Research on (Isoniazid)-MYD88-hypotension


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2019The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock.ImmunitySepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-β (IFN-β)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.
2016Contribution of PPARα/β/γ, AP-1, importin-α3, and RXRα to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against hypotension, tachycardia, and inflammation in a rat model of septic shock.Inflamm ResWe have previously demonstrated that downregulation of the MyD88/TAK1-dependent signaling pathway associated with increased CYP4A1 expression and 20-HETE formation participates in the protective effect of N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), a 20-HETE mimetic, against vascular hyporeactivity, hypotension, tachycardia, inflammation, and mortality in a rodent model of septic shock. The aim of this study was to determine whether increased renal and cardiovascular expression of PPARα/β/γ and RXRα associated with decreased expression and/or activity of AP-1 and importin-α3 participates in the protective effect of 5,14-HEDGE in response to systemic administration of lipopolysaccharide (LPS).Conscious male Wistar rats received saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. Separate groups of LPS-treated rats were given 5,14-HEDGE (30 mg/kg) 1 h after injection of saline or LPS. The rats were killed 4 h after saline or LPS administration and the kidney, heart, thoracic aorta, and superior mesenteric artery were collected for measurement of protein expression.Blood pressure fell by 33 mmHg and heart rate rose by 72 beats/min at 4 h after LPS administration. In LPS-treated rats, tissue protein expressions of cytosolic/nuclear PPARα/β/γ and nuclear RXRα, in addition to nuclear translocation of PPARα/β/γ proteins, were decreased, while cytosolic/nuclear AP-1 subunit c-jun/phosphorylated c-jun and importin-α3 protein expression as well as their nuclear translocation were increased. The LPS-induced changes were prevented by 5,14-HEDGE.The results suggest that an increase in the expression of PPARα/β/γ and RXRα as well as a decrease in AP-1 and importin-α3 expression/activity participates in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation during endotoxemia and thus have a beneficial effect in septic shock treatment.
2014Effects of 5,14-HEDGE, a 20-HETE mimetic, on lipopolysaccharide-induced changes in MyD88/TAK1/IKKβ/IκB-α/NF-κB pathway and circulating miR-150, miR-223, and miR-297 levels in a rat model of septic shock.Inflamm ResWe have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), which mimics the effects of endogenously produced 20-HETE, prevents vascular hyporeactivity, hypotension, tachycardia, inflammation, and mortality in a rodent model of septic shock. The present study was performed to determine whether decreased renal and cardiovascular expression and activity of myeloid differentiation factor 88 (MyD88)/transforming growth factor-activated kinase 1 (TAK1)/inhibitor of κB (IκB) kinase β (IKKβ)/IκB-α/nuclear factor-κB (NF-κB) pathway and reduced circulating microRNA (miR)-150, miR-223, and miR-297 expression levels participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation in response to systemic administration of lipopolysaccharide (LPS).Conscious male Wistar rats received saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. Separate groups of LPS-treated rats were given 5,14-HEDGE (30 mg/kg) 1 h after injection of saline or LPS. The rats were killed 4 h after LPS challenge and blood, kidney, heart, thoracic aorta, and superior mesenteric artery were collected for measurement of the protein expression.LPS-induced fall in blood pressure and rise in heart rate were associated with increased MyD88 expression and phosphorylation of TAK1 and IκB-α in cytosolic fractions of the tissues. LPS also caused an increase in both unphosphorylated and phosphorylated NF-κB p65 proteins in the cytosolic and nuclear fractions as well as nuclear translocation of NF-κB p65. In addition, serum miR-150, miR-223, and miR-297 expression levels were increased in LPS-treated rats. These effects of LPS were prevented by 5,14-HEDGE.These results suggest that downregulation of MyD88/TAK1/IKKβ/IκB-α/NF-κB pathway as well as decreased circulating miR-150, miR-223, and miR-297 expression levels participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation in the rat model of septic shock.
2014Nitric oxide production by endotoxin preparations in TLR4-deficient mice.Nitric OxideSepsis and septic shock result from an exacerbated systemic inflammatory reaction to infection. Their incidence is rising, and they have recently become the main cause of death in intensive care units. Septic shock is defined as sepsis accompanied by life-threatening refractory hypotension, for which excessive nitric oxide (NO), produced by inducible NO synthase iNOS, is thought responsible. LPS, a vital outer membrane component of Gram-negative bacteria, mimics most of the septic effects and is widely used as a model for septic shock. TLR4 is the signal-transducing receptor for LPS, evidenced by the resistance of TLR4-deficient C3H/HeJ and C57BL/10ScNJ mice. As expected, we found that TLR4 deficiency precludes LPS-induced cytokine production, independent of the purity of the LPS preparation. However, various conventional LPS preparations induced NO in TLR4-deficient mice to the same level as in control animals, while ultrapure LPS did not, indicating the presence of NO-producing contaminant(s). Nevertheless, despite identical iNOS induction pattern and systemic NO levels, the contaminant does not cause hypotension, hypothermia, or any other sign of morbidity. Using mice deficient for TLR2, TRL3, TLR4, TRL2x4, TLR9, MyD88 or TRIF, we found that the contaminant signals via TLR2 and MyD88. In conclusion, conventional LPS preparations generally used in endotoxic shock research contain TLR2 agonists that induce iNOS and high levels of systemic NO as such, and synergize with LPS towards the production of pro-inflammatory cytokines, morbidity and mortality. Surprisingly, the excessive iNOS-derived systemic NO production induced by impure LPS in TLR4⁻/⁻ is not accompanied by hypotension or morbidity.
