found to be present in RA serum and synovial fluid and are significantly increased, compared with serum and synovial fluid from healthy volunteers and patients with systemic sclerosis and systemic lupus erythematosus. Identification of novel endogenous TLR ligands might contribute to the elucidation of the role of TLRs in RA and other autoimmune diseases. In this study, we investigated whether five members of the small heat shock protein (HSP) family were involved in TLR4-mediated DC activation and whether these small HSPs were present in RA synovial tissue. In vitro, monocyte-derived DCs were stimulated with recombinant alphaA crystallin, alphaB crystallin, HSP20, HSPB8, and HSP27. Using flow cytometry and multiplex cytokine assays, we showed that both alphaA crystallin and HSPB8 were able to activate DCs and that this activation was TLR4 dependent. Furthermore, Western blot and immunohistochemistry showed that HSPB8 was abundantly expressed in synovial tissue from patients with RA. With these experiments, we identified sHSP alphaA crystallin and HSPB8 as two new endogenous TLR4 ligands from which HSPB8 is abundantly expressed in RA synovial tissue. These findings suggest a role for HSPB8 during the inflammatory process in autoimmune diseases such as RA.
2006[Genetic polymorphisms and infections].Med Mal InfectRecent studies have shown that genetic variants, responsible for the different human response when facing an infectious risk, concerned the genes of proteins involved in either recognition of the infectious agent, in the inflammatory cascade, or in the coagulation process. For example, some studies clearly demonstrated that if a twin was affected by an infectious disease, the risk of infection by the same agent for the other twin was significantly higher in homozygote than in heterozygote twins. In Caucasians, a punctual mutation of the TLR2 cytosol was proved to block the response to bacterial lipoproteins and to some Gram positive bacteria and could be responsible for a greater susceptibility to septic shock. Several polymorphisms of the tlr4 gene have been involved in the onset of septic shock in postsurgery infection due to Gram(-) bacilli. Paradoxically, these variants seemed to protect against legionellosis. In pediatrics, polymorphisms of tlr4 were also clearly identified as risk factors for meningococcemia of severe bronchiolitis due to the respiratory syncytial virus (RSV) in children under 2 years of age. A polymorphism of the TLR5 receptor gene, which creates a stop codon and which is responsible for a nonfunctionality of the receptor was associated with the onset of severe legionellosis. Analysing the functions of these genetic polymorphisms in the onset of sepsis will open the way to a lot of research on specific treatments focused on genetic abnormalities.
2006TLR2, TLR4, CD14, CD11B, and CD11C expressions on monocytes surface and cytokine production in patients with sepsis, severe sepsis, and septic shock.ShockBacterial recognition and induced cellular activation are fundamental for the host control of infection, yet the limit between protective and harmful response is still inexact. Forty-one patients were enrolled in this study: 14 with sepsis, 12 with severe sepsis, and 15 with septic shock. Seventeen healthy volunteers (HV) were included as control. The expression of TLR2, TLR4, CD14, CD11b, and CD11c was analyzed on monocytes surface in whole blood. sCD14 was measured in serum, and TNF-alpha, IL-6, and IL-10 cytokine levels were measured in PBMC supernatants after LPS, IL-1beta, and TNF-alpha stimuli by ELISA. An increase in sCD14 and a decreased mCD14 were found in patients as compared with HV (P < 0.001). However, no differences in the expression of TLR2, TLR4, and CD11c were found among the groups. A trend toward differential expression of CD11b was observed, with higher values found in patients with sepsis as compared with HV. A negative regulation of the inflammatory cytokine production was observed in patients with severe sepsis and shock septic in relation to sepsis and HV, regardless of the stimulus. No significant difference in IL-10 production was found among the groups. In this study, we show that the inflammatory response is associated with the continuum of clinical manifestations of sepsis, with a strong inflammatory response in the early phase (sepsis) and a refractory picture in the late phases (severe sepsis and septic shock). Correlation between cell surface receptors and cytokine production after IL-1beta and TNF-alpha stimuli and the observation of a single and same standard response with the different stimulus suggest a pattern of immunology response that is not dependent only on the expression of the evaluated receptors and that is likely to have a regulation in the intracellular signaling pathways.
2006Hypertonic saline enhances host defense to bacterial challenge by augmenting Toll-like receptors.Crit Care MedTo determine whether hypertonic saline infusion modulates thermal injury-induced bacterial translocation and host response to bacterial challenge through the augmentation of Toll-like receptors (TLRs).Prospective, experimental study.Research laboratory at a university hospital.Thermal injury models in the mice.In experiment 1, mice underwent burn were given with 10 mL/kg hypertonic saline (7.5% NaCl), 10 mg/kg saline (N/S1), or 80 mL/kg saline (N/S2) at 4 or 8 hrs after burn. At 24 hrs after burn, mesenteric lymph nodes were harvested for bacterial translocation assay. In experiment 2, mice receiving hypertonic saline or saline after thermal injury received peritoneal challenge with Escherichia coli, and bacterial clearance was measured. In experiment 3, peritoneal cells from mice receiving hypertonic saline or saline after thermal injury were incubated with E. coli, and bacterial count, TLR2, TLR4, MIP2, CXCR2, pp38, and ERK expression were evaluated. In experiment 4, reactive oxygen species production, CXCR2, MIP2, TLR2, and TLR4 expression of bone marrow neutrophil from mice receiving hypertonic saline or saline treatment after thermal injury were evaluated. In experiment 5, neutrophil were cultured with hypertonic saline or N/S and incubated with E. coli. TLR2 and TLR4 expression and bacterial count were evaluated. In experiment 6, mice were fed with oral antibiotics with or without lipopolysaccharide, a TLR ligand, supplements. At 24 hrs after burn, mesenteric lymph nodes were harvested for bacterial translocation assay, and neutrophils were harvested for TLR2 and TLR4 protein assay.Hypertonic saline decreased thermal injury-induced bacterial translocation. Hypertonic saline increased bacterial clearance, phagocytic activity, and TLR2, TLR4, CXCR2, pp38, and p44/42 expression of peritoneal cells. Hypertonic saline treatment at 4 or 8 hrs after thermal injury decreased reactive oxygen species production of neutrophil. Hypertonic saline injection increased TLR2, TLR4, and pp38 expression of neutrophil. In vitro treatment of neutrophil with hypertonic saline increased phagocytic activity and TLR2 and TLR4 expression. Commensal depletion with oral antibiotics decreased TLR2 and TLR4 expression of neutrophil; lipopolysaccharide increased TLR4 expression of neutrophil and decreased thermal injury-induced bacterial translocation.Restoration of extracellular fluid in burn shock with hypertonic saline decreased thermal injury-induced bacterial translocation. Hypertonic saline increased the phagocytic activity and TLR2, TLR4, CXCR2, pp38, and P44/42 expression of peritoneal cells. Hypertonic saline decreased reactive oxygen species but increased TLR2, TLR4, and pp38 expression and phagocytic activity of bone marrow neutrophil. Stimulation of the TLRs with lipopolysaccharide in commensal depleted mice increased TLRs expression of neutrophil and decreased thermal injury-induced bacterial translocation. Taken together with the fact that stimulation of TLRs with hypertonic saline increases phagocytic activity of systemic inflammatory cells, we conclude that TLRs play a critical role in the innate immunity by recognizing bacteria and that hypertonic saline enhances host response to bacterial challenge by increasing TLRs of inflammatory cells.
2006Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility.J Reprod ImmunolGender-based differences in the incidence and severity of bacterial sepsis render males more susceptible to septic shock than females. However, the mechanisms that underlie this sexual dimorphism remain unclear. In the present study we confirm that males produce significantly higher levels of the inflammatory cytokine IL-6 and the acute phase protein LPS-binding protein (LBP) than females following in vivo lipopolysaccharide (LPS) exposure. It has also been verified that LPS-challenged male-derived macrophages produce higher levels of IL-1beta and lower levels of PGE(2) than similarly treated female-derived cells. Importantly, we demonstrated that male-derived macrophages produce significantly higher levels of the inflammatory chemokine IP-10 following LPS challenge than their female counterparts. It has been demonstrated further that, although resting macrophage levels of mRNA encoding Toll-like receptor 4 (TLR4) and its co-receptor CD14, are not significantly different between genders, male-derived macrophages constitutively express higher levels of these proteins on their cell surface. Elevated circulating levels of LBP and constitutively higher cell surface expression of TLR4 and CD14 on macrophages in males could result in the observed sexual dimorphism in LPS-induced inflammatory mediator production and the greater susceptibility of males to bacterial sepsis.
2006Toxoplasma gondii-derived heat shock protein 70 stimulates maturation of murine bone marrow-derived dendritic cells via Toll-like receptor 4.Cell Stress ChaperonesToxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) induced maturation of bone marrow-derived dendritic cells (DCs) of wild-type (WT) C57BL/6 mice as evidenced by an increase in surface expression of MHC class I and II molecules and costimulatory molecules such as CD40, CD80, and CD86. Functionally, decreased phagocytic ability and increased alloreactive T cell stimulatory ability were observed in T.g.HSP70-stimulated DCs. These phenotypic and functional changes of T.g.HSP70-stimulated DCs were demonstrated in Toll-like receptor (TLR) 2- and myeloid differentiation factor 88 (MyD88)-deficient but not TLR4-deficient C57BL/6 mice. DCs from WT and TLR2-deficient but not TLR4-deficient mice produced IL-12 after T.g.HSP70 stimulation. T.g.HSP70-stimulated DCs from WT, TLR2-deficient, and MyD88-deficient, but not TLR4-deficient mice expressed IFN-beta mRNA. Thus, T.g.HSP70 stimulates murine DC maturation via TLR4 through the MyD88-independent signal transduction cascade.
2006Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization.Biol ChemHere we report on the purification, structural characterization, and biological activity of a glycolipid, 2-O-alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-alpha(R)-3-hydroxytetradecanoyl-(R)-3-hydroxytetradecanoate (RL-2,2(14)) produced by Burkholderia (Pseudomonas) plantarii. RL-2,2(14) is structurally very similar to a rhamnolipid exotoxin from Pseudomonas aeruginosa and identical to the rhamnolipid of Burkholderia pseudomallei, the causative agent of melioidosis. Interestingly, RL-2,2(14) exhibits strong stimulatory activity on human mononuclear cells to produce tumor necrosis factor alpha, the overproduction of which is known to cause sepsis and the septic shock syndrome. Such a property has not been noted so far for rhamnolipid exotoxins, only for bacterial endotoxins (lipopolysaccharide, LPS). Consequently, we analyzed RL-2,2(14) with respect to its pathophysiological activities as a heat-stable extracellular toxin. Like LPS, the cell-stimulating activity of the rhamnolipid could be inhibited by incubation with polymyxin B. However, immune cell activation by RL-2,2(14) does nor occur via receptors that are involved in LPS (TLR4) or lipopeptide signaling (TLR2). Despite its completely different chemical structure, RL-2,2(14) exhibits a variety of endotoxin-related physicochemical characteristics, such as a cubic-inverted supramolecular structure. These data are in good agreement with our conformational concept of endotoxicity: intercalation of naturally originating virulence factors into the immune cell membrane leads to strong mechanical stress on integral proteins, eventually causing cell activation.
2006Variant IRAK-1 haplotype is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis.Am J Respir Crit Care MedThe IL-1 receptor-associated kinase (IRAK-1) plays a central role in TLR2- and TLR4-induced activation of nuclear factor (NF)-kappaB, a critical event in the transcriptional regulation of many sepsis-associated proinflammatory mediators. There are two haplotypes for the IRAK-1 gene in Caucasians, with the variant haplotype consisting of five intron single-nucleotide polymorphisms (SNPs) and three exon SNPs.To examine the functional significance of the IRAK-1 variant haplotype in modifying nuclear translocation of NF-kappaB and affecting outcomes from sepsis.One hundred fifty-five Caucasian patients with sepsis were included. Twenty-one (14%) were homozygous for the IRAK-1 variant haplotype as determined by a SNP in which T is replaced with C at nucleotide 1,595 within exon 12 of the IRAK-1 gene. The IRAK-1 variant haplotype was associated with increased nuclear levels of NF-kappaB in LPS-stimulated peripheral blood neutrophils from patients with sepsis compared with that found in patients with wild-type IRAK-1 haplotype (p=0.0009). There was an increased incidence of shock (p=0.047) (odds ratio [OR], 2.9; 95% confidence interval [CI], 1.1-7.7), greater requirement for more prolonged mechanical ventilator support (p=0.04) (OR, 2.7; 95% CI, 1.05-6.9), and higher 60-d mortality (p=0.05) (OR, 2.7; 95% CI, 1.0-6.8) in patients with the IRAK-1 variant haplotype compared with wild type.These results indicate that the IRAK-1 variant haplotype is functionally significant in patients with sepsis, being associated with increased nuclear translocation of NF-kappaB, more severe organ dysfunction, and higher mortality.
2006Extracellular 70-kd heat shock protein in mid-trimester amniotic fluid and its effect on cytokine production by ex vivo-cultured amniotic fluid cells.Am J Obstet GynecolThe 70-kd heat shock protein is released from cells in response to stress and functions as a regulator of innate immunity. We hypothesized that 70-kd heat shock protein in mid-trimester amniotic fluid might regulate local immune system activation.Amniotic fluid that was obtained from 200 women who underwent amniocentesis at 15 to 19 weeks of gestation was tested by enzyme-linked immunosorbent assay for 70-kd heat shock protein, tumor necrosis factor-alpha, and interleukin-1beta and -6. The amniotic fluid cellular fraction also was evaluated for Mycoplasma hominis by gene amplification. Whole amniotic fluids were incubated ex vivo in medium alone or medium that contained peptidoglycan, a TLR2 ligand, or lipopolysaccharide, a TLR4 ligand. After 24 hours, the supernatants were collected and assayed for 70-kd heat shock protein. The influence of exogenous 70-kd heat shock protein on tumor necrosis factor-alpha and interleukin-1beta and -6 production by whole amniotic fluid was assessed similarly.The 70-kd heat shock protein was detected in all amniotic fluids with a median (range) of 11.5 ng/mL (1.2-76.7). The intra-amniotic 70-kd heat shock protein concentration was correlated positively only with amniotic fluid tumor necrosis factor-alpha levels (P = .0002). Detection of M hominis was associated with an increased 70-kd heat shock protein concentration (median, 17.2 ng/mL; P = .01). The addition of peptidoglycan resulted in a stimulation of 70-kd heat shock protein production, and exogenous 70-kd heat shock protein stimulated the release of tumor necrosis factor-alpha by amniotic fluid cells.The 70-kd heat shock protein is released from cells in mid-trimester amniotic fluid as a consequence of TLR2 stimulation and potentiates tumor necrosis factor-alpha production.
2006Toll-like receptor-4 signaling mediates hepatic injury and systemic inflammation in hemorrhagic shock.J Am Coll SurgHemorrhagic shock and resuscitation (HS/R) activates inflammatory pathways leading to organ injury after trauma. Toll-like receptors (TLRs), such as TLR4, are required for activation of proinflammatory cellular signaling pathways in response to microbial products, but can also recognize endogenous molecules released from damaged tissues. Using mouse strains deficient in TLR4 protein or signaling, we hypothesized that TLR4 would be important for development of systemic inflammation and hepatic injury after HS/R. We sought to determine the role of lipolysaccharide through use of CD14-/- mice.TLR4-mutant (C[3H]/HeJ), TLR4-deficient (TLR4-/-), CD14-/-, TLR2-/- mice and wild-type (WT) controls were subjected to HS/R or sham procedure (Sham). At 6.5 hours, mice were euthanized for determination of serum interleukin (IL)-6, IL-10, and alanine aminotransferase concentrations. Hepatic nuclear factor-kappaB DNA-binding (electrophoretic mobility shift assay) and tumor necrosis factor, IL-10, and inducible nitric oxide synthase mRNA expression (semiquantitative reverse transcriptase-polymerase chain reaction) were determined.Relative to sham, TLR4-competent (C[3H]/HeOuJ) mice exhibited a significant increase in serum alanine aminotransferase, IL-6, and IL-10 after HS/R (p < 0.05). TLR4-mutant (C[3H]/HeJ) mice were protected from HS/R-induced hepatocellular injury and had lower circulating IL-6 and IL-10 levels than WT (p < 0.05). Similarly, TLR4-/- mice had lower circulating IL-6 and IL-10 levels than WT after HS/R (p < 0.05). Hepatic nuclear factor-kappaB activation and tumor necrosis factor, IL-10, and inducible nitric oxide synthase mRNA expression were lower in TLR4-mutant compared with TLR4-competent mice after HS/R. In contrast, serum ALT concentrations were comparable between CD14-/- and TLR2-/- mice and their WT counterparts after HS/R.These results suggest that TLR4, but not TLR2, signaling is required for initiation of the systemic inflammatory response and development of hepatocellular injury after HS/R. Lack of involvement of CD14 argues for a lipolysaccharide-independent role for TLR4 in this process.
2006The wild-derived inbred mouse strain SPRET/Ei is resistant to LPS and defective in IFN-beta production.Proc Natl Acad Sci U S AAlthough activation of Toll-like receptor 4 (TLR4)-positive cells is essential for eliminating Gram-negative bacteria, overactivation of these cells by the TLR4 ligand LPS initiates a systemic inflammatory reaction and shock. Here we demonstrate that SPRET/Ei mice, derived from Mus spretus, exhibit a dominant resistance against LPS-induced lethality. This resistance is mediated by bone marrow-derived cells. Macrophages from these mice exhibit normal signaling and gene expression responses that depend on the myeloid differentiation factor 88 adaptor protein, but they are impaired in IFN-beta production. The defect appears to be specific for IFN-beta, although the SPRET/Ei IFN-beta promoter is normal. In vivo IFN-beta induction by LPS or influenza virus is very low in SPRET/Ei mice, but IFN-beta-treatment restores the sensitivity to LPS, and IFN type 1 receptor-deficient mice are also resistant to LPS. Because of the defective induction of IFN-beta, these mice are completely resistant to Listeria monocytogenes and highly sensitive to Leishmania major infection. Stimulation of SPRET/Ei macrophages leads to rapid down-regulation of IFN type 1 receptor mRNA expression, which is reflected in poor induction of IFN-beta-dependent genes. This finding indicates that the resistance of SPRET/Ei mice to LPS is due to disruption of a positive-feedback loop that amplifies IFN-beta production. In contrast to TLR4-deficient mice, SPRET/Ei mice resist both LPS and sepsis induced with Klebsiella pneumoniae.
2006Association between heat shock protein 70s and toll-like receptor polymorphisms with long-term renal allograft survival.Transpl IntLong-term renal allograft survival has not improved significantly in recent years and only a minority of grafts survives for more than 15 years. To evaluate the association between HSPA1A G(190)C, HSPA1B A(1267)G and TLR4 A(299)G polymorphisms and allograft survival we analyzed DNA of patients with long-term renal graft function over 15 years (Tx15), consecutively transplanted recipients (Tx), patients with acute rejection and healthy controls. HSPA1B (1267)AA was less prevalent in Tx versus Tx15 (P = 0.02) and versus controls (P = 0.004). HSPA1B (1267)GG was more frequent in Tx versus Tx15 (P = 0.005) and versus controls (P = 0.002). HSPA1B (1267)G allele occurred more often in Tx versus Tx15 (P = 0.03), and versus controls (P = 0.02). TLR4 (299)AG genotype prevalence was increased in Tx15 versus Tx (P = 0.02), while TLR4 (299)G allele was more frequent in Tx15 versus Tx (P = 0.02). The increased frequency of HSPA1B (1267)AA and TLR4 (299)AG genotypes in Tx15 group indicates that better cytoprotective functions in HSPA1B (1267)AA and reduced proinflammatory response in TLR4 (299)AG carriers might have improved renal allograft survival.
2006Essential role of MAPK phosphatase-1 in the negative control of innate immune responses.J ImmunolTLR-induced innate immunity and inflammation are mediated by signaling cascades leading to activation of the MAPK family of Ser/Thr protein kinases, including p38 MAPK, which controls cytokine release during innate and adoptive immune responses. Failure to terminate such inflammatory reactions may lead to detrimental systemic effects, including septic shock and autoimmunity. In this study, we provide genetic evidence of a critical and nonredundant role of MAPK phosphatase (MKP)-1 in the negative control of MAPK-regulated inflammatory reactions in vivo. MKP-1-/- mice are hyperresponsive to low-dose LPS-induced toxicity and exhibit significantly increased serum TNF-alpha, IL-6, IL-12, MCP-1, IFN-gamma, and IL-10 levels after systemic administration of LPS. Furthermore, absence of MKP-1 increases systemic levels of proinflammatory cytokines and exacerbates disease development in a mouse model of rheumatoid arthritis. When activated through TLR2, TLR3, TLR4, TLR5, and TLR9, bone marrow-derived MKP-1-/- macrophages exhibit increased cytokine production and elevated expression of the differentiation markers B7.2 (CD86) and CD40. MKP-1-deficient macrophages also show enhanced constitutive and TLR-induced activation of p38 MAPK. Based on these findings, we propose that MKP-1 is an essential component of the intracellular homeostasis that controls the threshold and magnitude of p38 MAPK activation in macrophages, and inflammatory conditions accentuate the significance of this regulatory function.
