Research on (Isoniazid)-MSC-edema


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2022Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis.Neural Regen ResMesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXOs) can be substituted for BMSCs in cell transplantation. However, the underlying mechanisms remain unclear. In this study, a rat model of T10 spinal cord injury was established using the impact method. Then, 30 minutes and 1 day after spinal cord injury, the rats were administered 200 μL exosomes via the tail vein (200 μg/mL; approximately 1 × 10 BMSCs). Treatment with BMSC-EXOs greatly reduced neuronal cell death, improved myelin arrangement and reduced myelin loss, increased pericyte/endothelial cell coverage on the vascular wall, decreased blood-spinal cord barrier leakage, reduced caspase 1 expression, inhibited interleukin-1β release, and accelerated locomotor functional recovery in rats with spinal cord injury. In the cell culture experiment, pericytes were treated with interferon-γ and tumor necrosis factor-α. Then, Lipofectamine 3000 was used to deliver lipopolysaccharide into the cells, and the cells were co-incubated with adenosine triphosphate to simulate injury in vitro. Pre-treatment with BMSC-EXOs for 8 hours greatly reduced pericyte pyroptosis and increased pericyte survival rate. These findings suggest that BMSC-EXOs may protect pericytes by inhibiting pyroptosis and by improving blood-spinal cord barrier integrity, thereby promoting the survival of neurons and the extension of nerve fibers, and ultimately improving motor function in rats with spinal cord injury. All protocols were conducted with the approval of the Animal Ethics Committee of Zhengzhou University on March 16, 2019.
2021Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS.JCI InsightBACKGROUNDWhether airspace biomarkers add value to plasma biomarkers in studying acute respiratory distress syndrome (ARDS) is not well understood. Mesenchymal stromal cells (MSCs) are an investigational therapy for ARDS, and airspace biomarkers may provide mechanistic evidence for MSCs' impact in patients with ARDS.METHODSWe carried out a nested cohort study within a phase 2a safety trial of treatment with allogeneic MSCs for moderate-to-severe ARDS. Nonbronchoscopic bronchoalveolar lavage and plasma samples were collected 48 hours after study drug infusion. Airspace and plasma biomarker concentrations were compared between the MSC (n = 17) and placebo (n = 10) treatment arms, and correlation between the two compartments was tested. Airspace biomarkers were also tested for associations with clinical and radiographic outcomes.RESULTSCompared with placebo, MSC treatment significantly reduced airspace total protein, angiopoietin-2 (Ang-2), IL-6, and soluble TNF receptor-1 concentrations. Plasma biomarkers did not differ between groups. Each 10-fold increase in airspace Ang-2 was independently associated with 6.7 fewer days alive and free of mechanical ventilation (95% CI, -12.3 to -1.0, P = 0.023), and each 10-fold increase in airspace receptor for advanced glycation end-products (RAGE) was independently associated with a 6.6-point increase in day 3 radiographic assessment of lung edema score (95% CI, 2.4 to 10.8, P = 0.004).CONCLUSIONMSCs reduced biological evidence of lung injury in patients with ARDS. Biomarkers from the airspaces provide additional value for studying pathogenesis, treatment effects, and outcomes in ARDS.TRIAL REGISTRATIONClinicalTrials.gov NCT02097641.FUNDINGNational Heart, Lung, and Blood Institute.
2021Investigation of the MSC Paracrine Effects on Alveolar-Capillary Barrier Integrity in the In Vitro Models of ARDS.Methods Mol BiolAcute Respiratory Distress Syndrome (ARDS) is a devastating clinical disorder with high mortality rates and no specific pharmacological treatment available yet. It is characterized by excessive inflammation in the alveolar compartment resulting in edema of the airspaces due to loss of integrity in the alveolar epithelial-endothelial barrier leading to the development of hypoxemia and often severe respiratory failure. Changes in the permeability of the alveolar epithelial-endothelial barrier contribute to excessive inflammation, the formation of lung edema and impairment of the alveolar fluid clearance. In recent years, Mesenchymal Stromal Cells (MSCs) have attracted attention as a cell therapy for ARDS. MSCs are known to secrete a variety of biologically active factors (growth factors, cytokines, and extracellular vesicles). These paracrine factors have been shown to be major effectors of the anti-inflammatory and regenerative properties observed in multiple in vitro and in vivo studies. This chapter provides a simple protocol on how to investigate the paracrine effect of MSCs on the alveolar epithelial-endothelial barrier functions.
