Research on (Isoniazid)-NAT1-shock


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2020Skin Irritation Testing beyond Tissue Viability: Fucoxanthin Effects on Inflammation, Homeostasis, and Metabolism.PharmaceuticsUV light catalyzes the ozone formation from air pollutants, like nitrogen oxides. Since ozone reacts with cutaneous sebum lipids to peroxides and, thus, promotes inflammation, tumorigenesis, and aging, even broad-spectrum sunscreens cannot properly protect skin. Meanwhile, xanthophylls, like fucoxanthin, proved their antioxidant and cytoprotective functions, but the safety of their topical application in human cell-based models remains unknown. Aiming for a more detailed insight into the cutaneous fucoxanthin toxicity, we assessed the tissue viability according to OECD test guideline no. 439 as well as changes in inflammation (IL-1α, IL-6, IL-8), homeostasis (EGFR, HSPB1) and metabolism (NAT1). First, we proved the suitability of our 24-well-based reconstructed human skin for irritation testing. Next, we dissolved 0.5% fucoxanthin either in alkyl benzoate or in ethanol and applied both solutions onto the tissue surface. None of the solutions decreased RHS viability below 50%. In contrast, fucoxanthin ameliorated the detrimental effects of ethanol and reduced the gene expression of pro-inflammatory interleukins 6 and 8, while increasing NAT1 gene expression. In conclusion, we developed an organ-on-a-chip compatible RHS, being suitable for skin irritation testing beyond tissue viability assessment. Fucoxanthin proved to be non-irritant in RHS and already showed first skin protective effects following topical application.
2010Arylamine N-acetyltransferase 1 gene regulation by androgens requires a conserved heat shock element for heat shock factor-1.CarcinogenesisHuman arylamine N-acetyltransferase 1 (NAT1) is a widely distributed protein that has been implicated in a number of different cancers including breast and prostate. Previously, NAT1 gene expression was shown to be androgen dependent, although the effect of androgens was not due to direct activation of the NAT1 promoter. Here, we show that heat shock factor (HSF)1 is induced by androgen in androgen receptor-positive prostate 22Rv1 cells. It also binds to a heat shock element (HSE) in the NAT1 promoter located 776 bp upstream of the transcriptional start site. Mutation of the HSE inhibited androgen responsiveness and prevented direct upregulation of the NAT1 promoter by HSF1. Although HSF2 also bound to the HSE, it did not increase promoter activity. HSF1 induced endogenous NAT1 activity in this cell line in the absence of androgen. This could be attenuated by pretreating cells with HSF1-directed small interfering RNA but not by a scrambled sequence. Our results show that HSF1 is an important transcription factor for induction of NAT1 in human cells and is required for androgen activation of the NAT1 promoter.