2006Acetylsalicylic acid-induced release of HSP70 from mast cells results in cell activation through TLR pathway.Exp HematolMast cells are considered major players in IgE-mediated allergic responses, but have also recently been recognized as active participants in innate as well as specific immune responses. Heat stress can modulate innate immunity by inducing stress proteins such as heat shock proteins (HSPs). It has been reported that HSPs are capable of inducing the production of pro-inflammatory cytokines by the monocyte-macrophage system. In the current study, we explored whether the stress response induces HSPs and affects the signaling pathways of mast cells.In mouse mast cells, derived from a culture of bone marrow cells of male BALB/cBy and null HSF-1(-/-) mice, responsiveness to exogenous and endogenous HSP70 was monitored by measuring cytokine release.Using BMMC, we show that treatment with heat shock or acetylsalicylic acid results in a selective induction of HSPs, and leads to release of HSP70 into the extracellular environment. The release of HSP70 from mast cells may be of functional importance. We found that after induction of HSP70, the production of TNF-alpha and IL-6 was increased. In a number of experiments, we demonstrated that exogenous/secreted HSP70 is most likely responsible for the activation of mast cells to produce cytokines. Extracellular HSP70 induced production of TNF-alpha and IL-6 through the activation of the TLR4 receptor pathway, which was evidenced by an abrogation of the response in mast cells cultured from TLR4(null) or HSF-1(-/-) mice.Our experiments suggest that stress conditions can induce pro-inflammatory cytokine production by mast cells through an autocrine or paracrine stimulation of TLR receptors after a heat shock response. The recognition that heat shock proteins induce mast cell activation suggests an involvement of these cells in the immunological processes induced by heat shock response.
2006The zinc finger protein Gfi1 acts upstream of TNF to attenuate endotoxin-mediated inflammatory responses in the lung.Eur J ImmunolGfi1 is a 55-kD nuclear zinc finger protein that is differentially expressed in lymphoid and myeloid cells. Gfi1(-/-) mice show a very strong systemic response to the endotoxin LPS and die rapidly within 36 h with symptoms of septic shock. Here we report that the pathohysiological processes for this exaggerated inflammatory response take place in the lung. After LPS treatment, lungs of Gfi1(-/-) mice showed a rapid accumulation of mononuclear cells and a significant overproduction of inflammatory cytokines such as TNF, IL-1beta and IL-6. Increased cytokine production was also observed in blood-free perfused lungs from Gfi1(-/-) mice exposed to either LPS or overventilation. Alveolar macrophages but not airway epithelial cells from Gfi1(-/-) mice were found to be responsible for the enhanced cytokine production. Strikingly, when the TNF gene was deleted, Gfi1(-/-) animals were completely rescued from LPS hypersensitivity and had significantly lower IL-1beta and IL-6 levels. We conclude that the unrestrained endotoxin response of Gfi1(-/-) mice occurs mainly in the lung and that Gfi1 represents a novel factor limiting the inflammatory immune response of this organ, and propose that Gfi1 exerts its regulatory function in alveolar macrophages downstream of the LPS receptor (TLR4) and upstream of TNF.
2005Endotoxin recognition: in fish or not in fish?FEBS LettThe interaction between pathogens and their multicellular hosts is initiated by activation of pathogen recognition receptors (PRRs). These receptors, that include most notably members of the toll-like receptor (TLR) family, recognize specific pathogen-associated molecular patterns (PAMPs). TLR4 is a central part of the receptor complex that is involved in the activation of the immune system by lipopolysaccharide (LPS) through the specific recognition of its endotoxic moiety (Lipid A). This is a critical event that is essential for the immune response to Gram-negative bacteria as well as the etiology of endotoxic shock. Interestingly, compared to mammals, fish are resistant to endotoxic shock. This in vivo resistance concurs with in vitro studies demonstrating significantly lowered sensitivity of fish leukocytes to LPS activation. Further, our in vitro analyses demonstrate that in trout mononuclear phagocytes, LPS fails to induce antiviral genes, an event that occurs downstream of TLR4 and is required for the development of endotoxic shock. Finally, an in silico approach that includes mining of different piscine genomic and EST databases, reveals the presence in fish of all of the major TLR signaling elements except for the molecules specifically involved in TLR4-mediated endotoxin recognition and signaling in mammals. Collectively, our analysis questions the existence of TLR4-mediated cellular responses to LPS in fish. We further speculate that other receptors, in particular beta-2 integrins, may play a primary role in the activation of piscine leukocytes by LPS.
2005The immune responses to human and microbial heat shock proteins in periodontal disease with and without coronary heart disease.Clin Exp ImmunolThe human 60 kDa and microbial 65 kDa heat shock proteins (HSP) have been implicated in the pathogenesis of chronic periodontitis (P) and coronary heart disease (CHD). We have studied four male non-smoking cohorts of 81 subjects, matched for age. Group (a) consisted of a healthy group with minimal gingivitis (n = 18), group (b) were patients with P (n = 23), group (c) patients with CHD and minimal gingivitis (n = 20) and group (d) patients with CHD and P (n = 20). T cells separated from peripheral blood were found to be primed to both microbial HSP65 and human HSP60 but significant CD4, human leucocyte antigen (HLA) class II-restricted proliferative responses were found only with the human HSP60 in patients with P (P < 0.001) and CHD without (P < 0.001) or with (P < 0.00001) periodontitis. Dose-dependent inhibition of T cell proliferative responses was carried out to determine the receptors involved in recognition of HSP60 and HSP65. Monoclonal antibodies to CD14 showed inhibition of T cell proliferation stimulated by both HSP60 and HSP65, consistent with the role of CD14 as a receptor for these HSPs in P and CHD. The toll-like receptor 2 (TLR-) and TLR-4 were then studied and these showed that TLR-4 was recognized by microbial HSP65, whereas TLR-2 was recognised by human HSP60 in both P and CHD. However, a dissociation was found in the HSP60 and TLR4 interaction, as TLR4 appeared to have been recognized by HSP60 in P but not in CHD. The results suggest an autoimmune or cross-reactive CD4(+) class II-restricted T cell response to the human HSP60 in P and CHD. Further studies are required to determine if there is a common epitope within HSP60 that stimulates T cell proliferation in P and CHD.
2004Lipopolysaccharide could be internalized into human peripheral blood mononuclear cells and elicit TNF-alpha release, but not via the pathway of toll-like receptor 4 on the cell surface.Cell Mol ImmunolLipopolysaccharide (LPS), the principal component of the outer membrane of Gram-negative bacteria, stimulates various cell types to release numerous proinflammatory mediators such as TNF-alpha, IL-6 and IL-12, which may damage cells and lead to organ injury, even sepsis and septic shock. Toll-like receptor 4 (TLR4) has been identified as the receptor involved in the recognition of LPS, but the role of LPS uptake in activating signal transduction remains controversial. In the present study, TNF-alpha was used as a marker of macrophages/ monocytes activated by LPS, and CQ was used as an inhibitor of endosome mature in order to definitude what stage of the signal transduction elicited by LPS was interrupted. We found that there indeed existed internalization of LPS and internalization partially participated in LPS signaling since CQ inhibited cytokine release, and decreased accumulation of FITC-LPS in hPBMCs. In contrast, anti-hTLR4 antibody could decrease cytokine release, but had no inhibition on accumulation of FITC-LPS. This result revealed that inhibition of cytokine release was related to reduction of FITC-LPS accumulation in the cells. But TLR4 on the cell surface couldn't participate in internalization of LPS. Thus, LPS signaling and internalization couldn't be viewed as mutually independent processes.
2006Hemorrhagic shock-activated neutrophils augment TLR4 signaling-induced TLR2 upregulation in alveolar macrophages: role in hemorrhage-primed lung inflammation.Am J Physiol Lung Cell Mol PhysiolHemorrhagic shock renders patients susceptible to the development of acute lung injury in response to a second inflammatory stimulus by as yet unclear mechanisms. We investigated the role of neutrophils (PMN) in alveolar macrophage (AMphi) priming, specifically, the role in mediating Toll-like receptor (TLR)4 and TLR2 cross talk in AMphi. Using a mouse model of hemorrhagic shock followed by intratracheal administration of LPS, we explored a novel function of shock-activated PMN in the mechanism of TLR2 upregulation induced by LPS-TLR4 signaling in AMphi. We showed that antecedent hemorrhagic shock enhanced LPS-induced TLR2 upregulation in AMphi. In neutropenic mice subjected to shock, the LPS-induced TLR2 expression was significantly reduced, and the response was restored upon repletion with PMN obtained from shock-resuscitated mice but not by PMN from sham-operated mice. These findings were recapitulated in mouse AMphi cocultured with PMN. The enhanced TLR2 upregulation in AMphi augmented the expression of macrophage inflammatory protein-2, TNF-alpha, and macrophage migration inhibitory factor in the AMphi in response to sequential challenges of LPS and peptidoglycan, a prototypical TLR2 ligand, which physiologically associated with amplified AMphi-induced PMN migration into air pouch and lung alveoli. Thus TLR2 expression in AMphi, signaled by TLR4 and regulated by shock-activated PMN, is an important positive-feedback mechanism responsible for shock-primed PMN infiltration into the lung after primary PMN sequestration.
2005Heat shock response inhibits NF-kappaB activation and cytokine production in murine Kupffer cells.J Surg ResKupffer cells play a crucial role in the pathogenesis of sepsis through production of proinflammatory mediators and control of systemic endotoxemia. The anti-inflammatory effects of heat shock response (HSP) have been well documented. However, the role of HSP in lipopolysaccharide (LPS) induced Kupffer cell activation has not been fully investigated. In this study, we investigated the effects of HSP on LPS induced Kupffer cell NF-kappaB activation and cytokine production.Kupffer cells were isolated from mice by collagenase digestion and HSP was induced by culturing Kupffer cells with sodium arsenite. Kupffer cells were stimulated in vitro by LPS. Heat shock protein (HSP)-70 expression and cytoplasmic IkappaBalpha protein was determined by Western blot. Supernatant tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 and IL-10 levels were measured by ELISA. NF-kappaB activation was analyzed by electrophoresis mobility shift assay. Cytokine and IkappaBalpha mRNA expression were determined by RT-PCR. Toll-like receptor 4 expression on Kupffer cells was determined by flow cytometry.HSP pre-conditioning significantly inhibited LPS-induced cytokine TNF-alpha and IL-6 production and mRNA expression. NF-kappaB activation and IkappaBalpha degradation induced by LPS were attenuated by HSP. HSP up-regulated expression of IkappaBalpha mRNA. No effect of HSP on cell surface expression of TLR4 was observed.Increased IkappaBalpha stability and up-regulation of IkappaBalpha gene expression may be one of the mechanisms of the inhibition of LPS induced Kupffer cell activation by HSP. HSP also inhibited expression of the anti-inflammatory cytokine IL-10, and the mechanism and biological significance of this effect merit further investigation.
2005Glycoprotein 96-activated dendritic cells induce a CD8-biased T cell response.Cell Stress ChaperonesHeat shock proteins (Hsps) are able to induce protective immune responses against pathogens and tumors after injection into immunocompetent hosts. The activation of components of the adaptive immune system, including cytotoxic T lymphocytes specific for pathogen- or tumor-derived peptides, is crucial for the establishment of immunoprotection. Hsps acquire these peptides during intracellular protein degradation and when released during necrotic cell death, facilitate their uptake and Minor Histocompatibility Complex (MHC)-restricted representation by professional antigen-presenting cells (APCs). In addition, the interaction of Hsps with APCs, including the Endoplasmatic Reticulum (ER)-resident chaperone glycoprotein 96 (Gp96), induces the maturation of these cells by Toll-like receptor (TLR)-mediated signaling events. We now provide evidence that in contrast to lipopolysaccharides (LPS)-mediated dendritic cell (DC) maturation, the interaction of Gp96 with DCs leads to the preferential expansion of antigen-specific CD8-positive T cells in vitro and in vivo. This CD8 preference induced by mouse and human DCs did not correlate with enhanced levels of interleukin-12 secretion. Thus, despite the fact that both LPS and Gp96 activate DCs in a TLR4-dependent manner, the experiments of this study clearly demonstrate qualitative differences in the outcome of this maturation process, which preferentially favors the expansion of CD8-positive T cells.
2005Cyclosporine-induced renal injury induces toll-like receptor and maturation of dendritic cells.TransplantationThe toll-like receptor (TLR) is stimulated by not only pathogen-associated molecular patterns but also endogenous TLR ligands provided by injured cells. The influence of cyclosporine A (CsA)-induced renal injury on TLR expression and subsequent signaling pathway was evaluated.Induction of chronic CsA nephropathy was made by administering CsA (15 mg/kg/day) for 28 days in rats. The TLR2 and TLR4 mRNA and protein expression, TLR-signaling pathway (MYD88, NF-kappaB and AP-1), putative TLR ligand (heat shock protein 70 [HSP70]), and maturation of dendritic cells were evaluated in CsA-treated rat kidneys.Long-term CsA treatment upregulated TLR2 and TLR4 mRNA and protein expression on renal tubular cells, and these were accompanied by increased MYD88, NF-kappaB and AP-1 expression. Putative TLR ligand (HSP70) was also significantly increased in CsA-treated rat kidney compared with vehicle-treated rat kidney. CsA-treatment increased expression of TNF-alpha mRNA, the number of dendritic cells, and expression of MHC class II antigen. Double-labeling of markers of dendritic cells and MHC class II antigen revealed that matured dendritic cells increased in CsA-treated rat kidney.CsA-induced renal injury stimulates components of innate immunity, and this finding suggests close association between CsA-induced renal injury and activation of innate immunity.
2005Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway.J ImmunolWe recently reported that soluble 60-kDa heat shock protein (HSP60) can directly activate T cells via TLR2 signaling to enhance their Th2 response. In this study we investigated whether HSP60 might also activate B cells by an innate signaling pathway. We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6. In addition, the HSP60-treated B cells up-regulated their expression of MHC class II and accessory molecules CD69, CD40, and B7-2. We tested the functional ability of HSP60-treated B cells to activate an allogeneic T cell response and found enhanced secretion of both IL-10 and IFN-gamma by the responding T cells. The effects of HSP60 were found to be largely dependent on TLR4 and MyD88 signaling; B cells from TLR4-mutant mice or from MyD88 knockout mice showed decreased responses to HSP60. Care was taken to rule out contamination of the HSP60 with LPS as a causative factor. These findings add B cells to the complex web of interactions by which HSP60 can regulate immune responses.
2005[Expression of toll-like receptor mRNA in lung tissue in mice with hemorrhagic shock].Zhongguo Wei Zhong Bing Ji Jiu Yi XueTo investigate the influence and its significance of expression of Toll-like receptor mRNA in lung tissue of mice with hemorrhagic shock without resuscitation.Forty-five C57BL/6 mice were randomly divided into hemorrhagic shock group, lipopolysaccharide (LPS) group (positive control, 5 mg/kg LPS was injected into caudal vein), and sham-operation group (negative control), with 15 mice in each group. The hemorrhagic shock model was reproduced by heart puncture. The total RNA from lung tissue of mice in each group was extracted by Tripure reagent and the expression of Toll-like receptor 2 (TLR2) and TLR4 mRNA were measured by semi-quantitative reverse transcription-polymerase chain reaction.Hemorrhagic shock and LPS challenge increased lung neutrophil infiltration and erythrocyte diapedesis. The expression of TLR2 mRNA and TLR4 mRNA could be found in normal lung tissues, but they were increased at 0, 1, 2, 4, and 6 hours after hemorrhagic shock and LPS challenge. There was no change in the sham-operation group.The increased expression of TLR2 and TLR4 gene in lung tissue after hemorrhagic shock is closely correlated with the onset of acute lung injury. Though the innate immunity is enhanced, the animals are more susceptible to subsequent irritations. Over-expression of TLR2 and TLR4 may induce structural and functional damage to organs.
2005Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock.ShockSeptic shock is initiated by a systemic inflammatory response to microbial infection that frequently leads to impaired perfusion and multiple organ failure. Because of its high risk of death, septic shock is a major problem particularly for patients in the intensive care unit. In general, bacterial lipopolysaccharide (LPS) is a strong activator of various immune responses and stimulates monocytes/macrophages to release a variety of inflammatory cytokines. However, overproduction of inflammatory factors in response to bacterial infections is known to cause septic shock, similar to that induced by LPS. Studies of LPS-signaling pathways and downstream inflammatory cytokines may have critical implications in the treatment of sepsis. In recent years, there has been significant progress in understanding the signaling pathways activated by LPS and its receptor Toll-like receptor 4 (TLR4), as well as by tumor necrosis factor alpha (TNFalpha), a potent inflammatory cytokine induced by LPS stimulation. This review briefly summarizes our current knowledge of these signaling pathways and critical signal transducers. Characterization of key signal transducers may allow us to identify tractable, novel targets for the therapeutic interventions of sepsis.
2006Are mineral adjuvants triggering TLR2/TLR4 on dendritic cells by a secondary cascade reaction in vivo through the action of heat shock proteins and danger signals?Vaccine
2005Bacteroides fragilis-derived lipopolysaccharide produces cell activation and lethal toxicity via toll-like receptor 4.Infect ImmunBacteroides fragilis, which is part of the normal intestinal flora, is a frequent cause of serious disease, especially in diabetic and surgical patients. In these conditions, B. fragilis lipopolysaccharide (LPS) is likely to play a major pathophysiologic role. B. fragilis LPS is structurally different from classical enterobacterial LPS, whose biological activities are mediated by Toll-like receptor 4 (TLR4) activation. The ability of B. fragilis LPS to activate TLR4 and TLR2 was investigated here, since evidence on this issue is scarce and controversial. Each of four different protein-free B. fragilis LPS preparations could induce interleukin-8 responses in cells cotransfected with TLR4/CD14/MD2 but not TLR4/CD14 alone. Two of the preparations also induced cytokine production in cells cotransfected with TLR2/CD14 or in peritoneal macrophages from TLR4 mutant C3H/HeJ mice. Both of these activities, however, were lost after repurification with a modified phenol reextraction procedure. Importantly, all preparations could induce endotoxic shock in TLR2-deficient mice, but not in TLR4 mutant C3H/HeJ mice. Consistent with these findings, anti-TLR4 and anti-CD14, but not anti-TLR2, antibodies could inhibit B. fragilis LPS-induced cytokine production in human monocytes. Collectively, these results indicate that B. fragilis LPS signals via a TLR4/CD14/MD2-dependent pathway, and it is unable to activate TLR2. Moreover, our data document the occurrence of TLR2-activating contaminants even in highly purified B. fragilis LPS preparations. This may explain earlier contradictory findings on the ability of B. fragilis LPS to activate cells in the absence of functional TLR4. These data may be useful to devise strategies to prevent the pathophysiologic changes observed during B. fragilis sepsis and to better understand structure-activity relationships of LPS.
2005Toll-like receptor 4 mediates tolerance in macrophages stimulated with Toxoplasma gondii-derived heat shock protein 70.Infect ImmunPeritoneal macrophages (PMs) from toll-like receptor 4 (TLR4)-deficient and wild-type (WT) mice were responsive to recombinant Toxoplasma gondii-derived heat shock protein 70 (rTgHSP70) and natural TgHSP70 (nTgHSP70) in NO release, but those from TLR2-, myeloid differentiation factor 88 (MyD88)-, and interleukin-1R-associated kinase 4 (IRAK4)-deficient mice were not. Polymyxin B did not inhibit PM activation by TgHSP70 and nTgHSP70 from WT and TLR4-deficient mice, while it inhibited PM activation by lipopolysaccharide. Pretreatment of PMs from WT but not from TLR4-deficient mice with rTgHSP70 resulted in suppression of NO release on restimulation with rTgHSP70. Similarly, pretreatment of PMs from WT but not TLR4-deficient mice with nTgHSP70 resulted in suppression of NO release on restimulation with nTgHSP70. Polymyxin B did not inhibit rTgHSP70- and nTgHSP70-induced tolerance of PMs from TLR4-deficient mice. Furthermore, PMs from WT mice increased suppressor of cytokine-signaling-1 (SOCS-1) expression after restimulation with rTgHSP70, while those from TLR4-deficient mice did not. Phosphorylation of JNK and I-kappaBalpha occurred in rTgHSP70-induced tolerance of PMs from TLR4-deficient mice, but not in that from WT mice. These data indicated that TgHSP70 signaling mechanisms were mediated by TLR2, MyD88, and IRAK4, but not by TLR4. On the other hand, signaling of TgHSP70-induced tolerance was mediated by TLR4, and the expression of SOCS-1 suppressed the TLR2 signaling pathway.