2009Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway.J ImmunolBacterial LPS induces rapid thrombocytopenia, hypotension, and sepsis. Although growing evidence suggests that platelet activation plays a critical role in LPS-induced thrombocytopenia and tissue damage, the mechanism of LPS-mediated platelet activation is unclear. In this study, we show that LPS stimulates platelet secretion of dense and alpha granules as indicated by ATP release and P-selectin expression, and thus enhances platelet activation induced by low concentrations of platelet agonists. Platelets express components of the LPS receptor-signaling complex, including TLR (TLR4), CD14, MD2, and MyD88, and the effect of LPS on platelet activation was abolished by an anti-TLR4-blocking Ab or TLR4 knockout, suggesting that the effect of LPS on platelet aggregation requires the TLR4 pathway. Furthermore, LPS-potentiated thrombin- and collagen-induced platelet aggregation and FeCl(3)-induced thrombus formation were abolished in MyD88 knockout mice. LPS also induced cGMP elevation and the stimulatory effect of LPS on platelet aggregation was abolished by inhibitors of NO synthase and the cGMP-dependent protein kinase (PKG). LPS-induced cGMP elevation was inhibited by an anti-TLR4 Ab or by TLR4 deficiency, suggesting that activation of the cGMP/protein kinase G pathway by LPS involves the TLR4 pathway. Taken together, our data indicate that LPS stimulates platelet secretion and potentiates platelet aggregation through a TLR4/MyD88- and cGMP/PKG-dependent pathway.
2007Acute hypoxia activates the neuroimmune system, which diabetes exacerbates.J NeurosciAcute hypoxia is experienced in an array of ailments and conditions, including asthma, chronic obstructive pulmonary disease, heart failure, sleep apnea, acute hypotension, and blast lung injury. Classically, infection activates the neuroimmune system, causing loss of interest in the social environment. We report that the non-infectious stimulus acute hypoxia triggers neuroimmune system activation (NSA), causing loss of interest in the social environment, and that recovery from hypoxia-induced NSA is impaired in a mouse model of type 2 diabetes. Importantly, recovery from the behavioral consequences of hypoxia-induced NSA was nearly ablated in MyD88 (myeloid differentiation factor 88) knock-out mice and in mice intracerebroventricularly administered the caspase-1 inhibitor ac-YVAD-CMK (ac-Tyr-Val-Asp-2,6-dimethylbenzoyloxymethylketone). Diabetic mice had prolonged recovery from NSA that could be halved by administration of subcutaneous interleukin-1 (IL-1) receptor antagonist (RA). These results show that acute hypoxia activates the IL-1beta arm of the neuroimmune system, which diabetes exacerbates and treatment with IL-1RA ameliorates.
2007Selective NOD1 agonists cause shock and organ injury/dysfunction in vivo.Am J Respir Crit Care MedNLRs (nucleotide oligomerisation domain [NOD] proteins containing a leucine-rich repeat) are cytosolic pattern recognition receptors. NOD1 senses diaminopimelic acid-containing peptidoglycan present in gram-negative bacteria, whereas NOD2 senses the muramyl dipeptide (MDP) present in most organisms. Bacteria are the most common cause of septic shock, which is characterized clinically by hypotension resistant to vasopressor agents. In animal models, gram-negative septic shock is mimicked by lipopolysaccharide (LPS), which signals through Toll-like receptor 4 (TLR4) and its adaptor MyD88. The role of NLRs in the pathophysiology of septic shock is not known.To compare the effects of selective NOD1 agonists with LPS in vivo.Vascular smooth muscle cells or whole aortas from wild-type or genetically modified mice were stimulated in vitro with agonists of NOD1 (FK565) or NOD2 (MDP). Vasoconstriction was measured using wire myography. Nitric oxide (NO) formation was measured using Griess reaction and NO synthase-II protein by Western blotting. In vivo, blood pressure, heart rate, and urine output were measured in sham-, LPS-, or FK565-treated animals. Biomarkers of end-organ injury, coagulation activation, NO, and cytokines were measured in plasma.FK565, but not MDP, induced NO synthase-II protein/activity in vascular smooth muscle and vascular hyporeactivity to pressor agents. FK565 had no effect on vessels from NOD1(-/-) mice, but was active in vessels from TLR4(-/-), TLR2(-/-), or MyD88(-/-) mice. FK565 induced hypotension, increased heart rate, and caused multiple (renal, liver) injury and dysfunction in vivo.Activation of NOD1 induces shock and multiple organ injury/dysfunction.