2021Mesenchymal Stem Cells: The Potential Therapeutic Cell Therapy to Reduce Brain Stroke Side Effects.J Stroke Cerebrovasc DisTissue plasminogen activator (tPA) is the gold standard treatment for ischemic stroke in the time window of 3-4.5 hours after the onset of symptoms. However, tPA administration is associated with inflammation and neurotoxic effects. Mesenchymal stem cells (MSC)-based therapy is emerging as a promising therapeutic strategy to control different inflammatory conditions. This project was designed to examine the protective role of MSC administration alone or in combination with royal jelly (RJ) five hours after stroke onset. The mice model of middle cerebral artery occlusion (MCAO) was established and put to six groups, including intact (healthy mice without stroke), control (untreated stroke), treated with mouse MSC (mMSC), Sup (conditioned medium), RJ and combination of mMSC and RJ (mMSC/RJ). Thereafter, behavioral functions, serum and brain (in both infarcted and non-infarcted tissues) levels of interleukin (IL)-1β, IL-4, IL-10, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) the sizes of brain infarction have been determined in the groups. Administration of mMSC and mMSC/RJ significantly improved the behavioral functions when compared to the controls. mMSC, RJ and mMSC/RJ significantly decreased the infarcted volumes. RJ and mMSC/RJ, but not mMSC, significantly decreased the brain edema. The infarction increased the serum levels of the cytokines, except TNF-α, and treatment with mMSC, Sup and RJ reduced serum levels of the pro-inflammatory cytokines. mMSC reduced IL-1β in the non-infarcted brain tissue. To conclude, data revealed that using mMSC/RJ combination significantly reduced stroke side effects, including brain edema and serum levels of pro-inflammatory cytokines, and suggested that combination therapy of MSCs with RJ may be considered as an effective stroke therapeutic strategy.
2021Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm.Stem CellsThe coronavirus disease 2019 (COVID-19) pandemic has grown to be a global public health crisis with no safe and effective treatments available yet. Recent findings suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus pathogen that causes COVID-19, could elicit a cytokine storm that drives edema, dysfunction of the airway exchange, and acute respiratory distress syndrome in the lung, followed by acute cardiac injury and thromboembolic events leading to multiorgan failure and death. Mesenchymal stem cells (MSCs), owing to their powerful immunomodulatory abilities, have the potential to attenuate the cytokine storm and have therefore been proposed as a potential therapeutic approach for which several clinical trials are underway. Given that intravenous infusion of MSCs results in a significant trapping in the lung, MSC therapy could directly mitigate inflammation, protect alveolar epithelial cells, and reverse lung dysfunction by normalizing the pulmonary microenvironment and preventing pulmonary fibrosis. In this review, we present an overview and perspectives of the SARS-CoV-2 induced inflammatory dysfunction and the potential of MSC immunomodulation for the prevention and treatment of COVID-19 related pulmonary disease.