2002Interactions of oral pathogens with toll-like receptors: possible role in atherosclerosis.Ann PeriodontolToll-like receptors (TLR) function as important signal transducers that mediate innate immune and inflammatory responses to pathogens through pattern recognition of virulence molecules. Although TLRs mediate protection against infection, it is also likely that they may have a pathophysiologic role in certain inflammatory diseases, such as atherosclerosis. In atherosclerotic lesions, endothelial cells and macrophages have been shown to upregulate TLR expression and may respond to TLR agonists of microbial origin, resulting in detrimental inflammatory reactions. Some of these potential TLR-activating virulence factors may be of oral origin. The detection in atherosclerotic plaques of DNA specific for Porphyromonas gingivalis and other periodontal pathogens suggests that these pathogens disseminate into the systemic circulation and localize in atheromas. The potential of periodontal and some other oral pathogens to activate TLRs in vivo is suggested by findings from cell culture experiments on interactions of selected virulence protein adhesins with TLRs and their coreceptors. Specifically, we have shown that proinflammatory cytokine induction by P. gingivalis fimbriae was inhibited by monoclonal antibodies to TLR2, TLR4, CD14, and beta2 integrins, but not by immunoglobulin isotype controls. Cytokine induction by Bacteroides forsythus protein A depended heavily on CD14 and TLR2. We also found that the ability of Streptococcus mutans protein AgI/II to stimulate cytokine release was partially dependent on CD14 and TLR4. Moreover, P. gingivalis fimbriae induced TLR-dependent activation of nuclear factor-kappaB and upregulation of costimulatory molecules in monocytic cells. These proinflammatory activities have been implicated in the pathogenesis of periodontitis, and similar inflammatory mechanisms could potentially operate in atherosclerosis. Studies by other groups have shown that P. gingivalis is capable of stimulating low-density lipoprotein oxidation, foam cell formation, and rupture of atherosclerotic plaque through induction of matrix metalloproteinases. Interestingly, at least some of these activities can be induced by TLR agonists (lipopolysaccharide and heat-shock protein-60) from Chlamydia pneumoniae, a major risk factor in atherosclerosis. Future research in animal models and in vitro cellular systems with defined mutations in TLRs may implicate TLR participation in oral pathogen-mediated atherosclerotic processes, thereby providing a mechanistic basis for the epidemiological findings linking oral pathogens to atherosclerotic disease.
2005Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3.Nat ImmunolThe cellular mechanisms that directly regulate the inflammatory response after Toll-like receptor (TLR) stimulation are unresolved at present. Here we report that glycogen synthase kinase 3 (GSK3) differentially regulates TLR-mediated production of pro- and anti-inflammatory cytokines. Stimulation of monocytes or peripheral blood mononuclear cells with TLR2, TLR4, TLR5 or TLR9 agonists induced substantial increases in interleukin 10 production while suppressing the release of proinflammatory cytokines after GSK3 inhibition. GSK3 regulated the inflammatory response by differentially affecting the nuclear amounts of transcription factors NF-kappaB subunit p65 and CREB interacting with the coactivator CBP. Administration of a GSK3 inhibitor potently suppressed the proinflammatory response in mice receiving lipopolysaccharide and mediated protection from endotoxin shock. These findings demonstrate a regulatory function for GSK3 in modulating the inflammatory response.
2005The Toll-like receptors: analysis by forward genetic methods.ImmunogeneticsMany genes, and conceivably most genes, are constitutively expressed yet have conditional functions. Their products are utilized only under special circumstances, and enforce homeostatic regulation. Mutations do not disclose the function of such genes unless the proper conditions are applied. The genes that encode the Toll-like receptors (TLRs) fall into this category. The TLRs represent the principal sensors of infection in mammals. Absent infection, mammals have little need for the TLRs; they are essential only when microbes gain access to the interior milieu of the host. The function of the TLRs in mammals was first disclosed by a spontaneous mutation in a locus called Lps, when it was shown by positional cloning to be identical to Tlr4. Random germline mutagenesis has since permitted an estimate of the total number of proteins required for TLR signaling to the level of tumor necrosis factor (TNF) synthesis and activity, and has also shown that these sensors are extremely broad in their ability to detect microbes. Ultimately, the TLRs are responsible for most infection-related phenomena, both good and bad. These include the development of fever, shock, and tissue injury, but also the activation of innate and adaptive effector mechanisms that lead to the elimination of microbes.
2005Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism.CytokineToll-like receptor-4 (TLR4) is a pattern-recognition receptor not only for exogenous ligands such as lipopolysaccharide (LPS) of Gram-negative bacteria, but also for endogenous ligands such as fibronectin, heat shock proteins and hyaluronan oligosaccharides. The Asp299Gly allele of the TLR4 gene has been associated with increased risk for severe infections, but reduced progression of atherosclerosis. We have investigated the consequences of the presence of Asp299Gly polymorphism after stimulation of mononuclear cells with lipopolysaccharide (LPS), the non-LPS TLR4 microbial stimuli Aspergillus fumigatus and Cryptococcus neoformans, and the endogenous TLR4 ligand heat shock protein 60. No differences in either production of the proinflammatory cytokine TNF or the antiinflammatory cytokine interleukin-10 were observed between volunteers with the wild-type allele, volunteers heterozygous for the Asp299Gly allele and one volunteer homozygous for the TLR4 variant. In conclusion, the presence of the Asp299Gly TLR4 polymorphism does not result in defective pro and antiinflammatory cytokine production after stimulation with either exogenous (LPS and non-LPS) or endogenous TLR4 ligands, and alternative explanations are likely to be responsible for the epidemiological data showing associations with inflammatory conditions. In addition, this is the first study to demonstrate that even homozygosity for the Asp299Gly mutation does not confer hyporesponsiveness to stimulation with TLR4 stimuli.
2005HO-1 upregulation suppresses type 1 IFN pathway in hepatic ischemia/reperfusion injury.Transplant ProcUpregulation of heme oxygenase (HO)-1, a heat shock protein 32, protects against hepatic ischemia/reperfusion (I/R) injury. Activation of "innate" toll-like receptor (TLR) 4 system triggers the I/R injury cascade. This study explores cytoprotective functions of HO-1 overexpression following exogenous administration of cobalt protoporphyrin (CoPP), and its relationship with the TLR4 pathway in a model of mouse partial hepatic warm I/R injury. CoPP treatment markedly improved hepatic function and histology, and suppressed pro-inflammatory cytokine elaboration profile, as compared with untreated controls. Although administration of CoPP did not affect intrahepatic TLR4, it downregulated IFN-inducible protein 10 (IP-10) expression. As IP-10 is the major product of type-1 IFN pathway downstream of TLR4, we then infused recombinant IFN-beta (rIFN-beta) directly into mouse livers. Interestingly, infusion of rIFN-beta upregulated hepatic IP-10 expression. In contrast, adjunctive CoPP treatment decreased IP-10 levels in mouse livers infused with rIFN-beta. Thus, CoPP-induced HO-1 upregulation suppresses type-1 IFN pathway downstream of TLR4 system in hepatic warm I/R injury model.
2005TLR4 antagonists for endotoxemia and beyond.Curr Opin Investig DrugsToll-like receptor 4 (TLR4) controls the major responding signaling system that detects the presence of Gram-negative infectious pathogens, by responding to endotoxin from their outer membrane. Normally, TLR-bearing cells signal the immune system to mount a pro-inflammatory, antibacterial response and resolve infection. However, TLR4 can also respond to a variety of 'endogenous' ligands, such as fibronectin and heat shock proteins. Overstimulation or continued stimulation of TLR4 by any ligand can result in a systemic inflammatory response, progressing to hypotension, shock, organ failure and even death. This review discusses current, preclinical and clinical research regarding eritoran (E-5564), an analog of the non-toxic lipid A from Rhodobacter sphaeroides, as well as other antagonists of TLR4 in a variety of diseases.
2005Ischemia-reperfusion injury activates innate immunity in rat kidneys.TransplantationThere is growing evidence of a role of the immune system in the pathophysiology of ischemia-reperfusion (I/R) injury, but the influence of I/R injury on innate immunity is still undetermined.Sprague-Dawley rats were used. I/R injury was induced by clamping both renal arteries for 45 min, and the rats were killed 1, 3, 5, and 7 days later. Activation of innate immunity was evaluated in terms of the expression of toll-like receptor (TLR) 2 or TLR4 mRNAs and protein, by the level of the TLR ligand (heat shock protein [HSP] 70), and maturation of dendritic cells by double-label immunohistochemistry of dendritic cells for major histocompatibility complex (MHC) class II antigen.I/R injury increased TLR2 and TLR4 mRNA and protein expression, and they were mainly observed on renal tubular cells. I/R injury also produced endogenous TLR ligand (HSP70) on renal tubular cells. I/R injury increased not only the numbers of dendritic cells but also the production of MHC class II antigen in dendritic cells, suggesting maturation of these cells. Activation of innate immunity was observed at day 1, peaked at days 3 to 5 after I/R injury, and thereafter gradually decreased.I/R injury rapidly activates the innate immune response.
2005The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4.Parasite ImmunolEntamoeba histolytica is a human pathogen that may invade the intestinal mucosa, causing amoebic colitis or hepatic abscesses when the trophozoites travel through the portal circulation to the liver. Lipopeptidophosphoglycan (LPPG) is a molecular pattern of E. histolytica recognized by the human immune system. Here we report that LPPG is exposed on the cell surface of E. histolytica trophozoites, and is recognized by the host through toll-like receptor (TLR) 2 and TLR4. Correspondingly, human embryonic kidney (HEK)-293 cells were rendered LPPG responsive through overexpression of TLR2 or TLR4/MD2. Moreover, co-expression of CD14 enhanced LPPG signal transmission through TLR2 and TLR4. The interaction of LPPG with TLR2 and TLR4 resulted in activation of NF-kappaB and release of interleukin (IL)-10, IL-12p40, tumour necrosis factor (TNF)-alpha, and IL-8 from human monocytes. Consistent with these findings, responsiveness of mouse macrophages lacking TLR2 expression (TLR2-/-) or functional TLR4 (TLR4d/d) to E. histolytica LPPG challenge was impaired while double deficient macrophages were unresponsive. In contrast to wild-type control and TLR2-/- animals succumbing to lethal shock syndrome, TLR4d/d mice were resistant to systemic LPPG challenge-induced pathology.
2005Engagement of Toll-like receptors by mycoplasmal superantigen: downregulation of TLR2 by MAM/TLR4 interaction.Cell MicrobiolMycoplasma arthritidis mitogen (MAM) is a superantigen (SAg) from M. arthritidis, an agent of murine toxic shock syndrome and arthritis. We previously demonstrated that C3H/HeJ and C3H/HeSnJ mice that differ in expression of TLR4 differed in immune reactivity to MAM. We show here that MAM directly interacts with TLR2 and TLR4 by using monoclonal antibodies to TLR2 and TLR4 which inhibit cytokine responses of THP-1 cells to MAM. Also, using macrophages from C3H substrains and TLR2-deficient mice, we confirmed that both TLR2 and TLR4 are used by MAM. Levels of IL-6 in supernatants of MAM-challenged macrophages were higher in mice which expressed only TLR2, lesser with both TLR2 and TLR4, and absent in mice lacking both TLR2 and TLR4. In addition, expression of TLR2 and TLR4 was moderately upregulated in wild-type cells but cells lacking TLR4 showed a fivefold increase in TLR2 expression. Further, blockade of TLR4 on macrophages of C3H/HeN mice with antibody greatly increased expression of TLR2 and release of IL-12p40 in response to MAM. These results indicate that the SAg, MAM, interacts with both TLR2 and TLR4 and that TLR4 signalling might downregulate the MAM/TLR2 inflammatory response.
2004Influence of bacterial antigens on activation of human splenic dendritic cells.Ann TransplantThe dendritic cells (DC) play crucial role in initiation and modulation of immune response especially innate immune response. Toll like receptors (TLR) on DC are receptors involved in innate immunity and recognizing conserved bacterial antigens like LPS and bacterial DNA. TLRs can also respond to some endogenous ligands (heat-shock proteins, heparan sulfate, fibrinogen and the contest of necrotic cells). Recognition of such endogenous substances would be a critical step in response to viruses, tumors and possibly to transplants. We investigated the influence bacterial antigens on splenic cell population enriched in DCs. After incubation with bacterial antigens the percentage of DC expressing HLA-DR+ and CD 123 + cells increased whereas that of CD68+ and CD14+ decreased. In the untreated population of human splenic DC minimal expression of TLR2, TLR3 and CD123 was found, while other receptors were not detected. After incubation with bacteria a marked increase of CD83, TLR2, TLR3 and TLR4 was observed. Treatment with LPS increased expression of TLR2, TLR4, Hsp60 and Hsp90. Stimulation by bacterial DNA resulted mainly in Hsp60 and TLR9 expression. These observation may throw light on the mechanism of exacerbation of the rejection of transplanted organs by microbial stimulation.
2005Expansion of circulating Toll-like receptor 4-positive monocytes in patients with acute coronary syndrome.CirculationAtherosclerosis is an inflammatory disease in which monocytes and macrophages have been suggested to play an essential role. The underlying signaling mechanisms are unknown thus far. We hypothesized that the human isoform of Toll-like receptor (hTLR)-4 is involved in monocyte activation of patients with accelerated forms of atherosclerosis.Expression of hTLR4 on circulating monocytes from 30 controls, 20 patients with stable angina (SA), 40 patients with unstable angina (UA), and 28 patients with acute myocardial infarction (AMI) was compared with the use of flow-cytometry and reverse transcription-polymerase chain reaction. Regulation of interleukin (IL)-12 and B7-1 as downstream events of TLR4 activation was analyzed after lipopolysaccharide stimulation of monocytes. TLR4-transfected Chinese hamster ovary (CHO) cells were used to identify potential hTLR4 ligands in the serum of patients with UA or AMI. Circulating hTLR4+/CD14+ monocytes were approximately 2.5-fold increased above controls and patients with SA in the UA and AMI groups (P<0.0001). This was paralleled by enhanced transcript levels of TLR4 and Myd88 in patients with UA and AMI (P<0.0001) and increased expression of IL-12 (UA 35.5+/-7.8, AMI 31.8+/-7.7 versus SA 2.2+/-0.5, controls 2.1+/-0.3 pg/mL; P<0.0002) and B7-1 (UA 27.3+/-14.4, AMI 22.6+/-11.1 versus SA 3.4+/-2.5, controls 2.4+/-2.3%; P<0.0001). Compared with serum from patients with UA and AMI, challenging TLR4-transfected CHO cells with serum from SA patients yielded only a weak response (P<0.0001). Coincubation with anti-heat shock protein 60 inhibited CHO cell activation.UA and AMI are associated with enhanced expression and signaling events downstream of hTLR4 in circulating monocytes. These observations suggest hTLR4 activation as a signaling mechanism in immune-mediated progression of atherosclerosis.
2005ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity.Nat ImmunolApoptosis signal-regulating kinase 1 (ASK1) is an evolutionarily conserved mitogen-activated protein 3-kinase that activates both Jnk and p38 mitogen-activated protein kinases. Here we used ASK1-deficient mice to show that ASK1 was selectively required for lipopolysaccharide-induced activation of p38 but not of Jnk or the transcription factor NF-kappaB. ASK1 was required for the induction of proinflammatory cytokines dependent on Toll-like receptor 4 (TLR4) but not TLR2 or other TLRs. Consistent with this, ASK1-deficient mice were resistant to lipopolysaccharide-induced septic shock. Lipopolysaccharide induced the production of intracellular reactive oxygen species, which was required for the formation of a complex of the adaptor molecule TRAF6 and ASK1 and subsequent activation of the ASK1-p38 pathway. Our data demonstrate that the reactive oxygen species-dependent TRAF6-ASK1-p38 axis is crucial for TLR4-mediated mammalian innate immunity.
2005[Heat-shock protein 70 may be a putative endogenous ligand of Toll-like receptor-4 of human monocytes].Zhonghua Yi Xue Za ZhiTo explore the relation between human heat shock protein 70 (HSP70) and Toll-like receptor-4 (TLR4) in human monocytes.Periphery blood mononuclear cells were isolated from the samples of healthy blood donors' whole blood and monocytes were prepared and cultured. HSP70 of the final concentrations of 2.5 microg/ml, 5.0 microg/ml, 7.5 microg/ml, and 10 microg/ml respectively was added; 6 hours later the concentration of TNF-alpha in the supernatant was detected. Another monocytes were cultured and HSP70 of the final concentration of 5.0 microg/ml was added and the concentrations of NF-kappaB were detected 0, 30, 60, and 120 minutes later respectively. TLR4 blocker of the final concentrations of 5 microg/ml, 20 microg/ml, and 30 microg/ml respectively was added into another culture for 30 minutes and 5.0 microg/ml HSP70 was added, then immunochemistry was used to detect the concentration of NF-kappaB 120 minutes after ELISA was used to detect the concentration of and TNF-alpha 8 hours later. In order to examine the influence of HSP70 on the TLR4 in the cytomembrane of monocytes, HSP70 of the final concentration of 5.0 microg/ml was added into the culture of monocytes for 0, 30, 60, and 120 minutes respectively then flow cytometry was used to detect the mean fluorescence intensity (MFI) of TLR4.HSP70 stimulation increased the TNF-a concentration in the supernatant dose-dependently. The percentages of NF-kappaB positive monocytes were 38 +/- 6, 67 +/- 12, and 54 +/- 12 30 min, 60 min, 120 min after HSP70 stimulation, all significantly higher than that at the beginning of experiment (17 +/- 6, P < 0.05, P < 0.01, and P < 0.01). The percentages of NF-kappaB positive monocytes were 39% +/- 4%, 32% +/- 6%, and 28% +/- 6% 120 minutes after anti-TLR4 mAb stimulation, all significantly lower than that of the control group (67% +/- 12%, all P < 0.05). TLR4 blocker of different concentrations significantly inhibited the TNF-alpha secretion by the monocytes (all P < 0.05). The MFI of TLR4 in the cytomembrane of monocyte was significantly down-regulated 60 minutes, especially 120 minutes, after the HSP70 stimulation in comparison with that before the stimulation (P < 0.05 and P < 0.01).TLR4 appears to be involved in HSP70-mediated activation of innate immunity.
2005Mycobacterium tuberculosis heat shock fusion protein enhances class I MHC cross-processing and -presentation by B lymphocytes.J ImmunolExogenous heat shock protein (HSP):peptide complexes are processed for cross-presentation of HSP-chaperoned peptides on class I MHC (MHC-I) molecules. Fusion proteins containing HSP and Ag sequences facilitate MHC-I cross-presentation of linked antigenic epitopes. Processing of HSP-associated Ag has been attributed to dendritic cells and macrophages. We now provide the first evidence to show processing of HSP-associated Ag for MHC-I cross-presentation by B lymphocytes. Fusion of OVA sequence (rOVA, containing OVA(230-359) sequence) to Mycobacterium tuberculosis HSP70 greatly enhanced rOVA processing and MHC-I cross-presentation of OVA(257-264):K(b) complexes by B cells. Enhanced processing was dependent on linkage of rOVA sequence to HSP70. M. tuberculosis HSP70-OVA fusion protein enhanced cross-processing by a CD91-dependent process that was independent of TLR4 and MyD88. The enhancement occurred through a post-Golgi, proteasome-independent mechanism. These results indicate that HSPs enhance delivery and cross-processing of HSP-linked Ag by B cells, which could provide a novel contribution to the generation of CD8(+) T cell responses. HSP fusion proteins have potential advantages for use in vaccines to enhance priming of CD8(+) T cell responses.
2005Heat shock up-regulates expression of Toll-like receptor-2 and Toll-like receptor-4 in human monocytes via p38 kinase signal pathway.ImmunologySummary Heat stress can alert innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). However, it remains unclear whether heat stress affects the activation of antigen-presenting cell (APC) in response to pathogen-associated molecule patterns (PAMPs) by directly regulating pathogen recognition receptors (PRRs). As an important kind of PRRs, Toll-like receptors (TLRs) play critical roles in the activation of immune system. In this study, we demonstrated that heat shock up-regulated the expression of HSP70 as well as TLR2 and TLR4 in monocytes. The induction of TLRs was prior to that of HSP70, which suggesting the up-regulation of TLR2 and TLR4 might be independent of the induction of HSP70. Heat shock activated p38 kinase, extracellular signal-related kinase (ERK) and nuclear factor-kappa B (NF-kappaB) signal pathways in monocytes. Pretreatment with specific inhibitor of p38 kinase, but not those of ERK and NF-kappaB, inhibited heat shock-induced up-regulation of TLR2 and TLR4. This indicates that p38 pathway takes part in heat shock-induced up-regulation of TLR2 and TLR4. Heat shock also increased lipoteichoic acid- or lipopolysaccharide-induced interleukin-6 production by monocytes. These results suggest that the p38 kinase-mediated up-regulation of TLR2 and TLR4 might be involved in the enhanced response to PAMP in human monocytes induced by heat shock.
