Research on (Isoniazid)-MAG-myalgia


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2018Safety and tolerability of HIV-1 multiantigen pDNA vaccine given with IL-12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus HIV Gag vaccine in healthy volunteers in a randomized, controlled clinical trial.PLoS OneThe addition of plasmid cytokine adjuvants, electroporation, and live attenuated viral vectors may further optimize immune responses to DNA vaccines in heterologous prime-boost combinations. The objective of this study was to test the safety and tolerability of a novel prime-boost vaccine regimen incorporating these strategies with different doses of IL-12 plasmid DNA adjuvant.In a phase 1 study, 88 participants received an HIV-1 multiantigen (gag/pol, env, nef/tat/vif) DNA vaccine (HIV-MAG, 3000 μg) co-administered with IL-12 plasmid DNA adjuvant at 0, 250, 1000, or 1500 μg (N = 22/group) given intramuscularly with electroporation (Ichor TriGrid™ Delivery System device) at 0, 1 and 3 months; followed by attenuated recombinant vesicular stomatitis virus, serotype Indiana, expressing HIV-1 Gag (VSV-Gag), 3.4 ⊆ 107 plaque-forming units (PFU), at 6 months; 12 others received placebo. Injections were in both deltoids at each timepoint. Participants were monitored for safety and tolerability for 15 months.The dose of IL-12 pDNA did not increase pain scores, reactogenicity, or adverse events with the co-administered DNA vaccine, or following the VSV-Gag boost. Injection site pain and reactogenicity were common with intramuscular injections with electroporation, but acceptable to most participants. VSV-Gag vaccine often caused systemic reactogenicity symptoms, including a viral syndrome (in 41%) of fever, chills, malaise/fatigue, myalgia, and headache; and decreased lymphocyte counts 1 day after vaccination.HIV-MAG DNA vaccine given by intramuscular injection with electroporation was safe at all doses of IL-12 pDNA. The VSV-Gag vaccine at this dose was associated with fever and viral symptoms in some participants, but the vaccine regimens were safe and generally well-tolerated.Clinical Trials.gov NCT01578889.
2004The use of intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: evidence-based indications and safety profile.Pharmacol TherIntravenous immunoglobulin (i.v.Ig) has multiple actions on the immunoregulatory network that operate in concert with each other. For each autoimmune neuromuscular disease, however, there is a predominant mechanism of action that relates to the underlying immunopathogenetic cause of the respective disorder. The best understood actions of i.v.Ig include the following: (a) modulation of pathogenic autoantibodies, an effect relevant in myasthenia gravis (MG), Lambert-Eaton myasthenic syndrome (LEMS), Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), and stiff-person syndrome (SPS); (b) inhibition of complement activation and interception of membranolytic attack complex (MAC) formation, an action relevant to the complement-mediated mechanisms involved in GBS, CIDP, MG, and dermatomyositis (DM); (c) modulation of the inhibitory or activation Fc receptors on macrophages invading targeted tissues in nerve and muscle, as seen in CIDP, GBS, and inflammatory myopathies; (d) down-regulation of pathogenic cytokines and adhesion molecules; (e) suppression of T-cell functions; and (f) interference with antigen recognition. Controlled clinical trials have shown that i.v.Ig is effective as first-line therapy in patients with GBS, CIDP, and multifocal motor neuropathy (MMN), and as second-line therapy in DM, MG, LEMS, and SPS. In paraproteinemic IgM anti-MAG (myelin-associated glycoprotein) demyelinating polyneuropathies and inclusion body myositis (IBM), the benefit is variable, marginal, and not statistically significant. i.v.Ig has a remarkably good safety record for long-term administration, however, the following side effects have been observed: mild, infusion-rate-related reactions, such as headaches, myalgia, or fever; moderate but inconsequential events, such as aseptic meningitis and skin rash; and severe, but rare, complications, such as thromboembolic events and renal tubular necrosis. Future studies are needed to (a) find the appropriate dose and frequency of infusions that maintain a response; (b) address pharmacoeconomics, comparing the high cost of i.v.Ig to the cost of the other therapies, which, although less expensive, cause significantly more long-term side effects; (c) determine why some patients respond better than others; and (d) examine the merits of combining i.v.Ig with other immunosuppressive drugs.