2021Combinatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Indomethacin on Adjuvant-Induced Arthritis in Wistar Rats: Roles of IL-1, IL-4, Nrf-2, and Oxidative Stress.Evid Based Complement Alternat MedRheumatoid arthritis (RA) is a disorder triggered by autoimmune reactions and related with chronic inflammation and severe disability. Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs) have shown a hopeful immunomodulatory effect towards repairing cartilage and restoring joint function. Additionally, indomethacin (IMC), a nonsteroidal compound, has been considered as a potent therapeutic agent that exhibits significant antipyretic properties and analgesic effects. The target of the current research is to assess the antiarthritic efficacy of BM-MSCs (10 cells/rat at 1, 6, 12 and 18 days) and IMC (2 mg/kg body weight/day for 3 weeks) either alone or concurrently administered against complete Freund's adjuvant-induced arthritic rats. Changes in paw volume, body weight, gross lesions, and antioxidant defense system, as well as oxidative stress, were assessed. The Th1 cytokine (IL-1) serum level and Th2 cytokine (IL-4) and Nrf-2 ankle joint expression were detected. In comparison to normal rats, it was found that the CFA-induced arthritic rats exhibited significant leukocytosis and increase in paw volume, LPO level, RF, and IL-1 serum levels. In parallel, arthritic rats that received BM-MSCs and/or IMC efficiently exhibited decrease in paw edema, leukocytosis, and enhancement in the antioxidant enzymatic levels of SOD, GPx, GST, and GSH in serum besides upregulation of Nrf-2 and anti-inflammatory IL-4 expression levels in the ankle articular joint. Likewise, these analyses were more evidenced by the histopathological sections and histological score. The data also revealed that the combined administration of BM-MSC and IMC was more potent in suppressing inflammation and enhancing the anti-inflammatory pathway than each agent alone. Thus, it can be concluded that the combined therapy with BM-MSC and IMC may be used as a promising therapeutic choice after assessing their efficacy and safety in human beings with RA, and the antiarthritic effects may be mediated via modulatory effects on Th1/Th2 cytokines, ozidative stress, and Nrf-2.
2021Cross-matching of allogeneic mesenchymal stromal cells eliminates recipient immune targeting.Stem Cells Transl MedAllogeneic mesenchymal stromal cells (MSCs) have been used clinically for decades, without cross-matching, on the assumption that they are immune-privileged. In the equine model, we demonstrate innate and adaptive immune responses after repeated intra-articular injection with major histocompatibility complex (MHC) mismatched allogeneic MSCs, but not MHC matched allogeneic or autologous MSCs. We document increased peri-articular edema and synovial effusion, increased synovial cytokine and chemokine concentrations, and development of donor-specific antibodies in mismatched recipients compared with recipients receiving matched allogeneic or autologous MSCs. Importantly, in matched allogeneic and autologous recipients, but not mismatched allogeneic recipients, there was increased stromal derived factor-1 along with increased MSC concentrations in synovial fluid. Until immune recognition of MSCs can be avoided, repeated clinical use of MSCs should be limited to autologous or cross-matched allogeneic MSCs. When non-cross-matched allogeneic MSCs are used in single MSC dose applications, presensitization against donor MHC should be assessed.
2020Allogeneic human umbilical cord-derived mesenchymal stem cells reduce lipopolysaccharide-induced inflammation and acute lung injury.Am J Transl ResAcute lung injury (ALI) is the clinical disorder of acute hypoxemic respiratory deficiency and it is associated with a high mortality rate. Increased lung permeability, infiltration of inflammatory cells, secretion of inflammatory cytokines, and pulmonary edema are hallmarks of ALI. Currently, there is no effective pharmacological agent approved for ALI, and the treatment regimens available are mostly supportive. Mesenchymal stem cells (MSCs) are multipotent stromal cells with immunomodulating potential, which therefore hold great promise for the treatment of ALI. We established an LPS-induced ALI mouse model by intratracheal injection of lipopolysaccharide (LPS). Human umbilical cord-derived MSCs (hUC-MSCs) were delivered through the tail vein to assess the effects of MSCs on relieving LPS-induced ALI. Intratracheal injection of LPS increased the infiltration of neutrophils and enhanced the expression of pro-inflammatory cytokines, such as IL-6, IL-1β and TNF-α. Administration of hUC-MSCs decreased pathological signs of inflammation, as well as reduced ALI scores. The levels of IL-6, IL-1β and TNF-α were also dose-dependently inhibited in the bronchoalveolar lavage fluids from damaged lung tissues. Moreover, MPO and BAX levels were decreased by the hUC-MSC treatment, suggesting hUC-MSCs may play the role in inhibiting ROS production and apoptotic death in ALI repair. These results highlight the potential of hUC-MSCs to alleviate bacterial endotoxin-induced inflammation, and may represent an effective modality for the treatment of ALI in clinical settings.