2005[Differential modulation of TLR2 and TLR4-induced TNF production by murin haemorrhagic shock].Ann Fr Anesth ReanimTo investigate the influence of haemorrhagic shock in mice on ex vivo TNF production by whole blood cells (WBC) stimulated through Toll-like receptors (TLR) 4 and 2. STUDY DESIGN AND ANIMALS: Experimental study using BALB/c male mice.Haemorrhage (0,026+/-0,003 ml/g) by transparietal cardiac puncture under general anaesthesia. Measurement of left intraventricular pressure through a direct subcostal cardiac puncture. Possible restitution of shed blood volume (SBV) in retroorbital venous plexus, 60 minutes following haemorrhage. Lethal exsanguination 120 minutes following general anaesthesia (Control group), cardiac puncture (Sham group), blood sample (Haemorrhage group), or 60 minutes following SBV retransfusion (SBV group). Cultures (24 hours) of whole blood from the exsanguination, alone or with Escherichia coli endotoxin (LPS, TLR 4) or with heat-killed Staphylococcus aureus Cowan (SAC, TLR 2). Assessment of TNF levels in the cultures supernatant (Elisa).Hemorrhage (approximately 30% of calculated blood volume) resulted in arterial hypotension (-50%) which was reversed by SBV retransfusion. TNF production by LPS-stimulated WBC was reduced by haemorrhage (approximately -50%) with or without SBV retransfusion. TNF production by SAC-stimulated WBC remained unchanged.The reduction of proinflammatory cytokines production by WBC stimulated with pathogen-associated molecular patterns is not a generalized phenomenon following murin haemorrhagic shock. It depends on the used stimulus and studied signalling pathways.
2004Study on the relationship between heat shock protein 70 and toll-like receptor-4 of monocytes.J Huazhong Univ Sci Technolog Med SciTo explore the relation between human heat shock protein 70 (hsp70) and TLR4 in human monocytes in vitro, human monocytes were stimulated with various concentrations of HSP70, and TNF-alpha production in supernatants was measured by ELISA. Pre-incubated with or without anti-TLR4 mAb, and stimulated with hsp70 (5.0 microg/ml), NF-kappaB p65 of human monocytes in different time points were detected by immunohistochemistry and monocyte surface expression of TLR4 was measured by flow cytometry. After the human monocytes were pre-incubated with various concentrations of anti-TLR4 and stimulated with hsp70 (5.0 microg/ml), TNF-alpha production in supernatants was measured. The results showed that hsp70 enhanced NF-kappaB activation, which was clearly inhibited by anti-TLR4, with the positive cell ratios being 67.44%, 39.17%, 31.56% and 28.05 %, respectively. TLR4 was rapidly down-regulated in the presence of hsp70. MFI of TLR4 on monocytes in different time points were 87.77 +/- 5.38, 78.16 +/- 6.01 and 45.17 +/- 4.97 (P<0.05), 26.98 +/- 5.83 (P<0.01), respectively. Moreover, hsp70-induced TNF-alpha production by human monocytes was inhibited by anti-TLR4. It is suggested that TLR4 is involved in the hsp70-mediated activation of innate immunity.
2005Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle.Proc Natl Acad Sci U S ABacteria stimulate macrophages as part of normal host defense. However, when this response is not limited, vascular smooth muscle may also be activated to express "vasoactive" genes (e.g., cyclooxygenase), leading to vascular collapse and septic shock. In macrophages, Toll-like receptors (TLRs) 4 and 2 transduce responses to Gram-negative and Gram-positive bacteria, respectively. However, the role of these TLRs in sensing bacteria in vascular smooth muscle is unclear. To address this question, we have cultured vascular smooth muscle cells from mice deficient in TLR4 (TLR4(-/-) mice), mice deficient in TLR2 (TLR2(-/-) mice), or control mice. Cells cultured from control or TLR2(-/-) mice, but not from TLR4(-/-) mice, expressed cyclooxygenase-2 and released increasing levels of prostaglandin E(2) after stimulation with whole Escherichia coli bacteria; the combination of IL-1beta plus TNF-alpha induced cyclooxygenase-2 in cells cultured from all three groups of animals. By contrast, Staphylococcus aureus affected cyclooxygenase-2 expression in two distinct ways. First, S. aureus induced a transient inhibition of cyclooxygenase-2 expression, which was overcome with time, and increased protein expression was noted. The effects of S. aureus on cyclooxygenase-2 expression were TLR2- and not TLR4-dependent. Thus, we show that Gram-positive and Gram-negative bacteria induce cyclooxygenase-2 in vascular smooth muscle with differing temporal profiles but with appropriate TLR2-versus-TLR4 signaling. These data have important implications for our understanding of the innate immune response in vascular cells and how it may impact vascular disease.
2005The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation.TransplantationThe Injury Hypothesis, first published in 1994 and modified several times between 1996 and 2002, holds that the reactive oxygen species-mediated reperfusion injury to allografts initiates and induces the alloimmune response and contributes to alloatherogenesis. Recent experimental and clinical evidence in support of the concept is presented suggesting that (1) reactive oxygen species-mediated allograft injury activates the innate immune system of the donor and recipient; (2) injury-induced putative endogenous ligands of Toll-like receptors (TLRs) of host origin such as heat shock proteins interact with and activate TLR4-bearing dendritic cells that mature and induce the adaptive alloimmune response (acute rejection), and interact with and activate TLR4-bearing vascular cells contributing to the development of alloatherosclerosis (chronic rejection); and (3) TLR4-triggered signaling, involved in the establishment of a reperfusion injury, seems to use myeloid differentiation marker 88-independent, Toll/interleukin-1 receptor domain containing adaptor inducing interferon-beta-dependent pathways that are associated with the maturation of dendritic cells and induction of interferon-inducible genes.
2005Inhibition of neutrophil apoptosis by TLR agonists in whole blood: involvement of the phosphoinositide 3-kinase/Akt and NF-kappaB signaling pathways, leading to increased levels of Mcl-1, A1, and phosphorylated Bad.J ImmunolUsing flow cytometry, we investigated the effect of TLR agonists on human polymorphonuclear neutrophil (PMN) apoptosis in whole blood. LPS (TLR4), peptidoglycan (TLR2), R-848 (TLR7/8), and CpG-DNA (TLR9) were equally effective at delaying spontaneous apoptosis of PMN, while PamCSK4 (TLR1/2), macrophage-activating lipopeptide-2 (TLR2/6), flagellin (TLR5), and loxoribine (TLR7) were less effective or inactive. TLR agonists found to delay apoptosis also extended the functional life span of PMN. Analysis of signaling pathways revealed that the antiapoptotic effect of TLR agonists required NF-kappaB and PI3K activation. Furthermore, analysis of intact cells by flow cytometry showed that TLR agonists delaying PMN apoptosis increased phosphorylation of Akt, a major target of PI3K. This effect was associated with a PI3K-dependent increase in heat shock protein 27 phosphorylation, which has been reported to play a key role in PMN survival. Finally, the TLR-induced delay in PMN apoptosis was associated with increased levels of Mcl-1 and A1, which are antiapoptotic members of the Bcl-2 family. These effects were reversed by PI3K and NF-kappaB inhibitors, respectively. TLR activation also led to PI3K-dependent phosphorylation of the proapoptotic protein Bad. Taken together, our results strongly suggest a role of NF-kappaB and PI3K in TLR-induced PMN survival, leading to modulation of Bcl-2 family molecules.
2005Local coordination verses systemic disregulation: complexities in leukocyte recruitment revealed by local and systemic activation of TLR4 in vivo.J Leukoc BiolThe recruitment of leukocytes to a tissue is a critical step in the inflammatory response. Toll-like receptor 4 (TLR4) is an important receptor involved in the initiation of inflammatory responses. Administration of the ligand for TLR4, lipopolysaccharide, is often used to model inflammation--local responses to stimuli within a specific tissue and systemic responses such as those observed during endotoxic or septic shock. Here, we review work, which demonstrates that in response to local activation of TLR4, highly coordinated and multistep processes are initiated, ultimately resulting in the leukocyte's arrival at the inflamed tissue. In contrast, systemic activation of TLR4 results in nonspecific accumulation of leukocytes within the lung capillaries and liver sinusoids through mechanisms profoundly different than those involved in local tissue recruitment. Contrary to current dogma, leukocyte accumulation in the lung is dependent on endothelial rather than leukocyte activation. Finally, we discuss recent evidence suggesting that activation of leukocytes through TLR4, although still in the circulation, effectively paralyzes inflammatory cells, rendering them incapable of appropriate trafficking to inflamed tissues.
2005Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling.J Exp MedEndotoxin, a bacterial lipopolysaccharide (LPS), causes fatal septic shock via Toll-like receptor (TLR)4 on effector cells of innate immunity like macrophages, where it activates nuclear factor kappaB (NF-kappaB) and mitogen-activated protein (MAP) kinases to induce proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha. Dok-1 and Dok-2 are adaptor proteins that negatively regulate Ras-Erk signaling downstream of protein tyrosine kinases (PTKs). Here, we demonstrate that LPS rapidly induced the tyrosine phosphorylation and adaptor function of these proteins. The stimulation with LPS of macrophages from mice lacking Dok-1 or Dok-2 induced elevated Erk activation, but not the other MAP kinases or NF-kappaB, resulting in hyperproduction of TNF-alpha and nitric oxide. Furthermore, the mutant mice showed hyperproduction of TNF-alpha and hypersensitivity to LPS. However, macrophages from these mutant mice reacted normally to other pathogenic molecules, CpG oligodeoxynucleotides, poly(I:C) ribonucleotides, or Pam3CSK4 lipopeptide, which activated cognate TLRs but induced no tyrosine phosphorylation of Dok-1 or Dok-2. Forced expression of either adaptor, but not a mutant having a Tyr/Phe substitution, in macrophages inhibited LPS-induced Erk activation and TNF-alpha production. Thus, Dok-1 and Dok-2 are essential negative regulators downstream of TLR4, implying a novel PTK-dependent pathway in innate immunity.
2005Enhanced resistance to Gram-positive bacterium and increased susceptibility to bacterial endotoxin in mice sensitized with Propionibacterium acnes: involvement of Toll-like receptor.FEMS Immunol Med MicrobiolMice sensitized with Propionibacterium acnes showed an enhanced resistance against infection with Listeria monocytogenes in contrast to the increased susceptibility to LPS-induced endotoxin shock. The enhanced protection to L. monocytogenes was mediated by activated innate immunity but not by generation of Listeria-specific acquired immunity. After infection with L. monocytogenes, the elimination of bacteria was observed earlier in accordance with a higher level of endogenous cytokine production in P. acnes-sensitized mice than in control mice. Peritoneal cells from P. acnes-sensitized mice produced a larger amount of IL-12p70 and nitric oxide after stimulation with heat-killed L. monocytogenes or peptidoglycan purified from Staphylococcus aureus. RT-PCR analysis showed that the expression of TLR2 but not TLR1, TLR4 nor TLR6 was induced by injection of P. acnes in peritoneal cells. These results indicated that P. acnes-sensitization could induce the activation of innate immunity against L. monocytogenes through increased recognition of bacterial components by TLR2.
2005Crystal structure of CD14 and its implications for lipopolysaccharide signaling.J Biol ChemLipopolysaccharide, the endotoxin of Gram-negative bacteria, induces extensive immune responses that can lead to fatal septic shock syndrome. The core receptors recognizing lipopolysaccharide are CD14, TLR4, and MD-2. CD14 binds to lipopolysaccharide and presents it to the TLR4/MD-2 complex, which initiates intracellular signaling. In addition to lipopolysaccharide, CD14 is capable of recognizing a few other microbial and cellular products. Here, we present the first crystal structure of CD14 to 2.5 angstroms resolution. A large hydrophobic pocket was found on the NH2-terminal side of the horseshoe-like structure. Previously identified regions involved in lipopolysaccharide binding map to the rim and bottom of the pocket indicating that the pocket is the main component of the lipopolysaccharide-binding site. Mutations that interfere with lipopolysaccharide signaling but not with lipopolysaccharide binding are also clustered in a separate area near the pocket. Ligand diversity of CD14 could be explained by the generous size of the pocket, the considerable flexibility of the rim of the pocket, and the multiplicity of grooves available for ligand binding.
2004Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells.Microbiology (Reading)Contact between Helicobacter pylori and gastric epithelial cells results in activation of NF-kappaB followed by secretion of interleukin (IL)-8. However, host-cell receptor(s) and their ligands involved in H. pylori-related IL-8 production have yet to be fully defined. In this study, the interaction between Toll-like receptors (TLRs), which are host receptors for pathogens involved in the innate immune response, and heat-shock protein (HSP) 60, an immune-potent antigen of H. pylori, was examined during H. pylori-induced IL-8 secretion in vitro. Recombinant H. pylori HSP60 (rHpHSP60) was prepared and added to cultured KATO III human gastric epithelial cells with or without pre-incubation with mouse monoclonal anti-TLR2 or anti-TLR4 antibodies. IL-8 mRNA expression and IL-8 protein release were analysed by Northern blotting and immunoassay. Involvement of NF-kappaB activation was analysed immunocytochemically by anti-NF-kappaB p65 antibody and ammonium pyrrolidinedithiocarbamate (PDTC), an inhibitor of NF-kappaB-mediated transcriptional activation. rHpHSP60 induced IL-8 mRNA expression and IL-8 secretion in a dose-dependent manner in KATO III cells. Anti-TLR2 antibody inhibited rHpHSP60-induced IL-8 secretion by 75 %, and anti-TLR4 antibody inhibited it by 30 %. rHpHSP60 induced nuclear translocation of NF-kappaB p65, which was inhibited by pretreatment with anti-TLR2 antibody. Treatment with PDTC significantly decreased the secretion of IL-8 induced by rHpHSP60. These findings suggest that H. pylori HSP60 activates NF-kappaB and induces IL-8 production through TLR-triggered pathways in gastric epithelial cells. Thus, it is possible that H. pylori HSP60 and TLR interaction in host cells contributes to the development of gastric inflammation caused by H. pylori infection.
2004Differences in the expression of LPS-receptors are not responsible for the sex-specific immune response after trauma and hemorrhagic shock.Cell ImmunolSeveral studies demonstrated a sex-specific cytokine secretion by macrophages following trauma-hemorrhage (T-H) and incubation with lipopolysaccharide A (LPS). Although LPS is known to act via the receptors CD14 and TLR4 on macrophages, it remains unknown whether differences in LPS receptor expression in males and females may be responsible for the gender-specific LPS induced cytokine response following (T-H). To study this, male and proestrus female mice (C3H/HeN) were subjected to trauma (laparotomy) followed by hemorrhage or sham operation. At 2 h thereafter, SMphi and PMphi were harvested and cultured for 2 h. The expression of CD14 and TLR4 was measured by flow cytometry on unstimulated SMphi and PMphi as well as after LPS stimulation. The results indicate that the expression of CD14 and TLR4 on SMphi and PMphi from female and male mice was similar in sham-operated animals and after (T-H). Incubation of macrophages with LPS did not alter CD14 and TLR4 expression in the study groups. Thus, the sex specific LPS induced cytokine secretion after (T-H) is not caused by differences in LPS receptor expression on Mphi of male and female mice.
2004TLR4 and TNF-alpha polymorphisms are associated with an increased risk for severe sepsis following burn injury.J Med GenetSepsis, organ failure, and shock remain common among patients with moderate to severe burn injuries. The inability of clinical factors to identify at-risk patients suggests that genetic variation may influence the risk for serious infection and the outcome from severe injury.Resolution of genetic variants associated with severe sepsis following burn injury.A total of 159 patients with burns > or =20% of their total body surface area or any smoke inhalation injury without significant non-burn related trauma (injury severity score (ISS)> or =16), traumatic or anoxic brain injury, or spinal cord injury and who survived more than 48 h post-admission.Candidate single nucleotide polymorphisms (SNPs) within bacterial recognition (TLR4 +896, CD14 -159) and inflammatory response (TNF-alpha -308, IL-1beta -31, IL-6 -174) loci were evaluated for association with increased risk for severe sepsis (sepsis plus organ dysfunction or septic shock) and mortality.After adjustment for age, full-thickness burn size, ethnicity, and gender, carriage of the TLR4 +896 G-allele imparted at least a 1.8-fold increased risk of developing severe sepsis following a burn injury, relative to AA homozygotes (adjusted odds ratio (aOR) 6.4; 95% confidence interval (CI) 1.8 to 23.2). Carriage of the TNF-alpha -308 A-allele imparted a similarly increased risk, relative to GG homozygotes (aOR = 4.5; 95% CI 1.7 to 12.0). None of the SNPs examined were significantly associated with mortality.The TLR4 +896 and TNF-alpha -308 polymorphisms were significantly associated with an increased risk for severe sepsis following burn trauma.
2005Signaling for myocardial depression in hemorrhagic shock: roles of Toll-like receptor 4 and p55 TNF-alpha receptor.Am J Physiol Regul Integr Comp PhysiolHemorrhagic shock causes myocardial contractile depression. Although this myocardial disorder is associated with increased expression of tumor necrosis factor-alpha (TNF-alpha), the role of TNF-alpha as a myocardial depressant factor in hemorrhagic shock remains to be determined. Moreover, it is unclear which TNF-alpha receptor mediates the myocardial depressive effects of TNF-alpha. Toll-like receptor 4 (TLR4) regulates cellular expression of proinflammatory mediators following lipopolysaccharide stimulation and may be involved in the tissue inflammatory response to injury. The contribution of TLR4 signaling to tissue TNF-alpha response to hemorrhagic shock and TLR4's role in myocardial depression during hemorrhagic shock are presently unknown. We examined the relationship of TNF-alpha production to myocardial depression in a mouse model of nonresuscitated hemorrhagic shock, assessed the influence of TLR4 mutation, resulting in defective signaling, on TNF-alpha production and myocardial depression, and determined the roles of TNF-alpha and TNF-alpha receptors in myocardial depression using a gene knockout (KO) approach. Hemorrhagic shock resulted in increased plasma and myocardial TNF-alpha (4.9- and 4.5-fold, respectively) at 30 min and induced myocardial contractile depression at 4 h. TLR4 mutation abolished the TNF-alpha response and attenuated myocardial depression (left ventricular developed pressure of 43.0 +/- 6.2 mmHg in TLR4 mutant vs. 30.0 +/- 3.6 mmHg in wild type, P < 0.05). TNF-alpha KO also attenuated myocardial depression in hemorrhagic shock, and the p55 receptor KO, but not the p75 receptor KO, mimicked the effect of TNF-alpha KO. The results suggest that TLR4 plays a novel role in signaling to the TNF-alpha response during hemorrhagic shock and that TNF-alpha through the p55 receptor activates a pathway leading to myocardial depression. Thus TLR4 and the p55 TNF-alpha receptor represent therapeutic targets for preservation of cardiac mechanical function during hemorrhagic shock.
2004ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules.Genes CellsToll-like receptors (TLRs) initiate a signalling cascade via association with an adaptor molecule, myeloid differentiation factor 88 (MyD88) and/or TIR domain-containing adaptor inducing-IFN-beta (Trif), to induce various pro-inflammatory cytokines for microbial eradication. After stimulation of TLR4 with lipopolysaccharide (LPS), both IL-1beta and IL-18 are processed, depending on the activation of caspase-1, although its mechanism remains unclear. ASC is an adapter protein possibly involved in the activation of procaspase-1. To unravel the requirement of ASC, we generated Asc(-/-) mice. Upon stimulation with LPS, Asc(-/-) macrophages failed in the processing of procaspase-1 and maturation of pro-IL-1beta and pro-IL-18, but normally produced other pro-inflammatory cytokines including TNF-alpha and IL-6. MyD88(-/-) and Trif(-/-) macrophages showed normal activation of caspase-1, demonstrating a dispensable role for MyD88 and Trif. After, LPS-challenged Asc(-/-) mice lacked serum elevation of IL-1beta and IL-18. Moreover, the Asc(-/-) mice exhibited neither acute liver injury nor lethal shock. These results demonstrate critical roles for ASC in the release of IL-1beta/IL-18 via activation of caspase-1 and provide new insights into the inflammatory responses for host defence and diseases.
2005Bone marrow-derived cells contribute to contractile dysfunction in endotoxic shock.Am J Physiol Heart Circ PhysiolHow infection precipitates depressed contractility is incompletely understood but may involve the immune, nervous, and endocrine systems as well as the heart itself. In this study, we examined the role of Toll-like receptor 4 (TLR4) in LPS-induced myocardial contractile depression. Eighteen hours following endotoxin challenge, we compared contractile responses in hearts from wild-type (WT) and TLR4-deficient mice using modified Langendorff preparations. Unlike hearts from WT mice, TLR4-deficient hearts did not reveal significant contractile dysfunction following LPS administration, as measured by decreased responses in maximal left ventricular pressure, +dP/dtmax, and -dP/dtmax in ex vivo Langendorff preparations. These findings indicate a requirement for TLR4 in LPS-induced contractile depression. To determine the contribution of bone marrow-derived TLR4 function to LPS-induced myocardial dysfunction, we generated TLR4 chimeras using adoptive transfer between histocompatible mouse strains: either TLR4-deficient mice with TLR4+/+ bone marrow-derived cells or TLR4+/+ animals lacking TLR4 in their hematopoietic cells. We then compared the contractile responses of engrafted animals after LPS challenges. Engraftment of TLR4-deficient mice with WT marrow restored sensitivity to the myocardial depressant effects of LPS in TLR4-deficient hearts (P < 0.05). Inactivation of bone marrow-derived TLR4 function, via transplantation of WT mice with TLR4-/- marrow, however, did not protect against the depressant effect of endotoxin. These findings indicate that bone marrow-derived TLR4 activity is sufficient to confer sensitivity to mice lacking TLR4 in all other tissues. However, because inactivation of marrow-derived TLR4 function alone does not protect against endotoxin-triggered contractile dysfunction, TLR4 function in other tissues may also contribute to this response.
