Research on (Isoniazid)-SIRT6-edema


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2021LncRNA Blnc1 mediates the permeability and inflammatory response of cerebral hemorrhage by regulating the PPAR-γ/SIRT6/FoxO3 pathway.Life SciIntracerebral hemorrhage (ICH) induces serious neuroinflammation and damage of blood-brain barrier. We aim to investigate the role of brown fat enriched lncRNA 1 (Blnc1) in the development of ICH in mice.An ICH model was established with autologous blood injection in C57BL/6 mice, and Blnc1 siRNA was injected intracranially. Blnc1 levels were detected and brain injury was evaluated at day 3. Primary brain microvascular endothelial cells (BMVECs) were isolated from new born mice and gain- and loss-of-function experiments were performed to investigate the role of Blnc1. Then, ICH cell model was established by treating BMVECs with oxygen and glucose deprivation (OGD) plus hemin, and Blnc1 siRNA was transfected into the cells. BMVEC functions, including viability, invasion, apoptosis, permeability and secretion of inflammatory cytokines were analyzed.Blnc1 was upregulated in perihematomal edema, hematoma and microvessel in the brain of ICH mice. Blnc1 negatively regulated viability and migration, and facilitated apoptosis, permeability and inflammatory cytokine secretion in BMVECs. Silencing Blnc1 restrained OGD plus hemin-caused reduction of BMVEC viability and migration and the induction of apoptosis, permeability and inflammation response, and suppressed PPAR-γ/SIRT6-mediated FoxO3 activation, which could be reversed by T0070907 (PPAR-γ inhibitor). Downregulation of Blnc1 ameliorated ICH-induced nerve injury, brain edema, blood brain barrier destruction, inflammation response and hematoma. Moreover, Blnc1 levels were positively correlated with PPAR-γ levels, and Blnc1 interference suppressed PPAR-γ/SIRT6-mediated activation of FoxO3 signaling in ICH mice.Silencing Blnc1 alleviated nerve injury and inflammatory response caused by ICH through activating PPAR-γ/SIRT6/FoxO3 pathway.
2019Activation of retinoid X receptor by bexarotene attenuates neuroinflammation via PPARγ/SIRT6/FoxO3a pathway after subarachnoid hemorrhage in rats.J NeuroinflammationSubarachnoid hemorrhage (SAH) is a life-threatening subtype of stroke with high mortality and disabilities. Retinoid X receptor (RXR) has been shown to be neuroprotective against ischemia/reperfusion injury. This study aimed to investigate the effects of the selective RXR agonist bexarotene on neuroinflammation in a rat model of SAH.Two hundred male Sprague-Dawley rats were used. The endovascular perforation induced SAH. Bexarotene was administered intraperitoneally at 1 h after SAH induction. To investigate the underlying mechanism, the selective RXR antagonist UVI3003 and RXR siRNA or SIRT6 inhibitor OSS128167 was administered via intracerebroventricular 1 h before SAH induction. Post-SAH assessments including SAH grade, neurological score, brain water content, Western blot, and immunofluorescence were performed.The endogenous RXR and sirtuin 6 (SIRT6) protein levels were increased after SAH. Bexarotene treatment significantly reduced brain edema and improved the short-/long-term neurological deficit after SAH. Mechanistically, bexarotene increased the levels of PPARγ and SIRT6; decreased the expression of phosphorylated FoxO3a (p-FoxO3a), IL-6, IL-1β, and TNF-a; and inhibited the microglia activation and neutrophils infiltration at 24 h after SAH. Either UVI3003, OSS128167, or RXR siRNA abolished the neuroprotective effects of bexarotene and its regulation on protein levels of PPARγ/SIRT6/p-FoxO3a after SAH.The activation of RXR by bexarotene attenuated neuroinflammation and improved neurological deficits after SAH. The anti-neuroinflammatory effect was at least partially through regulating PPARγ/SIRT6/FoxO3a pathway. Bexarotene may be a promising therapeutic strategy in the management of SAH patients.