2020Protective effect and mechanism of mesenchymal stem cells on heat stroke induced intestinal injury.Exp Ther MedHeat stroke (HS) is considered to be a severe systemic inflammatory reaction disease that is caused by high fever. The mortality of HS is high worldwide due to the lack of effective treatments. Presently, mesenchymal stem cells (MSCs) have been demonstrated to serve roles in inflammation and immune regulation. Therefore, the current study aimed to investigate the protective effect and mechanism of MSCs against the HS-induced inflammatory response and organ dysfunction. A rat model of HS was induced by a high-temperature environment and treated with MSCs via tail veins. The levels of molecular markers of organ function, inflammatory factors and chemokines were examined at days 1, 7, 14 and 28. Histological staining was performed on the intestines of rats and control groups, and the Chiu's scores of the two groups were compared. The results revealed that MSCs injection significantly reduced the mortality and inhibited the circulatory inflammatory response. Additionally, main organ function, such as in the liver and kidney, were significantly improved following MSCs infusion in HS rats. Furthermore, MSCs treatment significantly improved edema, necrosis and villus exfoliation of intestinal mucosa, and reduced the inflammatory response of intestinal tissue. These results indicated that MSC infusion had therapeutic effects on HS of rats by regulating the circulatory and intestinal inflammatory response. Moreover, MSCs may be able to protect organ function and promote tissue repair in HS. The results of the current study indicated that MSCs may be used as a potential method to treat HS and the resulting organ dysfunction.
Immunomodulation and Regeneration Properties of Dental Pulp Stem Cells: A Potential Therapy to Treat Coronavirus Disease 2019.Cell TransplantThe coronavirus disease 2019 (COVID-19) pandemic, originating from Wuhan, China, is known to cause severe acute respiratory symptoms. The occurrence of a cytokine storm in the lungs is a critical step in the disease pathogenesis, as it causes pathological lesions, pulmonary edema, and acute respiratory distress syndrome, potentially resulting in death. Currently, there is no effective treatment that targets the cytokine storm and helps regenerate the damaged tissue. Mesenchymal stem cells (MSCs) are known to act as anti-inflammatory/immunomodulatory candidates and activate endogenous regeneration. As a result, MSC therapy is a potential treatment approach for COVID-19. Intravenous injection of clinical-grade MSCs into COVID-19 patients can induce an immunomodulatory response along with improved lung function. Dental pulp stem cells (DPSCs) are considered a potential source of MSCs for immunomodulation, tissue regeneration, and clinical application. Although some current clinical trials have treated COVID-19 patients with DPSCs, this therapy has not been approved. Here, we review the potential use of DPSCs and their significance in the development of a therapy for COVID-19.
2020Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia.Stem Cell Res TherThe outbreak of a new virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now become the main health concern all over the world. Since effective antiviral treatments have not been developed until now, SARS-CoV-2 is severely affecting countries and territories around the world.At the present review, articles in PubMed were searched with the following terms: mesenchymal stem cells, exosomes, coronavirus, and SARS-CoV-2, either alone or in a combination form. The most relevant selected functions were mesenchymal stem cell-derived exosomes and SARS-CoV-2 virus infection.SARS-CoV-2 could damage pulmonary cells and induce secretion of different types of inflammatory cytokines. In the following, these cytokines trigger inflammation that damages the lungs and results in lethal acute respiratory distress syndrome (ARDS). The main characteristic of ARDS is the onset of inflammation in pulmonary, hyaline formation, pulmonary fibrosis, and edema. Mesenchymal stem cell-derived exosomes (MSC-Exo) are believed to have anti-inflammatory effects and immune-modulating capacity as well as the ability to induce tissue regeneration, suggesting a significant therapeutic opportunity that could be used to SARS-CoV-2 pneumonia treatment. Besides, exosomes may serve as a biomarker, drug delivery system, and vaccine for the management of the patient with SARS-CoV-2.MSC-Exo may serve as a promising tool in the treatment of SARS-CoV-2 pneumonia. However, further work needs to be carried out to confirm the efficacy of exosomes in the treatment of SARS-CoV-2 pneumonia.