2004Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4.ImmunologyAn understanding of lipopolysaccharide (LPS) signal transduction is a key goal in the effort to provide a molecular basis for the lethal effect of LPS during septic shock and point the way to novel therapies. Rapid progress in this field during the last 6 years has resulted in the discovery of not only the receptor for LPS - Toll-like receptor 4 (TLR4) - but also in a better appreciation of the complexity of the signalling pathways activated by LPS. Soon after the discovery of TLR4, the formation of a receptor complex in response to LPS, consisting of dimerized TLR4 and MD-2, was described. Intracellular events following the formation of this receptor complex depend on different sets of adapters. An early response, which is dependent on MyD88 and MyD88-like adapter (Mal), leads to the activation of nuclear factor-kappaB (NF-kappaB). A later response to LPS makes use of TIR-domain-containing adapter-inducing interferon-beta (TRIF) and TRIF-related adapter molecule (TRAM), and leads to the late activation of NF-kappaB and IRF3, and to the induction of cytokines, chemokines, and other transcription factors. As LPS signal transduction is an area of intense research and rapid progress, this review is intended to sum up our present understanding of the events following LPS binding to TLR4, and we also attempt to create a model of the signalling pathways activated by LPS.
2004Endotoxin recognition molecules MD-2 and toll-like receptor 4 as potential targets for therapeutic intervention of endotoxin shock.Curr Drug Targets Inflamm AllergyGram-negative sepsis is the major cause of deaths in intensive care units of hospitals and continues to increase worldwide due to the increased frequency of invasive procedures and therapy leading to immunosuppression. This syndrome is characterized by endothelial damage, coagulopathy, loss of vascular tone, tissue hypoperfusion, and multiple-organ failure. They are caused by uncontrolled, overwhelming inflammatory responses, which are triggered by microbial products. Amongst these products, endotoxin also called LPS (lipopolysaccharide), a constituent of the outer membrane of Gram-negative bacteria, is known to play a central role by eliciting immune responses leading to production of proinflammatory cytokines. Our understanding of LPS recognition has increased dramatically over the last several years by identification of Toll-like receptor 4 (TLR4) and MD-2 as LPS recognition molecules. TLR4 is a mammalian homologue of drosophila Toll. The extracellular domain of TLR4 is associated with a molecule called MD-2. Mice lacking either TLR4 or MD-2 do not respond to LPS and are resistant to endotoxin shock. Here, the potential for TLR4-MD-2 as target molecules for therapeutic intervention is discussed.
2004Soluble MD-2 activity in plasma from patients with severe sepsis and septic shock.BloodIn this paper, we show that plasma from patients with severe sepsis and septic shock but not normal plasma supports lipopolysaccharide (LPS) activation of epithelial cells expressing Toll-like receptor 4 (TLR4). Recombinant soluble myeloid differentiation protein-2 (MD-2) complemented normal plasma and allowed LPS activation of epithelial cells to levels measured with "septic" plasma, whereas soluble MD-2-depleted plasma lost its effects. The same "MD-2 activity" was found in urine from a patient with septic shock and in lung edema fluids from patients with adult respiratory distress syndrome (ARDS). Recombinant soluble MD-2 enabled LPS-dependent activation of epithelial cells bearing TLR4. LPS-binding protein (LBP) and soluble CD14 increased the sensitivity of TLR4-expressing epithelial cells to LPS but were not able to mediate LPS activation of these cells in the absence of soluble MD-2. An anti-MD-2 monoclonal antibody blocked LPS activation of TLR4-expressing cells only in the presence of septic plasma or septic urine. These results suggest that septic plasma containing soluble MD-2 leaking into the extravascular space supports LPS activation of TLR4-expressing epithelial cells. We therefore propose that soluble MD-2 is an important mediator of organ inflammation during sepsis.
2004Toll-like receptor 2 and Toll-like receptor 4 expression in human adrenals.Horm Metab ResToll-like receptors (TLRs) are key elements in the innate immune response, functioning as pattern-recognition receptors for the detection and response to endotoxins and other microbial ligands. Inflammatory cytokines play an important role in the activation of the hypothalamic-pituitary-adrenal HPA axis during inflammation and sepsis. The newly recognized major role of TLR2 and TLR4 and the adrenal stress response during critical illnesses such as inflammation and sepsis demand comprehensive analysis of their interactions. Therefore, we analyzed TLR2 and TLR4 expression in human adrenal glands. Western blot analysis demonstrated the expression of TLR2 and TLR4 in the human adrenocortical cell line NCI-H295. Immunohistochemical analysis of normal human adrenal glands revealed TLR2 and TLR4 expression in the adrenal cortex, but not in the adrenal medulla. Considering the crucial role of the HPA axis and the innate immune response during acute sepsis or septic shock, elucidating the functional interaction of these systems should be of great clinical relevance.
2004Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction.Eur Heart JToll-like receptor 4 (TLR4) is a receptor for bacterial lipopolysaccharide (LPS) and heat shock protein essential for innate immunity. Recent studies imply that TLR4 polymorphisms might affect atherogenesis. In this study we investigated the impact of LPS-hypo-responsive TLR4 variants on the risk of myocardial infarction (MI).Using TaqMan PCR technology, we determined the prevalence of the Asp299Gly and Thr399Ile polymorphisms in the TLR4 gene, and their association with MI in a study of 1213 survivors of a first MI and 1561 controls from the Stockholm region. The frequency was 0.096 for carriers of both 299Gly and 399Ile, and 0.006 for carriers of 399Ile alone. Carriers of both 299Gly and 399Ile were more frequent among the male cases than the male controls (10.7% vs 7.9%, p = 0.004). Compared with wild-type carriers, men with the 299Gly and the 399Ile TLR4 genotype had an increased risk of MI (OR [95% CI]: 1.4 [1.0;1.9]) whereas no association was observed for women. Furthermore a synergistic interaction was found between the TLR4 polymorphism and smoking in men.The association found between TLR4 genotype and risk of MI suggests that TLR4 genetic variants could potentially affect the susceptibility to MI and that TLR4-mediated innate immunity is implicated in the pathogenesis of MI.
2004Inhibition of endotoxin response by synthetic TLR4 antagonists.Curr Top Med ChemEndotoxin, from the outer membrane of Gram-negative bacteria, has been implicated as the etiological agent of a variety of pathologies ranging from relatively mild (fever) to lethal (septic shock, organ failure, and death). While endotoxin (also known as lipopolysaccharide or LPS) is a complex heterogeneous molecule, the toxic portion of LPS (the lipid A portion) is relatively similar across a wide variety of pathogenic strains of bacteria, making this molecule an attractive target for the development of an LPS antagonist. Research over the past fifteen years focused on the design of various lipid A analogs including monosaccharide, acyclic and disaccharide compounds has lead to the development of E5564, an advanced, unique and highly potent LPS antagonist. E5564 is a stable, pure LPS antagonist that is selective against endotoxin-mediated activation of immune cells in vitro and in animal models. In Phase I clinical trials, we have developed an ex vivo endotoxin antagonism assay that has provided results on pharmacodynamic activity of E5564 in addition to the more typical safety and pharmacokinetic evaluations. Results from these assays have been reinforced by analysis of in vivo antagonistic activity using a human endotoxemia model. Results from all of these studies indicate that E5564 is an effective in vivo antagonist of endotoxin, and may prove to be of benefit in a variety of endotoxin-mediated diseases. This review discusses the evolution of synthetic LPS antagonists with emphasis on the SAR and development of E5564 and its precursors.
2004Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide.Biochem Soc TransMammalian responses to bacterial LPS (lipopolysaccharide) from the outer membrane of Gram-negative bacteria can lead to an uncontrolled inflammatory response that can be deadly for the host. It has been shown that the innate immune system employs at least three cell surface receptors, CD14, TLR4 (Toll-like receptor 4) and MD-2, in order to recognize bacterial LPS. In our previous work we have found that Hsps (heat-shock proteins) are also involved in the innate recognition of bacterial products. Their presence on the cell surface, as well as their involvement in the innate recognition process, are poorly understood. In the present study we have investigated the association of TLR4 with Hsp70 and Hsp90 following LPS stimulation, both on the cell surface and intracellularly. Our results show that Hsp70 and Hsp90 form a cluster with TLR4 within lipid microdomains following LPS stimulation. In addition, Hsp70 and Hsp90 seem to be involved in TLR4/LPS trafficking and targeting to the Golgi apparatus, since upon LPS stimulation we found that both Hsps are targeted to the Golgi along with TLR4. The present study sheds new light into the involvement of Hsps in the innate immune response.
2004Endogenous ligands of Toll-like receptors.J Leukoc BiolExtensive work has suggested that a number of endogenous molecules such as heat shock proteins (hsp) may be potent activators of the innate immune system capable of inducing proinflammatory cytokine production by the monocyte-macrophage system and the activation and maturation of dendritic cells. The cytokine-like effects of these endogenous molecules are mediated via the Toll-like receptor (TLR) signal-transduction pathways in a manner similar to lipopolysaccharide (LPS; via TLR4) and bacterial lipoproteins (via TLR2). However, recent evidence suggests that the reported cytokine effects of hsp may be a result of the contaminating LPS and LPS-associated molecules. The reasons for previous failure to recognize the contaminant(s) being responsible for the putative TLR ligands of hsp include failure to use highly purified hsp free of LPS contamination; failure to recognize the heat sensitivity of LPS; and failure to consider contaminant(s) other than LPS. Whether other reported putative endogenous ligands of TLR2 and TLR4 are a result of contamination of pathogen-associated molecular patterns is not clear. It is essential that efforts should be directed to conclusively determine whether the reported putative endogenous ligands of TLRs are a result of the endogenous molecules or of contaminant(s), before exploring further the implication and therapeutic potential of these putative TLR ligands.
2004Toll-like receptor 4 functions intracellularly in human coronary artery endothelial cells: roles of LBP and sCD14 in mediating LPS responses.FASEB JEndothelial cells are activated by microbial agonists through Toll-like receptors (TLRs) to express inflammatory mediators; this is of significance in acute as well as chronic inflammatory states such as septic shock and atherosclerosis, respectively. We investigated mechanisms of lipopolysaccharide (LPS)-induced cell activation in human coronary artery endothelial cells (HCAEC) using a combination of FACS, confocal microscopy, RT-PCR, and functional assays. We found that TLR4, in contrast to TLR2, is not only located intracellularly but also functions intracellularly. That being the case, internalization of LPS is required for activation. We further characterized the HCAEC LPS uptake system and found that HCAEC exhibit an effective LPS uptake only in the presence of LPS binding protein (LBP). In addition to its function as a catalyst for LPS-CD14 complex formation, LBP enables HCAEC activation at low LPS concentrations by facilitating the uptake, and therefore delivery, of LPS-CD14 complexes to intracellular TLR4-MD-2. LBP-dependent uptake involves a scavenger receptor pathway. Our findings may be of pathophysiological relevance in the initial response of the organism to infection. Results further suggest that LBP levels, which vary as LBP is an acute phase reactant, could be relevant to initiating inflammatory responses in the vasculature in response to chronic or recurring low LPS.
2004Signaling danger: toll-like receptors and their potential roles in kidney disease.J Am Soc NephrolToll-like receptors (TLR) are an emerging family of receptors that recognize pathogen-associated molecular patterns and promote the activation of leukocytes and intrinsic renal cells. Ligands of the TLR include exogenous microbial components such as LPS (TLR4), lipoproteins and peptidoglycans (TLR1, -2, -6), viral RNA (TLR3), bacterial and viral unmethylated cytosin-guanosin dinucleotide (CpG)-DNA (TLR9), and endogenous molecules including heat-shock proteins and extracellular matrix molecules. Upon stimulation, TLR induce expression of inflammatory cytokines or costimulatory molecules via the MyD88-dependent and MyD88-independent signaling pathways shared with the interleukin-1 receptors. TLR are differentially expressed on leukocyte subsets and non-immune cells and appear to regulate important aspects of innate and adaptive immune responses. Tubular epithelial cells are among the non-immune cells that express TLR1, -2, -3, -4, and -6, suggesting that these TLR might contribute to the activation of immune responses in tubulointerstitial injury (e.g., bacterial pyelonephritis, sepsis, and transplant nephropathy). In addition, TLR9 has been shown to be involved in antigen-induced immune complex glomerulonephritis and lupus nephritis by regulating humoral and cellular immune responses. TLR are evolutionary conserved regulators of innate and adaptive immune responses. It is likely that TLR are involved in many if not all types of renal inflammation. Here the authors provide an overview on the biology of TLR, summarize the present data on their expression in the kidney, and provide an outlook for the potential roles of TLR in kidney disease.
2004Aberrant Toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-beta 1 signaling pathway.J ImmunolTGF-beta1 plays a central role in maintaining normal immune function and deficiency of this potent immunosuppressive molecule is linked to uncontrolled inflammation, cachexia, and multiorgan failure as seen in the TGF-beta1 null mouse. Infiltration of inflammatory cells into vital organs of the null mouse is accompanied by increased gene expression of inflammatory cytokines, including TNF-alpha and IL-1beta, as well as inducible NO synthase, each regulated by NF-kappaB. Treatment with the proteasome inhibitor MG132 to prevent NF-kappaB activation dramatically reduced NO production and expression of inflammatory cytokines. This inflammatory phenotype with NF-kappaB activation in the TGF-beta1 null mouse, in the absence of any identifiable pathogen, suggested activation of innate immune responses. Because Toll-like receptors (TLR) are essential in the activation of innate immunity, we examined inflamed tissue from TGF-beta1 null and wild-type mice for expression of TLR4, the receptor that interacts with bacterial cell wall LPS to initiate an NF-kappaB-dependent signaling pathway, leading to gene transcription of inflammatory mediators. Increased TLR4 mRNA expression observed in TGF-beta1 null mice as well as in mice lacking the TGF-beta transcription factor Smad3 was associated with LPS hyperresponsiveness leading to increased expression of inflammatory cytokines and NO and endotoxemia. Furthermore, mice lacking both TGF-beta1 and a functional TLR4 were resistant to endotoxin shock. Constitutive and/or environmental activation of TLR4 and downstream elements, in the absence of TGF-beta suppression, may impact on innate and adaptive immunity and contribute to massive uncontrolled inflammation.
2004Cytokine function of heat shock proteins.Am J Physiol Cell PhysiolExtensive work in the last 10 years has suggested that heat shock proteins (HSPs) may be potent activators of the innate immune system. It has been reported that Hsp60, Hsp70, Hsp90, and gp96 are capable of inducing the production of proinflammatory cytokines by the monocyte-macrophage system and the activation and maturation of dendritic cells (antigen-presenting cells) in a manner similar to the effects of lipopolysaccharide (LPS) and bacterial lipoprotein, e.g., via CD14/Toll-like receptor2 (TLR2) and CD14/TLR4 receptor complex-mediated signal transduction pathways. However, recent evidence suggests that the reported cytokine effects of HSPs may be due to the contaminating LPS and LPS-associated molecules. The reasons for previous failure to recognize the contaminant(s) as being responsible for the reported HSP cytokine effects include failure to use highly purified, low-LPS preparations of HSPs; failure to recognize the heat sensitivity of LPS; and failure to consider contaminant(s) other than LPS. Thus it is essential that efforts should be directed to conclusively determine whether the reported HSP cytokine effects are due to HSPs or to contaminant(s) present in the HSP preparations before further exploring the implication and therapeutic potential of the putative cytokine function of HSPs.
2004A role for Toll-like receptor 4 in dendritic cell activation and cytolytic CD8+ T cell differentiation in response to a recombinant heat shock fusion protein.J ImmunolRecombinant heat shock fusion proteins (Hsfp) injected into mice without added adjuvants can stimulate production of CD8 cytolytic T cells. Because initiation of productive immune responses generally requires dendritic cell (DC) activation, the question arises as to whether the Hsfp can activate DC independently of contaminating LPS. Using microarray analyses of DC from LPS-insensitive mice having a point mutation in Toll-like receptor 4 (Tlr4) (C3H/HeJ), or lacking Tlr4 (B10/ScNCr), we show here that unlike a LPS standard, Hsfp activated DC from HeJ mice almost as well as DC from wild-type mice. Consistent with the microarray analysis, the Hsfp's ability to activate DC was not eliminated by polymyxin B but was destroyed by proteinase K. The Hsfp did not, however, stimulate DC from mice lacking Tlr4. In vivo the CD8 T cell response to the Hsfp in mice lacking Tlr4 was impaired: the responding CD8 cells initially proliferated vigorously but their development into cytolytic effector cells was diminished. Overall, the results indicate that this Hsfp can activate DC independently of LPS but still requires Tlr4 for an optimal CD8 T cell response.
2004Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia.Eur J Clin InvestToll-like receptor-4 (TLR4) is a major receptor for inflammatory stimuli potentially involved in the pathogenesis of atherosclerosis, such as lipopolysaccharide (LPS) and heat-shock proteins. The Asp299Gly polymorphism of the TLR4 gene has been associated with a reduced intima-media thickness (IMT) of the common carotid artery in healthy individuals. We have investigated whether the presence of the Asp299Gly polymorphism in patients with familial hypercholesterolaemia (FH) has a similar protective effect, and whether it influences the effects of HMG-CoA reductase treatment.A cohort of 293 FH patients and 200 healthy volunteers were genotyped for the presence of the Asp299Gly allele using polymerase chain reaction followed by restriction fragment length polymorphism analysis. Intima-media thickness measurements, inflammatory parameters and the effect of HMG-CoA reductase inhibitors were compared between the patients with and without Asp299Gly allele.The Asp299Gly allele was present in 10.6% of the FH patients and 11.0% of the healthy individuals. Whereas the FH patients carrying the Asp299Gly allele displayed a reduced absolute IMT value compared with the FH patients carrying the wild-type allelle, the difference did not reach statistical significance. In addition, the effect of treatment with HMG-CoA reductase inhibitors was not influenced by the presence of Asp299Gly allele.The presence of the Asp299Gly allele of the TLR4 gene does not seem to exert a major influence on the progression of atherosclerosis in patients with FH.
The cytokine synthesis by heterozygous carriers of the Toll-like receptor 4 Asp299Gly polymorphism does not differ from that of wild type homozygotes.Eur Cytokine NetwPrevious studies have found that heterozygosity for the A896G mutation of the endotoxin receptor TLR4 confers susceptibility to Gram-negative infections and septic shock. To evaluate the underlying mechanisms, we studied the association of the TLR4 polymorphism with endotoxin-induced cytokine synthesis in human whole blood. Monocyte CD14 density and monocyte count were also determined. Healthy individuals were genotyped by means of a real-time polymerase chain reaction. Plasma concentrations of TNF-alpha, IL-6, and IL-8 were measured by chemiluminescence. No significant differences in cytokine synthesis were observed between heterozygous individuals and homozygous carriers of the wild type allele. Our study suggests that heterozygosity for this TLR4 mutation is not a major factor determining the cytokine response to endotoxin.
2004Toll-like receptor 4 is involved in outward arterial remodeling.CirculationToll-like receptor 4 (Tlr4) is the receptor for exogenous lipopolysaccharides (LPS). Expression of endogenous Tlr4 ligands, heat shock protein 60 (Hsp60) and extra domain A of fibronectin, has been observed in arthritic and oncological specimens in which matrix turnover is an important feature. In atherosclerosis, outward remodeling is characterized by matrix turnover and a structural change in arterial circumference and is associated with a vulnerable plaque phenotype. Since Tlr4 ligands are expressed during matrix turnover, we hypothesized that Tlr4 is involved in arterial remodeling.In a femoral artery cuff model in the atherosclerotic ApoE3 (Leiden) transgenic mouse, Tlr4 activation by LPS stimulated plaque formation and subsequent outward arterial remodeling. With the use of the same model in wild-type mice, neointima formation and outward remodeling occurred. In Tlr4-deficient mice, however, no outward arterial remodeling was observed independent of neointima formation. Carotid artery ligation in wild-type mice resulted in outward remodeling without neointima formation in the contralateral artery. This was associated with an increase in Tlr4 expression and EDA and Hsp60 mRNA levels. In contrast, outward remodeling was not observed after carotid ligation in Tlr4-deficient mice.These findings provide genetic evidence that Tlr4 is involved in outward arterial remodeling, probably through upregulation of Tlr4 and Tlr4 ligands.
2003Chaperokine-induced signal transduction pathways.Exerc Immunol RevA turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects--known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise.
2003Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at toll-like receptor 4 in human endothelial cells.Infect ImmunE. coli lipopolysaccharide (LPS) induces cytokine and adhesion molecule expression via the toll-like receptor 4 (TLR4) signaling complex in human endothelial cells. In the present study, we investigated the mechanism by which Porphyromonas gingivalis LPS antagonizes E. coli LPS-dependent activation of human endothelial cells. P. gingivalis LPS at 1 micro g/ml inhibited both E. coli LPS (10 ng/ml) and Mycobacterium tuberculosis heat shock protein (HSP) 60.1 (10 micro g/ml) stimulation of E-selectin mRNA expression in human umbilical vein endothelial cells (HUVEC) without inhibiting interleukin-1 beta (IL-1beta) stimulation. P. gingivalis LPS (1 micro g/ml) also blocked both E. coli LPS-dependent and M. tuberculosis HSP60.1-dependent but not IL-1beta-dependent activation of NF-kappaB in human microvascular endothelial (HMEC-1) cells, consistent with antagonism occurring upstream from the TLR/IL-1 receptor adaptor protein, MyD88. Surprisingly, P. gingivalis LPS weakly but significantly activated NF-kappaB in HMEC-1 cells in the absence of E. coli LPS, and the P. gingivalis LPS-dependent agonism was blocked by transient expression of a dominant negative murine TLR4. Pretreatment of HUVECs with P. gingivalis LPS did not influence the ability of E. coli LPS to stimulate E-selectin mRNA expression. Taken together, these data provide the first evidence that P. gingivalis LPS-dependent antagonism of E. coli LPS in human endothelial cells likely involves the ability of P. gingivalis LPS to directly compete with E. coli LPS at the TLR4 signaling complex.
2004Escherichia coli LPS induces heat shock protein 25 in intestinal epithelial cells through MAP kinase activation.Am J Physiol Gastrointest Liver PhysiolProtection of colonic epithelial integrity and function is critical, because compromises in mucosal functions can lead to adverse and potentially life-threatening effects. The gut flora may contribute to this protection, in part, through the sustained induction of cytoprotective heat shock proteins (HSPs) in surface colonocytes. In this study, we investigated whether Escherichia coli LPS mediates bacteria-induced HSP by using cultured young adult mouse colon (YAMC) cells, an in vitro model of the colonic epithelium. E. coli LPS led to an epithelial cell-type specific induction of HSP25 in a time- and concentration-dependent manner, an effect that did not involve changes in HSP72. YAMC cells expressed the toll-like receptors (TLR)2 and TLR4 but not the costimulatory CD14 molecule. Whereas LPS stimulated both the p38 and ERK1/2 but not the stress-activated protein kinase/c-Jun NH(2)-terminal kinase, signaling pathways in the YAMC cells, all three were stimulated in RAW macrophage cells (in which no LPS-induced HSP25 expression was observed). The p38 inhibitor SB-203580 and the MAP kinase kinase-1 inhibitor PD-98059 inhibited HSP25 induction by LPS. LPS treatment also conferred protection against actin depolymerization induced by the oxidant monochloramine. The HSP25 dependence of the LPS protective effect was outlined in inhibitor studies and through adenovirus-mediated overexpression of HSP25. In conclusion, LPS may be an important mediator of enteric bacteria-induced expression of intestinal epithelial HSP25, an effect that may contribute to filamentous actin stabilization under physiological as well as pathophysiological conditions and thus protection of colonic epithelial integrity.
2003Macrophage migration inhibitory factor and host innate immune responses to microbes.Scand J Infect DisAmong innate immune cells, macrophages play an essential role in the sensing and elimination of invasive microorganisms. Binding of microbial products to pathogen-recognition receptors stimulates macrophages to release cytokines and other effector molecules that orchestrate the host innate and adaptive immune responses. Recently, the protein known as macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity. First identified as a T-cell cytokine, MIF was rediscovered as a protein released by pituitary cells after exposure to endotoxin [lipopolysaccharide (LPS)] or bacteria and in response to stress. Monocytes, macrophages and lymphocytes constitutively express MIF, which is rapidly released after stimulation with bacterial endotoxins and exotoxins, and cytokines. MIF induces powerful proinflammatory biological responses and has been shown to be an important effector molecule of septic shock. High levels of MIF have been detected in the circulation of patients with severe sepsis and septic shock. Inhibition of MIF activity with neutralizing anti-MIF antibodies or deletion of the Mif gene led to a marked reduction in cytokine production and protected mice from lethal bacterial sepsis and toxic shock induced by Gram-negative endotoxin or Gram-positive exotoxins. Investigations into the mechanisms whereby MIF modulates innate immune responses to endotoxin and Gram-negative bacteria have shown that MIF up-regulates the expression of Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex. Thus, MIF enables cells, such as the macrophage, that are at the forefront of the host antimicrobial defences, to sense promptly the presence of invading Gram-negative bacteria and mount an innate immune response. Given that it is a pivotal regulator of innate immune responses to bacterial infections, MIF appears to be a perfect target for novel therapeutic interventions in patients with severe sepsis.
2003Role of TLR4/MD-2 and RP105/MD-1 in innate recognition of lipopolysaccharide.Scand J Infect DisTLR4 and RP105 are unique members of the Toll-like receptor (TLR) family molecules. They are associated with small molecules called MD-2 and MD-1, respectively, to form heterodimers (TLR4/MD-2 and RP105/MD-1) and function as recognition/signaling molecules of lipopolysaccharide (LPS), a membrane component of Gram-negative bacteria. Analysis of transfectant cell lines and gene-targeted mice revealed that both MD-2 and MD-1 are involved in the recognition of LPS as well as in the regulation of intracellular distribution and the surface expression of TLR4 and RP105, respectively. Since RP105 or MD-1-deficient mice show a reduced but not complete lack of LPS responsiveness, there may be functional associations between TLR4/MD-2 and RP105/MD-1. In addition, there was an increased frequency of RP105-negative B-lymphocytes in the peripheral blood in several rheumatic diseases, such as systemic lupus erythematosus, suggesting the involvement of RP105 in the pathophysiology of autoimmunity. Further analysis of the structure and function of TLR4/MD-2 and RP105/MD-1 will provide a better understanding of the pathophysiology, and a chance to develop evidence-based treatments for septic shock syndrome and autoimmunity.
2003Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex.Pharmacol TherBacterial lipopolysaccharide (LPS), the major structural component of the outer wall of Gram-negative bacteria, is a potent activator of macrophages. Activated macrophages produce a variety of inflammatory cytokines. Excessive production of cytokines in response to LPS is regarded as the cause of septic shock. On the other hand, macrophages exposed to suboptimal doses of LPS are rendered tolerant to subsequent exposure to LPS and manifest a profoundly altered response to LPS. Increasing evidence suggests that monocytic cells from patients with sepsis and septic shock survivors have characteristics of LPS tolerance. Thus, an understanding of the molecular mechanisms underlying activation and deactivation of macrophages in response to LPS is important for the development of therapeutics for septic shock and the treatment of septic shock survivors. Over the past several years, significant progress has been made in identifying and characterizing several key molecules and signal pathways involved in the regulation of macrophage functions by LPS. In this paper, we summarize the current findings of the functions of the LPS receptor complex, which is composed of CD14, Toll-like receptor 4 (TLR4), and myeloid differentiation protein-2 (MD-2), and the signal pathways of this LPS receptor complex with regard to both activation and deactivation of macrophages by LPS. In addition, recent therapeutic approaches for septic shock targeting the LPS receptor complex are described.
2004Mycobacterial heat shock protein 65 enhances antigen cross-presentation in dendritic cells independent of Toll-like receptor 4 signaling.J Leukoc BiolHeat shock proteins (HSP) have been shown to enhance antigen processing and presentation through their association with antigenic peptides and delivery of these moieties into major histocompatibility complex class I pathways. In this study, mycobacterial Hsp65 is demonstrated to have the ability to help cross-present an exogenous protein by dendritic cells (DC) to CD8 T cells without the need for complex formation between Hsp65 and the protein. This ability of Hsp65 to enhance cross-presentation is independent of its weak stimulatory effect on DC, the latter seen only after prolonged incubation. When the effect of lipopolysaccharide contamination is abrogated, Hsp65 is unable to activate Toll-like receptor (TLR)4 in the presence of CD14 and MD2. This accounts for the inability of Hsp65 to drive maturation of DC and shows that Hsp65 is not a potent stimulator of DC. Thus, Hsp65 enhances the cross-presentation of a soluble, free antigen by DC, independent of TLR4 signaling and up-regulation of costimulatory molecules.
2003Receptor cluster formation during activation by bacterial products.J Endotoxin ResThe recognition of bacterial products, such as lipopolysaccharide (LPS) by the innate immune system lead to a strong pro-inflammatory response that can eventually lead to fatal sepsis syndrome in humans. Although CD14 and TLR4 have been identified as the key molecules involved in LPS-induced signal transduction, accumulating evidence indicates that multiple receptors are also involved. Our group has recently identified a cluster of receptors, involving heat-shock proteins 70 and 90, chemokine receptor 4 as well as growth differentiation factor 5, that are formed following LPS stimulation. In addition, we present data demonstrating that these molecules associate with TLR4 and accumulate in membrane microdomains following LPS ligation. Our results suggest that the entire bacterial recognition is based around the recruitment of multiple signalling molecules, in addition to CD14 and TLRs, within the lipid rafts. We propose that different combinational associations of receptors within activation clusters determine the different responses to a variety of bacterial stimuli.
2003Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14.J Exp MedToll-like receptors (TLRs) are innate recognition molecules for microbial products, but their direct interactions with corresponding ligands remain unclarified. LPS, a membrane constituent of gram-negative bacteria, is the best-studied TLR ligand and is recognized by TLR4 and MD-2, a molecule associated with the extracellular domain of TLR4. Although TLR4-MD-2 recognizes LPS, little is known about the physical interaction between LPS and TLR4-MD-2. Here, we demonstrate cell surface LPS-TLR4-MD-2 complexes. CD14 greatly enhances the formation of LPS-TLR4-MD-2 complexes, but is not coprecipitated with LPS-TLR4-MD-2 complexes, suggesting a role for CD14 in LPS loading onto TLR4-MD-2 but not in the interaction itself between LPS and TLR4-MD-2. A tentative dissociation constant (Kd) for LPS-TLR4-MD-2 complexes was approximately 3 nM, which is approximately 10-20 times lower than the reported Kd for LPS-MD-2 or LPS-CD14. The presence of detergent disrupts LPS interaction with CD14 but not with TLR4-MD-2. E5531, a lipid A antagonist developed for therapeutic intervention of endotoxin shock, blocks LPS interaction with TLR4-MD-2 at a concentration 100 times lower than that required for blocking LPS interaction with CD14. These results reveal direct LPS interaction with cell surface TLR4-MD-2 that is distinct from that with MD-2 or CD14.
2003Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2.Infect ImmunStreptococcus pneumoniae is a leading cause of gram-positive sepsis, and lipoteichoic acid (LTA) may be important in causing gram-positive bacterial septic shock. Even though pneumococcal LTA is structurally distinct from the LTA of other gram-positive bacteria, the immunological properties of pneumococcal LTA have not been well characterized. We have investigated the ability of LTAs to stimulate human monocytes by using highly pure and structurally intact preparations of pneumococcal LTA and its two structural variants. The variants were pneumococcal LTA with only one acyl chain (LTA-1) and completely deacylated LTA (LTA-0). The target cells used in the study were peripheral blood mononuclear cells (PBMCs) and two model cell lines (CHO/CD14/TLR2 and CHO/CD14/TLR4) that express human CD25 protein in response to Toll-like receptor 2 (TLR2) and TLR4 stimulation, respectively. Intact pneumococcal LTA and LTA-1 stimulated PBMC and CHO/CD14/TLR2 cells in a dose-dependent manner but did not stimulate CHO/CD14/TLR4 cells. Pneumococcal LTA was about 100-fold less potent than Staphylococcus aureus LTA in stimulating the CHO/CD14/TLR2 cells and PBMCs. LTA-0 (or pneumococcal teichoic acid) stimulated neither CHO/CD14/TLR2 nor CHO/CD14/TLR4 cells even at high concentrations. Excess teichoic acid, LTA-0, antibodies to phosphocholine, or antibodies to TLR4 did not inhibit the LTA-induced TLR2 stimulation. However, antibodies to CD14, TLR1, or TLR2 suppressed tumor necrosis factor alpha (TNF-alpha) production by PBMCs in response to LTA or LTA-1. These results suggest that pneumococcal LTA with one or both acyl chains stimulates PBMCs primarily via TLR2 with the help of CD14 and TLR1.
2003Toll-like receptor 2- and 6-mediated stimulation by macrophage-activating lipopeptide 2 induces lipopolysaccharide (LPS) cross tolerance in mice, which results in protection from tumor necrosis factor alpha but in only partial protection from lethal LPS doses.Infect ImmunPatients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-alpha) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-alpha could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-alpha shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-alpha doses in TLR4(-/-) but not in TLR2(-/-) mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 micro g. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-alpha, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use.
2003Identification of meningococcal LPS as a major monocyte activator in IL-10 depleted shock plasmas and CSF by blocking the CD14-TLR4 receptor complex.J Endotoxin ResWe have examined the in vitro stimulatory effects of lipopolysaccharide (LPS)-containing samples (meningococcal shock plasma, n = 10; non-shock plasma, n = 10; cerebrospinal fluid (CSF), n = 7) before and after immunodepletion of interleukin (IL)-10 in a monocyte target assay. We also studied the stimulatory effects of plasma collected from 3 patients with lethal septicemia caused by Streptococcus pneumoniae without detectable LPS but with 100-fold increased levels of heat-shock protein 70 (HSP70). HSP70 may, like LPS, activate monocytes via the Toll-like receptor 4 (TLR4). The samples were analyzed for LPS, tumor necrosis factor (TNF)-alpha, IL-10 and HSP70; applied on human monocytes (purity > 95%) before and after IL-10 immunodepletion, in the absence or presence of CD14 blocking mAb (60bca) or the lipid A antagonist, Rhodobacter sphaeroides diphosphoryl lipid A (RsDPLA) which blocks TLR4. Monocyte activation was measured by increased TNF-alpha secretion and tissue factor (TF) up-regulation by monocyte procoagulant activity (PCA). There was a positive correlation between patient plasma LPS levels (n = 10) and increases in TNF-alpha secretion by the monocytes after immunodepletion of IL-10 (r = 0.82). Pretreatment of the monocytes with mAbCD14 or RsDPLA reduced TNF-alpha secretion to median 5% and 12%, respectively, of the levels before the receptor complex was blocked. The median levels of HSP70 were 543 ng/ml (range, 468-962 ng/ml) in pneumococcal shock plasma, 81.5 ng/ml (range, 41-331 ng/ml) in meningococcal shock plasma and 24 ng/ml (range, < 0.8-41 ng/ml) in meningococcal non-shock plasma. Pneumococcal septic shock plasmas with significantly higher levels of HSP70 (P < 0.05) did not induce TNF-alpha secretion in the monocytes. The results strongly suggest that LPS in meningococcal shock plasma is the major activator of monocytes whereas HSP70 (in plasma concentrations up to 963 ng/ml) does not activate monocytes in this assay.
2003T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors.FASEB JSoluble 60 kDa heat shock protein (HSP60) activates macrophages via TLR4. We now report that soluble HSP60 activates T cells via the innate receptor TLR2. HSP60 activated T cell adhesion to fibronectin to a degree similar to other activators: IL-2, SDF-1alpha, and RANTES. T cell type and state of activation was important; nonactivated CD45RA+ and IL-2-activated CD45RO+ T cells responded optimally (1 h) at low concentrations (0.1-1 ng/ml), but nonactivated CD45RO+ T cells required higher concentrations (approximately 1 microg/ml) of HSP60. T cell HSP60 signaling was inhibited specifically by monoclonal antibodies (mAb) to TLR2 but not by a mAb to TLR4. Indeed, T cells from mice with mutated TLR4 could still respond to HSP60, whereas Chinese hamster T cells with mutated TLR2 did not respond. The human T cell response to soluble HSP60 depended on phosphatidylinositol 3-kinase and protein kinase C signaling and involved the phosphorylation of Pyk-2. Soluble HSP60 also inhibited actin polymerization and T cell chemotaxis through extracellular matrix-like gels toward the chemokines SDF-1alpha (CXCL12) or ELC (CCL19). Exposure to HSP60 for longer times (18 h) down-regulated chemokine receptor expression: CXCR4 and CCR7. These results suggest that soluble HSP60, through TLR2-dependent interactions, can regulate T cell behavior in inflammation.
2003Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock.Biochem Biophys Res CommunType I interferons (IFN-alpha/beta) affect many aspects of immune responses. Many pathogen-associated molecules, including bacterial lipopolysaccharide (LPS) and virus-associated double-stranded RNA, induce IFN gene expression through activation of distinct Toll-like receptors (TLRs). Although much has been studied about the activation of the transcription factor IRF-3 and induction of IFN-beta gene by the LPS-mediated TLR4 signaling, definitive evidence is missing about the actual role of IRF-3 in LPS responses in vitro and in vivo. Using IRF-3 deficient mice, we show here that IRF-3 is indeed essential for the LPS-mediated IFN-beta gene induction. Loss of IRF-3 also affects the expression of profile of other cytokine/chemokine genes. We also provide evidence that the LPS/TLR4 signaling activates IRF-7 to induce IFN-beta, if IRF-7 is induced by IFNs prior to LPS simulation. Finally, the IRF-3-deficient mice show resistance to LPS-induced endotoxin shock. These results place IRF-3 as a molecule central to LPS/TLR4 signaling.
2003Macrophage migration inhibitory factor (MIF) regulates host responses to endotoxin through modulation of Toll-like receptor 4 (TLR4).J Endotoxin ResThe cytokine macrophage migration inhibitory factor (MIF) has emerged recently as an important mediator of inflammation and innate immunity. MIF is rapidly released by macrophages after stimulation with microbial products and pro-inflammatory cytokines and, in turn, stimulates the production of pro-inflammatory mediators by immune cells. Immunoneutralization of MIF or deletion of the Mif gene was shown to protect animals from lethal endotoxemia, staphylococcal toxic shock and septic shock in experimental models of bacterial peritonitis. To investigate the function of MIF in innate immunity, we studied the response of macrophages expressing reduced levels of MIF to microbial products. These cells were generated by transduction of an antisense MIF adenovirus or by stable transfection with an antisense MIF plasmid or were obtained from MIF-knockout mice. MIF-deficient macrophages were shown to be hyporesponsive to stimulation with LPS and Gram-negative bacteria. The defect was associated with a down-regulation of Toll-like receptor 4 (TLR4), the signal transducing molecule of the LPS receptor complex. Immunoneutralization of extracellular MIF decreased TLR4 expression and responses of macrophages to LPS, indicating that MIF may exert autocrine effects. These findings identify an important role for MIF in innate immunity and provide a rationale for the development of anti-MIF strategy for the treatment of patients with Gram-negative septic shock.
2002Essential role of MD-2 in B-cell responses to lipopolysaccharide and Toll-like receptor 4 distribution.J Endotoxin ResToll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. Moreover, mice lacking MD-2 (MD-2(-/-)) do not respond to LPS, survive endotoxin shock, and are susceptible to Salmonella typhimurium infection. Here, we further show that B cells lacking MD-2 do not up-regulate CD23 in response to LPS. TLR4 predominantly resides in the Golgi apparatus without MD-2. MD-2 is essential for LPS responses in vivo.
2002Toxoplasma gondii-derived heat shock protein HSP70 functions as a B cell mitogen.Cell Stress ChaperonesWe have investigated the role of Toxoplasma gondii-derived heat shock protein 70 (TgHSP70) as a B cell mitogen by measuring proliferative responses in vitro. TgHSP70 induced prominent proliferative responses in murine B cells derived not only from T gondii-infected but also from uninfected mice. Nude mice responded to TgHSP70; however, severe combined immunodeficiency, RAG1-/- B6, and microMT mice failed to respond. B220+ spleen cells showed marked proliferation after stimulation with TgHSP70, but neither CD4+ nor CD8+ population responded. This unresponsiveness of CD4+ and CD8- T cells to TgHSP70 was antigen presenting cells independent. These data indicate that TgHSP70 induced the proliferation of B cells but not T cells. Polymyxin B, a potent inhibitor of lipopolysaccharide (LPS), did not eliminate TgHSP70-induced proliferation. C3H/HeN mice responded well to TgHSP70 stimulation; however, C3H/HeJ mice carrying a point mutation in the Toll-like receptor (TLR) 4 failed to respond. This indicates that TLR4 is required for TgHSP70-induced B cell activation. The involvement of TLR4 in the TgHSP70-induced proliferative responses of spleen cells was also shown by the use of TLR4-/- mice. But TgHSP70-induced, but not LPS-induced, spleen cell proliferation was observed in MyD88-/- mice, indicating that the MyD88 molecule was involved in LPS-induced proliferation but not in TgHSP70-induced proliferation.