2020The rationale of using mesenchymal stem cells in patients with COVID-19-related acute respiratory distress syndrome: What to expect.Stem Cells Transl MedThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID-19) pandemic has become a global health crisis with an extremely rapid progress resulting in thousands of patients who may develop acute respiratory distress syndrome (ARDS) requiring intensive care unit (ICU) treatment. So far, no specific antiviral therapeutic agent has been demonstrated to be effective for COVID-19; therefore, the clinical management is largely supportive and depends on the patients' immune response leading to a cytokine storm followed by lung edema, dysfunction of air exchange, and ARDS, which could lead to multiorgan failure and death. Given that human mesenchymal stem cells (MSCs) from various tissue sources have revealed successful clinical outcomes in many immunocompromised disorders by inhibiting the overactivation of the immune system and promoting endogenous repair by improving the microenvironment, there is a growing demand for MSC infusions in patients with COVID-19-related ARDS in the ICU. In this review, we have documented the rationale and possible outcomes of compassionate use of MSCs, particularly in patients with SARS-CoV-2 infections, toward proving or disproving the efficacy of this approach in the near future. Many centers have registered and approved, and some already started, single-case or phase I/II trials primarily aiming to rescue their critical patients when no other therapeutic approach responds. On the other hand, it is also very important to mention that there is a good deal of concern about clinics offering unproven stem cell treatments for COVID-19. The reviewers and oversight bodies will be looking for a balanced but critical appraisal of current trials.
2020The Mechanisms Involved in Mesenchymal Stem Cell Alleviation of Sepsis-Induced Acute Lung Injury in Mice: A Pilot Study.Curr Ther Res Clin ExpAcute lung injury is a common complication of sepsis in intensive care unit patients. Inflammation is among the main mechanisms of sepsis. Therefore, suppression of inflammation is an important mechanism for sepsis treatment. Mesenchymal stem cells (MSCs) have been reported to exhibit antimicrobial properties.The present study investigated the effects of MSCs on sepsis-induced acute lung injury.Male C57BL/6 mice underwent a cecal ligation and puncture (CLP) operation to induce sepsis and then received either normal saline or MSCs (1 × 10 cells intravenously) at 3 hours after surgery. Survival after surgery was assessed. Lung injury was assessed by histology score, the presence of lung edema, vascular permeability, inflammatory cell infiltration, and cytokine levels in bronchoalveolar lavage fluid. Finally, we tested nuclear factor kappa-light-chain-enhancer of activated B cells activation in lung tissue.As expected, CLP caused lung injury as indicated by significant increases in the histopathology score, lung wet to dry weight ratio, and total protein concentration. However, mice treated with MSCs had amelioration of the lung histopathologic changes, lung wet to dry weight ratio, and total protein concentration. The levels of cytokines tumor necrosis factor alpha, interleukin 6, interleukin 1β, and interleukin 17 in bronchoalveolar lavage fluid were dramatically decreased after MSCs treatment. In contrast, expression of interleukin 10 was increased after MSCs treatment. Moreover, mice treated with MSCs had a higher survival rate than the CLP group. Neutrophil infiltration into bronchoalveolar lavage fluid was attenuated after MSCs injection, but the amounts of macrophages observed in the MSC group showed no significant differences compared with the CLP group. In addition, MSCs treatment significantly reduced nuclear factor kappa-light-chain-enhancer of activated B cells activation in lung tissue.Based on the above findings, treatment with MSCs dampened the inflammatory response and inhibited nuclear factor kappa-light-chain-enhancer of activated B cells activation in the mouse CLP model. Thus, MSCs may be a potential new agent for the treatment of sepsis-induced acute lung injury. (Curr Ther Res Clin Exp. 2020; 81:XXX-XXX).
2020Can mesenchymal stem cell therapy be the interim management of COVID-19?Drug Discov TherCOVID-19 pandemic has accounted for ~ 4.3 million confirmed cases and ~ 292,000 deaths (till 12 May, 2020) across the globe since its outbreak. Several anti-viral drugs such as RNA dependent RNA polymerase inhibitors (remdesivir, favipiravir, ribavirin), protease inhibitors (lopinavir, ritonavir) and drugs targeting endocytic pathway (hydroxychloroquine) are being evaluated for COVID-19 but standard therapeutics yet not available. Severe health deterioration in critically ill patients is characterized by pulmonary edema, severe respiratory distress, cytokine storm and septic shock. To combat cytokine storm, immune-therapy targeting IL-1, IL-2, IL-6 and TNFα are being evaluated and one of the promising immune-modulator is the mesenchymal stem cells (MSCs) that can surmount the severity of COVID-19 infections. Recent studies have shown that MSC-therapy significantly dampens the cytokine storm in critically ill COVID-19 patients. This communication endows with the insight of stem cell therapy and summarizes the recent studies on COVID-19 patients.