2003Innate immune-related receptors in normal and psoriatic skin.Arch Pathol Lab MedA precise role for the innate immune system in psoriasis remains to be determined. Surface receptors, including Toll-like receptors (TLRs) that recognize bacterial ligands and CD91, which recognizes heat shock proteins (HSPs), are implicated in both innate and adaptive immunity.Since skin is exposed to various exogenous stimuli, which can provoke or exacerbate psoriasis, we characterized expression and function of TLRs, CD91, and HSPs in normal and psoriatic skin.A variety of skin-derived cells and blood-derived cells were analyzed both in vivo and in vitro; samples were obtained from 24 different individuals for innate immune-related receptor expression and function. By comparing and contrasting individuals with healthy skin and psoriatic patients, several specific differences were identified.Immunohistochemistry-based expression profiling revealed TLR1 expression in epidermal dendritic cells (DCs) and dermal dendritic cells (DDCs) in normal skin, as well as in pre-psoriatic skin and psoriatic plaques, with enhanced basal layer keratinocyte (KC) expression in pre-psoriatic and psoriatic plaques compared with normal skin; TLR2 expression primarily by DDCs; and TLR4 expression by epidermal DCs and DDCs, with mid-epidermal-layer KCs displaying cell surface staining. No TLR9 or CD14 was detected on DCs or KCs, although psoriatic plaques contained CD14-positive macrophages. Analysis of psoriatic epidermis revealed HSPs 27, 60, and 70. Keratinocytes were CD91 negative, but CD91 was expressed by fibroblasts and DDCs in normal and pre-psoriatic skin, with prominent accumulation of CD91-positive DDCs in psoriatic plaques. Cultured KCs revealed no surface expression of TLR2, TLR4, TLR9, or CD91. Exposure of fibroblasts, but not KCs, to lipopolysaccharide or HSPs triggered nuclear factor (NF)-kappaB activation. Heat shock proteins did induce maturation of blood-derived DCs accompanied by increased interleukin-12 production and enhanced antigen-presenting function.These data demonstrate distinctive patterns of innate immune-related receptors by specific subsets of cells in normal and psoriatic skin, suggesting functional roles for HSPs and DCs in psoriasis.
2003Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD-2: unique roles for MD-2.Int ImmunopharmacolAdaptive immunity generally refers to the ability of lymphocytes to recognize microbial, viral and fungal proteins via T cell receptors and antibodies. More ancestral and widespread innate immune mechanisms include those responsible for recognition of microbial glycolipids. Lipopolysaccharide (LPS) is the best studied, and arguably one of the most important of bacterial products because of its role in innate immune responses and endotoxin-mediated sepsis. Converging studies in two independent fields have recently led to the identification of LPS recognition molecules utilized by mammalian cells. Toll-like receptor 4 (TLR4) was identified as a mammalian homologue of the Toll receptor, which recognized fungi in the Drosophila's immune system. Spontaneous and targeted mutations identified TLR4 as an LPS recognition molecule. Separate studies of a Radioprotective 105 (RP105) and MD-1 heterodimer expressed by cells led to the identification of MD-2 as a molecule associated with TLR4. Very recent in vivo studies have now revealed an essential contribution of MD-2 to LPS recognition. These findings further our understanding of protective, as well as detrimental innate immune mechanisms and may lead to new therapies for endotoxin shock.
2002Enhancement of endotoxin activity by muramyldipeptide.J Endotoxin ResSynthetic muramyldipeptide (MDP), the minimum structural moiety of bacterial peptidoglycan for adjuvant and related activities, sensitized mice for two types of lethal shock induced by lipopolysaccharide (LPS): an early anaphylactoid shock and late endotoxin shock. In relation to the late reaction in MDP-primed mice, enhanced production of inflammatory cytokines was induced in response to various bacterial components. MDP showed a priming effect in mice not only when administered parentally but also via the oral route. MDP activated human monocytic THP-1 cells in a CD14-, Toll-like receptor 2 (TLR2)- and TLR4-independent manner to increase expression of MyD88, a common adaptor and signaling molecule for TLRs, and exhibited synergistic cytokine inducing effects with TLR4 agonists (LPS, synthetic lipid A), TLR2 agonist (synthetic lipopeptide), and TLR9 agonist (bacterial CpGDNA) in THP-1 cells in culture. Consistent with these findings, MDP primed TLR2 knockout mice as well as wild-type controls, but not TLR4-mutated C3H/HeJ mice, to enhance production of tumor necrosis factor-alpha upon stimulation with synthetic lipid A. In contrast to the BCG- and Propionibacterium acnes-priming system, MDP primed mice in an interferon-gamma-independent manner. Further studies are required to elucidate the mechanisms of the synthetic and priming activities of MDP for various bacterial components.
2002TLR2: cellular sensor for microbial and endogenous molecular patterns.Curr Top Microbiol ImmunolToll-like receptor (TLR) 2 is a member of the vertebrate protein family of TLRs that has been studied in substantial detail over the last years. The extracellular domain of the type I receptor molecule TLR2 contains 18 to 20 leucine rich repeat (LRR) and LRR like motives. The intracellular domain of TLR2 contains a Toll/IL-1 receptor/resistance protein typical TIR domain. After the first implication of TLR4 in immunity thereinafter followed by the discovery of the lipopolysaccharide signal transducer function of TLR4, TLR2 was the first of ten mammalian TLRs proven to be directly involved in recognition of pathogen associated molecular patterns (PAMPs). Among the TLR2 specific agonists are microbial products representing broad groups of species such as Gram-positive and Gram-negative bacteria, as well as mycobacteria, spirochetes, and mycoplasm. PAMP induced phagosomal localization of TLR2 and TLR2 dependent apoptosis have been shown. Complex formation with other molecules involved in pattern recognition such as CD14, MD2, TLR1, and TLR6 has been implicated for TLR2. Surprisingly even proteinaceous host material such as heat shock protein (HSP) 60 has been demonstrated to activate cells through TLR2. Thus, TLR2 may be a sensor and inductor of specific defense processes, including oxidative stress and cellular necrosis initially spurred by microbial compounds. Here we summarize the current knowledge on the structure and function of TLR2, which is far from being complete. Detailed understanding of the biology of TLR2 will probably contribute to the characterization of a number of infectious diseases and potentially help in the development of novel intervention strategies.
2002Involvement of MyD88 in host defense and the down-regulation of anti-heat shock protein 70 autoantibody formation by MyD88 in Toxoplasma gondii-infected mice.J ParasitolThis study investigated the influence of TLR (toll-like receptor)4, TLR2, and MyD88 in Toxoplasma gondii-infected wild-type (WT) mice and TLR4-, TLR2-, and MyD88-deficient mice. Ninety-five percent of MyD88-deficient mice died 10-16 days after intraperitoneal infection with 100 cysts of T. gondii Fukaya strain, whereas 95-100% of TLR4- and TLR2-deficient mice and WT C57BL/6 (B6) mice survived for more than 7 wk after T. gondii infection. The distribution of T. gondii in various organs of TLR4-, TLR2-, and MyD88-deficient mice and WT B6 mice was assessed 2 wk after T. gondii intraperitoneal infection using quantitative competitive polymerase chain reaction. In MyD88-deficient mice, high levels of T. gondii load were observed in the brain, tongue, heart, lungs, spleen, liver, mesenteric lymph node, and kidneys after infection. The T. gondii load was significantly increased in the lungs in both TLR4- and TLR2-deficient mice compared with WT B6 mice. High levels of anti-mouse heat shock protein (mHSP)70 autoantibody and anti-T. gondii HSP70 antibody production were detected in the sera from MyD88-deficient mice.
2002SOCS1/JAB is a negative regulator of LPS-induced macrophage activation.ImmunityBacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4. We show here that the suppressor of cytokine-signaling-1 (SOCS1/JAB) is rapidly induced by LPS and negatively regulates LPS signaling. SOCS1(+/-) mice or SOCS1(-/-) mice with interferon-gamma (IFNgamma)-deficient background were more sensitive to LPS-induced lethal effects than were wild-type littermates. LPS-induced NO(2)(-) synthesis and TNFalpha production were augmented in SOCS1(-/-) macrophages. Furthermore, LPS tolerance, a protection mechanism against endotoxin shock, was also strikingly reduced in SOCS1(-/-) cells. LPS-induced I-kappaB and p38 phosphorylation was upregulated in SOCS1(-/-) macrophages, and forced expression of SOCS1 suppressed LPS-induced NF-kappaB activation. Thus, SOCS1 directly suppresses TLR4 signaling and modulates innate immunity.
2002Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses.Trends ImmunolToll-like receptors (TLRs) have a crucial role in regulating immunity against microbial agents. Recent studies indicate that these receptors might also have an important role in regulating responses to endogenous stimuli, such as necrotic cells, heat-shock proteins and extracellular matrix breakdown products. Specifically, TLR2 and TLR4 were shown to mediate expression of inflammatory genes and trigger dendritic-cell 'maturation' by these agents. These intriguing findings suggest that the ancient family of TLRs are involved in the recognition, not only of microbes, but also of endogenous harmful stimuli. However, potential complications associated with microbial contamination of endogenous agents and the specific nature of in vivo responses induced by these agents remain to be determined.
2002In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions.CirculationInflammation plays an important role in atherogenesis. The toll-like receptor 4 (TLR4) is the receptor for bacterial lipopolysaccharides and also recognizes cellular fibronectin and heat shock protein 60, endogenous peptides that are produced in response to tissue injury. To explore a possible role for this receptor in arterial obstructive disease, we determined the expression of TLR4 in the atherosclerotic arterial wall, including adventitia, and studied the effect of adventitial TLR4 activation on neointima formation in a mouse model.Localization of TLR4 was studied in human atherosclerotic coronary arteries by immunohistochemistry and detected in plaque and adventitia. In the adventitia, not all TLR4-positive cells colocalized with macrophages. In primary human adventitial fibroblasts, expression of TLR4 was demonstrated by immunofluorescence, Western blot, and reverse transcriptase-polymerase chain reaction. Adding lipopolysaccharide to these fibroblasts induced activation of NF-kappaB and an increase of mRNAs of various cytokines. The effect of adventitial stimulation of TLR4 was studied in a mouse model. A peri-adventitial cuff was placed around the femoral artery. Application of lipopolysaccharide between cuff and artery augmented neointima formation induced by the cuff (intimal area+/-SEM, 9134+/-1714 versus 2353+/-1076 microm(2), P<0.01). In TLR4-defective mice, application of cuff and lipopolysaccharide resulted in a smaller neointima than in wild-type mice (intimal area, 3859+/-904 microm(2), P=0.02 versus wild type).A functional TLR4 is expressed in human adventitial fibroblasts and macrophages. Adventitial TLR4 activation augmented neointima formation in a mouse model. These results provide evidence for a link between the immune receptor TLR4 and intimal lesion formation.
2002Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae.Eur J ImmunolChlamydia pneumoniae stimulates potently maturation of and cytokine secretion by bone marrow-derived dendritic cells (BMDDC). BMDDC responses depend mainly on Toll-like receptor (TLR)2 and to a minor extent on TLR4. We demonstrate here using C. pneumoniae in an infectious model with the replication-permissive epithelial cell line HEp2 that HSP60 is produced in substantial amounts in chlamydial inclusions during infection. Electron microscopy of chlamydial inclusions revealed that HSP60 was mainly associated with reticulate bodies, but was also located in between the different chlamydial developmental forms. Supernatants of permissive HEp2 cells infected with C. pneumoniae contained soluble chlamydial HSP60 as demonstrated by Western blotting and were able to stimulate BMDDC of wild-type mice. The stimulatory capacity of culture supernatants correlated with the presence of chlamydial HSP60. In contrast, BMDDC from TLR4-mutant mice crossed to TLR2-deficient mice were not stimulated by the culture supernatant, indicating that chlamydial HSP60 but not cytokines, possibly secreted by infected HEp2 cells, are responsible for the observed stimulation of BMDDC. Purified recombinant HSP60 from C. pneumoniae stimulated BMDDC in a TLR2- and TLR4-dependent fashion similar to the whole microorganism. In summary, these data suggest chlamydial HSP60 as an important mediator of inflammatory responses during infection with C. pneumoniae.
2002Essential role of MD-2 in LPS responsiveness and TLR4 distribution.Nat ImmunolToll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. We show here that MD-2(-/-) mice do not respond to LPS, do survive endotoxic shock but are susceptible to Salmonella typhimurium infection. We found that in MD-2(-/-) embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR4 was distributed at the leading edge surface of cells in wild-type embryonic fibroblasts. Thus, MD-2 is essential for correct intracellular distribution and LPS-recognition of TLR4.
2002Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation.J Cell SciThe plasma membrane of cells is composed of lateral heterogeneities, patches and microdomains. These membrane microdomains or lipid rafts are enriched in glycosphingolipids and cholesterol and have been implicated in cellular processes such as membrane sorting and signal transduction. In this study we investigated the importance of lipid raft formation in the innate immune recognition of bacteria using biochemical and fluorescence imaging techniques. We found that receptor molecules that are implicated in lipopolysaccharide (LPS)-cellular activation, such as CD14, heat shock protein (hsp) 70, 90, Chemokine receptor 4 (CXCR4), growth differentiation factor 5 (GDF5) and Toll-like receptor 4 (TLR4), are present in microdomains following LPS stimulation. Lipid raft integrity is essential for LPS-cellular activation, since raft-disrupting drugs, such as nystatin or MCD, inhibit LPS-induced TNF-alpha secretion. Our results suggest that the entire bacterial recognition system is based around the ligation of CD14 by bacterial components and the recruitment of multiple signalling molecules, such as hsp70, hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS ligation, within the lipid rafts.
2002Interleukin-1beta induces in vivo tolerance to lipopolysaccharide in mice.Clin Exp ImmunolEndotoxin or lipopolysaccharide (LPS) tolerance may be partially due to the secretion of potent anti-inflammatory cytokines following severe Gram-negative infections, or by low doses of LPS. In this work, we describe the effects of interleukin-1 (IL-1) and tumour necrosis factor alpha (TNF-), two early cytokines secreted after LPS exposure, in the induction of LPS tolerance. Our results demonstrate that mice treated with three daily doses of 100 ng of IL-1 were tolerant to LPS-induced shock. However, TNF- was unable to induce an LPS refractory state. Given the fact that 100 ng of IL-1 increase the plasma levels of glucocorticoids, we evaluated whether a daily injection of dexamethasone (DEX) alone was able to reproduce the LPS-like tolerant state. However, no signs of LPS refractoriness were detected, except when DEX was administered concomitantly with a dose of IL-1 that does not induce corticosterone secretion (12 ng/mouse). This dose was found to induce in vitro up-regulation of the glucocorticoid receptors (GcR) of peritoneal macrophages following 24 h of treatment. In addition, we demonstrate that IL-1 is capable of inducing the down-regulation of Toll-like receptor 4 (TLR4), a crucial molecule in the signal transduction of LPS. Taken together, our results indicate that IL-1 can generate tolerance to LPS in vivo, and suggest that the regulation of mechanisms of the down-regulation of TLR4, as well as those involved in the expression of GcR and/or in the secretion of glucocorticoids, would be crucial for these effects.
2002Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock.Arch Intern MedSeptic shock remains a significant health concern worldwide, and despite progress in understanding the physiological and molecular basis of septic shock, the high mortality rate of patients with septic shock remains unchanged. We recently identified a common polymorphism in toll-like receptor 4 (TLR4) that is associated with hyporesponsiveness to inhaled endotoxin or lipopolysaccharide in humans.Since TLR4 is a major receptor for lipopolysaccharide in mammals and gram-negative bacteria are the prevalent pathogen associated with septic shock, we investigated whether these specific TLR4 alleles are associated with a predisposition to a more severe disease outcome for patients with septic shock. We genotyped 91 patients with septic shock as well as 73 healthy blood donor controls for the presence of the TLR4 Asp299Gly and TLR4 Thr399Ile mutations.We found the TLR4 Asp299Gly allele exclusively in patients with septic shock (P =.05). Furthermore, patients with septic shock with the TLR4 Asp299Gly/Thr399Ile alleles had a higher prevalence of gram-negative infections.Mutations in the TLR4 receptor may predispose people to develop septic shock with gram-negative microorganisms.
2002Regulation of Toll-like receptor 4 expression in the lung following hemorrhagic shock and lipopolysaccharide.J ImmunolThe Toll-like receptor 4 (TLR4) has recently been shown to function as the major upstream sensor for LPS. In this study, a rodent model of lung injury following resuscitated hemorrhagic shock was used to examine the regulation of TLR4 gene and protein expression in vivo and in vitro. Intratracheal LPS alone induced a rapid reduction in whole lung TLR4 mRNA, an effect which is also observed in recovered alveolar macrophages. This effect appeared to be due to a lowering of TLR4 mRNA stability by approximately 69%. By contrast, while shock/resuscitation alone had no effect on TLR4 mRNA levels, it markedly altered the response to LPS. Specifically, antecedent shock prevented the LPS-induced reduction in TLR4 mRNA levels. This reversal was explained by the ability of prior resuscitated shock both to prevent the destabilization of TLR4 mRNA by LPS and also to augment LPS-stimulated TLR4 gene transcription compared with LPS alone. Oxidant stress related to shock/resuscitation appeared to contribute to the regulation of TLR4 mRNA, because supplementation of the resuscitation fluid with the antioxidant N-acetylcysteine reversed the ability of shock/resuscitation to preserve TLR4 mRNA levels following LPS. TLR4 protein levels in whole lung mirrored the changes seen for TLR4 mRNA. Considered in aggregate, these data suggest that levels of tlr4 expression are controlled both transcriptionally as well as posttranscriptionally through altered mRNA stability and that antecedent shock/resuscitation, a form of global ischemia/reperfusion, might influence regulation of this gene.
2001Pathogenesis of septic shock: implications for prevention and treatment.J ChemotherThe innate immune system is in the vanguard of host defenses against infection. Recognition of invasive microbial pathogens is mediated by pattern recognition receptors on the surface of immune cells that recognize pathogen-associated molecular motifs. Considerable progress has been made in recent years in understanding how bacterial products initiate sepsis. In gram-negative sepsis, the LPS-binding protein (LBP), CD14 and the recently identified Toll-like receptor 4 (TLR4) are key molecules for the recognition of endotoxin (lipopolysaccharide, LPS) by cells of the myelomonocytic lineage. In gram-positive sepsis, components of the bacterial cell wall (peptidoglycan, PGN; lipoteichoic acids, LTA) have been shown to activate myeloid cells through an interaction with a receptor complex composed of CD14, TLR2 and perhaps also TLR6 (PGN) or CD14 and TLR4 (LTA). By contrast, gram-positive exotoxins act as superantigens and directly stimulate T lymphocytes by cross-linking the MHC class II of antigen presenting cells to specific chains of the T cell receptor. Immune cells activated by microbial pathogens release numerous effector molecules, which orchestrate the innate and adaptive host defenses. Furthermore, bacteria and microbial toxins directly activate the complement and coagulation systems, which play an important part in the host defensive response. Severe sepsis and septic shock can be viewed as clinical manifestations of a failing innate immune response that ultimately results in an overstimulation of the physiological host response. The pathogenesis of sepsis is far more complex that was initially anticipated. However, combined research efforts of basic scientists and clinical investigators continue to provide critical information for the identification of novel therapeutic targets. The exciting results obtained recently with treatment strategies designed to correct coagulation abnormalities occurring during sepsis are an example of how research may ultimately translate into improved patient care.
2002Toll-like receptor 1 inhibits Toll-like receptor 4 signaling in endothelial cells.Eur J ImmunolToll-like receptor 4 (TLR4) is the signal-transducing component of the LPS recognition complex and is essential for LPS-induced septic shock. Here we demonstrate that TLR1 has the capacity to abrogate TLR4 signaling. Human microvascular endothelial cells express TLR4 but not TLR1 and respond to LPS through TLR4. The ability of these cells to respond to LPS was lost, however, when they were transfected with TLR1. Inhibition was specific for TLR1 because TL5 failed to block TLR4 function. Moreover, TLR1 had no effect upon TNF-alpha signaling, indicating that TLR1 operated at a step upstream of the convergence between the two pathways. Inhibition of TLR4 signaling was mediated by the extracellular, but not cytoplasmic domain of TLR1. In addition, TLR1 physically associated with TLR4 in co-precipitation experiments. These findings suggest that TLR1 might restrain potentially dangerous innate response to LPS by binding to TLR4 and preventing the formation of active signaling complexes.
2002The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway.J Biol ChemThe heat shock protein Gp96 has been shown to induce specific immune responses. On one hand, this phenomenon is based on the specific interaction with CD91 that mediates endocytosis and results in major histocompatibility complex class I-restricted representation of the Gp96-associated peptides. On the other hand, Gp96 induces activation of professional antigen-presenting cells, resulting in the production of pro-inflammatory cytokines and up-regulation of costimulatory molecules by unknown mechanisms. In this study, we have analyzed the consequences of Gp96 interaction with cells expressing different Toll-like receptors (TLRs) and with bone marrow-derived dendritic cells from mice lacking functional TLR2 and/or TLR4 molecules. We find that the Gp96-TLR2/4 interaction results in activation of nuclear factor kappaB-driven reporter genes and mitogen- and stress-activated protein kinases and induces IkappaBalpha degradation. Bone marrow-derived dendritic cells of C3H/HeJ and more pronounced C3H/HeJ/TLR2(-/-) mice fail to respond to Gp96. Interestingly, activation of bone marrow-derived dendritic cells depends on endocytosis of Gp96 molecules. Our results provide, for the first time, the molecular basis for understanding the Gp96-mediated activation of antigen-presenting cells by describing the simultaneous stimulation of the innate and adaptive immune system. This feature explains the remarkable ability of Gp96 to induce specific immune responses against tumors and pathogens.
2002Self-heat shock protein 60 induces tumour necrosis factor-alpha in monocyte-derived macrophage: possible role in chronic inflammatory periodontal disease.Clin Exp ImmunolHeat shock protein 60 (hsp60) has been increasingly recognized as an important molecule in infectious and autoimmune diseases. We have demonstrated previously that serum antibodies to both human hsp60 and Porphyromonas gingivalis GroEL were elevated in periodontitis patients compared with healthy subjects. In order to clarify the relative importance of hsp60 in the inflammatory response in periodontal disease, the stimulatory effect of human and bacterial hsp60 on the production of tumour necrosis factor-alpha (TNF-alpha) was examined in phorbol myristate acetate (PMA)-stimulated THP-1 cells. As bacterial hsp60s, recombinant P. gingivalis and Actinobacillus actinomycetemcomitans GroEL was used. Human hsp60 but not P. gingivalis or A. actinomycetemcomitans GroEL demonstrated stimulatory activity similar to lipopolysaccharide (LPS) derived from the bacteria. The activity of hsp60 was inhibited by anti-CD14 and anti-Toll-like receptor 4 (TLR4) antibodies, suggesting that both CD14 and TLR4 mediate hsp60 signalling. Immunohistochemical analysis demonstrated that hsp60 is abundantly expressed in periodontitis lesions. Therefore, it is postulated that periodontopathic bacteria stimulate the cells in the periodontium to up-regulate the expression of hsp60, which in turn may stimulate macrophage and possibly other cells to produce proinflammatory cytokines. These mechanisms may be involved in the chronicity and tissue destruction of periodontal disease.
2002HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway.J Biol ChemHuman heat-shock protein (HSP)70 activates innate immune cells and hence requires no additional adjuvants to render bound peptides immunogenic. Here we tested the assumption that endogenous HSP70 activates the Toll/IL-1 receptor signal pathway similar to HSP60 and pathogen-derived molecular patterns. We show that HSP70 induces interleukin-12 (IL-12) and endothelial cell-leukocyte adhesion molecule-1 (ELAM-1) promoters in macrophages and that this is controlled by MyD88 and TRAF6. Furthermore, HSP70 causes MyD88 relocalization and MyD88-deficient dendritic cells do not respond to HSP70 with proinflammatory cytokine production. Using the system of genetic complementation with Toll-like receptors (TLR) we found that TLR2 and TLR4 confer responsiveness to HSP70 in 293T fibroblasts. The expanding list of endogenous ligands able to activate the ancient Toll/IL-1 receptor signal pathway is in line with the "danger hypothesis" proposing that the innate immune system senses danger signals even if they originate from self.
2002Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4.J Biol ChemRecent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).
2002Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway.J ImmunolActive inflammation and NF-kappaB activation contribute fundamentally to atherogenesis and plaque disruption. Accumulating evidence has implicated specific infectious agents including Chlamydia pneumoniae in the progression of atherogenesis. Chlamydial heat shock protein 60 (cHSP60) has been implicated in the induction of deleterious immune responses in human chlamydial infections and has been found to colocalize with infiltrating macrophages in atheroma lesions. cHSP60 might stimulate, enhance, and maintain innate immune and inflammatory responses and contribute to atherogenesis. In this study, we investigated the signaling mechanism of cHSP60. Recombinant cHSP60 rapidly activated NF-kappaB in human microvascular endothelial cells (EC) and in mouse macrophages, and induced human IL-8 promoter activity in EC. The inflammatory effect of cHSP60 was heat labile, thus excluding a role of contaminating LPS, and was blocked by specific anti-chlamydial HSP60 mAb. In human vascular EC which express Toll-like receptor 4 (TLR4) mRNA and protein, nonsignaling TLR4 constructs that act as dominant negative blocked cHSP60-mediated NF-kappaB activation. Furthermore, an anti-TLR4 Ab abolished cHSP60-induced cellular activation, whereas a control Ab had no effect. In 293 cells, cHSP60-mediated NF-kappaB activation required both TLR4 and MD2. A dominant-negative MyD88 construct also inhibited cHSP60-induced NF-kappaB activation. Collectively, our results indicate that cHSP60 is a potent inducer of vascular EC and macrophage inflammatory responses, which are very relevant to atherogenesis. The inflammatory effects are mediated through the innate immune receptor complex TLR4-MD2 and proceeds via the MyD88-dependent signaling pathway. These findings may help elucidate the mechanisms by which chronic asymptomatic chlamydial infection contribute to atherogenesis.
MIF regulates innate immune responses through modulation of Toll-like receptor 4.NatureMacrophages are pivotal effector cells of the innate immune system, which is vital for recognizing and eliminating invasive microbial pathogens. When microbial products bind to pathogen-recognition receptors, macrophages become activated and release a broad array of cytokines that orchestrate the host innate and adaptive immune responses. Initially identified as a T-cell cytokine, macrophage migration inhibitory factor (MIF) is also a macrophage cytokine and an important mediator of inflammation and sepsis. Here we report that MIF is an essential regulator of macrophage responses to endotoxin (lipopolysaccharide) and Gram-negative bacteria. Compared with wild-type cells, MIF-deficient macrophages are hyporesponsive to lipopolysaccharide and Gram-negative bacteria, as shown by a profound reduction in the activity of NF-kappaB and the production of tumour-necrosis factor-alpha. This reduction is due to a downregulation of Toll-like receptor 4 (TLR4), the signal-transducing molecule of the lipopolysaccharide receptor complex, and is associated with decreased activity of transcription factor PU.1, which is required for optimal expression of the Tlr4 gene in myeloid cells. These findings identify an important role for MIF in innate immunity and provide a molecular basis for the resistance of MIF-deficient mice to endotoxic shock.
2002The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins.J ImmunolPrevious studies have shown that human heat shock protein (hsp) 60 elicits a strong proinflammatory response in cells of the innate immune system with CD14, Toll-like receptor (TLR) 2, and TLR4 as mediators of signaling, but probably not of binding. In the present study, we directly demonstrate binding of hsp60 to the macrophage surface and find the binding receptor for hsp60 different from the previously described common receptor for several other heat shock proteins, including hsp70, hsp90, and gp96. Fluorescence-labeled human hsp60 bound to cell surfaces of the murine macrophage lines J774 A.1 and RAW264.7 and to mouse bone marrow-derived macrophages. By flow cytometry, we could demonstrate for the first time that hsp60 binding to macrophages occurred at submicromolar concentrations, is saturable, and can be competed by unlabeled hsp60, but not by unrelated proteins, thus confirming the classic characteristics of specific ligand-receptor interactions. Binding of hsp60 at 4 degrees C was followed by endocytosis at 37 degrees C. Hsp60 binding to macrophages could not be competed by excess hsp70, hsp90, or gp96, all of which share the alpha(2)-macroglobulin receptor as binding site. Hsp60 binding occurred in the absence of surface TLR4. However, no cytokine response was induced by hsp60 in TLR4-deficient macrophages. We conclude that hsp60 binds to a stereo-specific receptor on macrophages, and that different surface molecules are engaged in binding and signal transduction. Furthermore, the binding site for hsp60 is separate from the common receptor for hsp70, hsp90, and gp96, which suggests an independent role of hsp60 as danger Ag and in immunoregulation.
2001Regulation of taurine transport in murine macrophages.Amino AcidsWe studied the regulation of taurine transport in ANA1 murine macrophage cell line. Taurine uptake was upregulated by hypertonicity and downregulated by bacterial lypopolysaccharide (LPS) and other stimuli leading to macrophage activation. However combined stimulation with LPS plus hypertonic shock evoked an increase of taurine uptake that was even higher than with hypertonic shock alone. Taurine transport was not modified by LPS in GG2EE macrophages derived from C3H/Hej mouse strain, which harbour a mutated Toll-like receptor 4 (TLR4) and thus are not activated by LPS. The extracellular signal-regulated kinase (ERK) inhibitor PD98059 abrogates the effect of both LPS and hyperosmotic shock on ANA1 taurine uptake, while the p38 inhibitor SB203580 reduces the taurine uptake in control conditions and impairs only the response to hypertonicity. These results suggest that the effect of LPS on taurine transport depends on ERK pathway and can be influenced by environmental conditions.
2001Bacterial lipopolysaccharides and innate immunity.J Endotoxin ResBacterial lipopolysaccharides (LPS) are the major outer surface membrane components present in almost all Gram-negative bacteria and act as extremely strong stimulators of innate or natural immunity in diverse eukaryotic species ranging from insects to humans. LPS consist of a poly- or oligosaccharide region that is anchored in the outer bacterial membrane by a specific carbohydrate lipid moiety termed lipid A. The lipid A component is the primary immunostimulatory centre of LPS. With respect to immunoactivation in mammalian systems, the classical group of strongly agonistic (highly endotoxic) forms of LPS has been shown to be comprised of a rather similar set of lipid A types. In addition, several natural or derivatised lipid A structures have been identified that display comparatively low or even no immunostimulation for a given mammalian species. Some members of the latter more heterogeneous group are capable of antagonizing the effects of strongly stimulatory LPS/lipid A forms. Agonistic forms of LPS or lipid A trigger numerous physiological immunostimulatory effects in mammalian organisms, but--in higher doses--can also lead to pathological reactions such as the induction of septic shock. Cells of the myeloid lineage have been shown to be the primary cellular sensors for LPS in the mammalian immune system. During the past decade, enormous progress has been obtained in the elucidation of the central LPS/lipid A recognition and signaling system in mammalian phagocytes. According to the current model, the specific cellular recognition of agonistic LPS/lipid A is initialized by the combined extracellular actions of LPS binding protein (LBP), the membrane-bound or soluble forms of CD14 and the newly identified Toll-like receptor 4 (TLR4)*MD-2 complex, leading to the rapid activation of an intracellular signaling network that is highly homologous to the signaling systems of IL-1 and IL-18. The elucidation of structure-activity correlations in LPS and lipid A has not only contributed to a molecular understanding of both immunostimulatory and toxic septic processes, but has also re-animated the development of new pharmacological and immunostimulatory strategies for the prevention and therapy of infectious and malignant diseases.
2001Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation.Circ ResAn early component of atherogenesis is abnormal vascular smooth muscle cell (VSMC) proliferation. The presence of Chlamydia pneumoniae in many atherosclerotic lesions raises the possibility that this organism plays a causal role in atherogenesis. In this study, C pneumoniae elementary bodies (EBs) rapidly activated p44/p42 mitogen-activated protein kinases (MAPKs) and stimulated proliferation of VSMCs in vitro. Exposure of VSMCs derived from human saphenous vein to C pneumoniae EBs (3x10(7) inclusion forming units/mL) enhanced bromodeoxyuridine (BrdU) incorporation 12+/-3-fold. UV- and heat-inactivated C pneumoniae EBs also stimulated VSMC proliferation, indicating a role of direct stimulation by chlamydial antigens. However, the mitogenic activity of C pneumoniae was heat-labile, thus excluding a role of lipopolysaccharide. Chlamydial hsp60 (25 microg/mL) replicated the effect of C pneumoniae, stimulating BrdU incorporation 7+/-3-fold. Exposure to C pneumoniae or chlamydial hsp60 rapidly activated p44/p42 MAPK, within 5 to 10 minutes of exposure. In addition, PD98059 and U0126, which are two distinct inhibitors of upstream MAPK kinase 1/2 (MEK1/2), abolished the mitogenic effect of C pneumoniae and chlamydial hsp60. Toll-like receptors (TLRs) act as sensors for microbial antigens and can signal via the p44/p42 MAPK pathway. Human VSMCs were shown to express TLR4 mRNA and protein, and a TLR4 antagonist abolished chlamydial hsp60-induced VSMC proliferation and attenuated C pneumoniae-induced MAPK activation and VSMC proliferation. Together these results indicate that C pneumoniae and chlamydial hsp60 are potent inducers of human VSMC proliferation and that these effects are mediated, at least in part, by rapid TLR4-mediated activation of p44/p42 MAPK.
2001Sepsis and evolution of the innate immune response.Crit Care MedTo review the role of the Toll-like receptors (TLR) as the principal sensors used by the innate immune system in the context of the pathologic processes underlying sepsis and septic shock.Literature review.Through the Toll-like receptors, macrophages and other defensive cells "see" endotoxin (TLR4), peptidoglycan (TLR2), and bacterial DNA (TLR9). Representatives of the family predated the divergence of plants and animals and, at that time, had already acquired a defensive function. The strengths and liabilities of the innate immune system, which defends against infection and which also may cause shock and death, are rooted in its ancient origins. In the current era of shock research, the nature of the signals that Toll-like receptors transduce and the effects of genetic variation on microbial sensing are two major challenges.
2001Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells.J Biol ChemHeat shock proteins (HSPs) require no adjuvant to confer immunogenicity to bound peptides, as if they possessed an intrinsic "danger" signature. To understand the proinflammatory nature of HSP, we analyzed signaling induced by human and chlamydial HSP60. We show that both HSP60s activate the stress-activated protein kinases p38 and JNK1/2, the mitogen-activated protein kinases ERK1/2, and the I-kappaB kinase (IKK). Activation of JNK and IKK proceeds via the Toll/IL-1 receptor signaling pathway involving MyD88 and TRAF6. Human fibroblasts transfected with TLR2 or TLR4 plus MD-2 gain responsiveness to HSP60, while TLR2- or TLR4-defective cells display impaired responses. Initiation of signaling requires endocytosis of HSP60 that is effectively inhibited by serum component(s). The results revealed that adjuvanticity of HSP60 operates similar to that of classical pathogen-derived ligands.
2001Endotoxin-induced maturation of MyD88-deficient dendritic cells.J ImmunolLPS, a major component of the cell wall of Gram-negative bacteria, can induce a variety of biological responses including cytokine production from macrophages, B cell proliferation, and endotoxin shock. All of them were completely abolished in MyD88-deficient mice, indicating the essential role of MyD88 in LPS signaling. However, MyD88-deficient cells still show activation of NF-kappaB and mitogen-activated protein kinase cascades, although the biological significance of this activation is not clear. In this study, we have examined the effects of LPS on dendritic cells (DCs) from wild-type and several mutant mice. LPS-induced cytokine production from DCs was dependent on MyD88. However, LPS could induce functional maturation of MyD88-deficient DCs, including up-regulation of costimulatory molecules and enhancement of APC activity. MyD88-deficient DCs could not mature in response to bacterial DNA, the ligand for Toll-like receptor (TLR)9, indicating that MyD88 is differentially required for TLR family signaling. MyD88-dependent and -independent pathways originate at the intracytoplasmic region of TLR4, because both cytokine induction and functional maturation were abolished in DCs from C3H/HeJ mice carrying the point mutation in the region. Finally, in vivo analysis revealed that MyD88-, but not TLR4-, deficient splenic CD11c(+) DCs could up-regulate their costimulatory molecule expression in response to LPS. Collectively, the present study provides the first evidence that the MyD88-independent pathway downstream of TLR4 can lead to functional DC maturation, which is critical for a link between innate and adaptive immunity.
2001Upregulation of toll-like receptor 2 gene expression in macrophage response to peptidoglycan and high concentration of lipopolysaccharide is involved in NF-kappa b activation.Infect ImmunToll-like receptors 2 and 4 (TLR2 and TLR4) have been found to transduce signals of peptidoglycan (PGN) and lipopolysaccharide (LPS), respectively, for NF-kappa B activation. However, little is known about the expression and regulation of the TLR2 gene in monocytes/macrophages in response to the two typical bacterial products. We show in the present study that both PGN and a high concentration of LPS increase TLR2 gene expression in macrophage-like cells, 1 alpha,25-dihydroxyvitamin D(3)-differentiated human HL60 and mouse RAW264.7 cells, and human monocytes in a dose- and time-dependent manner. Actinomycin D and pyrrolidine dithiocarbamate inhibition of gene transcription and NF-kappa B activation, respectively, blocks LPS- and PGN-elevated TLR2 mRNA in monocytic cells. The LPS-induced increase in TLR2 mRNA in monocytic cells is abolished by polymyxin B pretreatment and is observed in peripheral blood mononuclear cells from pigs subjected to endotoxic shock. Further, high concentrations of LPS and synthetic lipid A increase TLR2 mRNA expression in peritoneal macrophages from both TLR4-deficient C3H/HeJ mice and normal C3H/HeN mice, a process that constitutes induction of TLR4-independent TLR2 expression. These findings demonstrate that TLR2 gene expression is upregulated in macrophage responses to PGN and to high concentrations of LPS in vitro and in vivo and correlates with NF-kappa B activation.
2001Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation.J ImmunolToll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-alpha, or IFN-gamma induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-gamma act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-kappaB dependent. LPS and IFN-gamma also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-alpha, or IFN-gamma. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-gamma, in inducing shock associated with Gram-negative sepsis.
2001CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression.J ImmunolOverproduction of inflammatory mediators by macrophages in response to Gram-negative LPS has been implicated in septic shock. Recent reports indicate that three membrane-associated proteins, CD14, CD11b/CD18, and Toll-like receptor (TLR) 4, may serve as LPS recognition and/or signaling receptors in murine macrophages. Therefore, the relative contribution of these proteins in the induction of cyclooxygenase 2 (COX-2), IL-12 p35, IL-12 p40, TNF-alpha, IFN-inducible protein (IP)-10, and IFN consensus sequence binding protein (ICSBP) genes in response to LPS or the LPS-mimetic, Taxol, was examined using macrophages derived from mice deficient for these membrane-associated proteins. The panel of genes selected reflects diverse macrophage effector functions that contribute to the pathogenesis of septic shock. Induction of the entire panel of genes in response to low concentrations of LPS or Taxol requires the participation of both CD14 and TLR4, whereas high concentrations of LPS or Taxol elicit the expression of a subset of LPS-inducible genes in the absence of CD14. In contrast, for optimal induction of COX-2, IL-12 p35, and IL-12 p40 genes by low concentrations of LPS or by all concentrations of Taxol, CD11b/CD18 was also required. Mitigated induction of COX-2, IL-12 p35, and IL-12 p40 gene expression by CD11b/CD18-deficient macrophages correlated with a marked inhibition of NF-kappa B nuclear translocation and mitogen-activated protein kinase (MAPK) activation in response to Taxol and of NF-kappa B nuclear translocation in response to LPS. These findings suggest that for expression of a full repertoire of LPS-/Taxol-inducible genes, CD14, TLR4, and CD11b/CD18 must be coordinately engaged to deliver optimal signaling to the macrophage.
2000Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide.J Clin InvestLipopolysaccharide (LPS) is the main inducer of shock and death in Gram-negative sepsis. Recent evidence suggests that LPS-induced signal transduction begins with CD14-mediated activation of 1 or more Toll-like receptors (TLRs). The lipid A analogues lipid IVa and Rhodobacter sphaeroides lipid A (RSLA) exhibit an uncommon species-specific pharmacology. Both compounds inhibit the effects of LPS in human cells but display LPS-mimetic activity in hamster cells. We transfected human TLR4 or human TLR2 into hamster fibroblasts to determine if either of these LPS signal transducers is responsible for the species-specific pharmacology. RSLA and lipid IVa strongly induced NF-kappaB activity and IL-6 release in Chinese hamster ovary fibroblasts expressing CD14 (CHO/CD14), but these compounds antagonized LPS antagonists in CHO/CD14 fibroblasts that overexpressed human TLR4. No such antagonism occurred in cells overexpressing human TLR2. We cloned TLR4 from hamster macrophages and found that human THP-1 cells expressing the hamster TLR4 responded to lipid IVa as an LPS mimetic, as if they were hamster in origin. Hence, cells heterologously overexpressing TLR4 from different species acquired a pharmacological phenotype with respect to recognition of lipid A substructures that corresponded to the species from which the TLR4 transgene originated. These data suggest that TLR4 is the central lipid A-recognition protein in the LPS receptor complex.
2000Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex.J ImmunolHuman heat shock protein 60 (hsp60) elicits a potent proinflammatory response in cells of the innate immune system and therefore has been proposed as a danger signal of stressed or damaged cells. We report here that macrophages of C3H/HeJ mice, carrying a mutant Toll-like-receptor (Tlr) 4 are nonresponsive to hsp60. Both the induction of TNF-alpha and NO formation were found dependent on a functional Tlr4 whereas stimulation of macrophages by CpG DNA was Tlr4 independent. We conclude that Tlr4 mediates hsp60 signaling. This is the first report of a putative endogenous ligand of the Tlr4 complex.
1999Unresponsiveness of MyD88-deficient mice to endotoxin.ImmunityMyD88 is a general adaptor protein that plays an important role in the Toll/IL-1 receptor family signalings. Recently, Toll-like receptors 2 and 4 (TLR2 and TLR4) have been suggested to be the signaling receptors for lipopolysaccharide (LPS). In this study, we demonstrate that MyD88 knockout mice lack the ability to respond to LPS as measured by shock response, B cell proliferative response, and secretion of cytokines by macrophages and embryonic fibroblasts. However, activation of neither NF-kappaB nor the mitogen-activated protein (MAP) kinase family is abolished in MyD88 knockout mice. These findings demonstrate that signaling via MyD88 is essential for LPS response, but the inability of MyD88 knockout mice to induce LPS-dependent gene expression cannot simply be attributed to lack of the activation of MAP kinases and NF-kappaB.
1999Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2.J ImmunolInvasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.