2020Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients.J Transl MedIn late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
2020Intratracheal Transplantation of Amnion-Derived Mesenchymal Stem Cells Ameliorates Hyperoxia-Induced Neonatal Hyperoxic Lung Injury via Aminoacyl-Peptide Hydrolase.Int J Stem CellsBronchopulmonary dysplasia (BPD) has major effects in premature infants. Although previous literature has indicated that mesenchymal stem cells (MSCs) can alleviate lung pathology in BPD newborns and improve the survival rate, few research have been done investigating significantly differentially expressed genes in the lungs before and after MSCs therapy. The aim of this study is to identify differentially expressed genes in lung tissues before and after hAD-MSC treatment.Human amnion-derived MSCs (hAD-MSCs) were cultured and met the MSCs criteria for cell phenotype and multidirectional differentiation. Then we confirmed the size of hAD-MSCs-EXOs and their expressed markers. An intratracheal drip of living cells showed the strongest effect on NHLI compared to cellular secretions or exosomes, both in terms of ameliorating pulmonary edema and reducing inflammatory cell infiltration. Through gene chip hybridization, PCR, and western blotting, acylaminoacyl-peptide hydrolase (APEH) expression was found to be significantly decreased under hyperoxia, and significantly increased after hAD-MSC treatment.The intratracheal transplantation of hAD-MSCs ameliorated NHLI in neonatal rats through APEH.
2020Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use.Pain PhysicianCOVID-19 has affected the United States leading to a national emergency with health care and economic impact, propelling the country into a recession with disrupted lifestyles not seen in recent history. COVID-19 is a serious illness leading to multiple deaths in various countries including the United States. Several million Americans satisfy the Center for Disease Control and Prevention (CDC) criteria for being high risk. Unfortunately, the available supply of medical beds and equipment for mechanical ventilation are much less than is projected to be needed. The World Health Organization (WHO) and multiple agencies led by the CDC in the United States have attempted to organize intensive outbreak investigation programs utilizing appropriate preventive measures, evaluation, and treatment. The clinical spectrum of COVID-19 varies from asymptomatic forms to conditions encompassing multiorgan and systemic manifestations in terms of septic shock, and multiple organ dysfunction (MOD) syndromes. The presently approved treatments are supportive but not curative for the disease. There are multiple treatments being studied. These include vaccines, medications Remdesivir and hydroxychloroquine and potentially combination therapy. Finally, expanded umbilical cord mesenchymal stem cells or (UC-MSCs) may have a role and are being studied. The cure of COVID-19 is essentially dependent on the patients' own immune system. When the immune system is over activated in an attempt to kill the virus, this can lead to the production of a large number of inflammatory factors, resulting in severe cytokine storm. The cytokine storm may induce organ damage followed by the edema, dysfunction of air exchange, acute respiratory distress syndrome (ARDS), acute cardiac injury, and secondary infection, which may lead to death. Thus, at this point, the avoidance of the cytokine storm may be the key for the treatment of HCOV-19 infected patients.In China, where there was limited availability of effective modalities to manage COVID-19 several patients were treated with expanded UC-MSCs. Additionally, the Italian College of Anesthesia, Analgesia, Resuscitation and Intensive Care have reported guidelines to treat coronavirus patients with stem cells in the hope of decreasing the number of patients going to the ICU, and, also relatively quickly getting them out of ICU. In this manuscript, we describe the urgent need for various solutions, pathogenesis of coronavirus and the clinical evidence for treatment of COVID-19 with stem cells. The limited but emerging evidence regarding UC MSC in managing COVID-19 suggests that it might be considered for compassionate use in critically ill patients to reduce morbidity and mortality in the United States. The administration and Coronavirus Task Force might wish to approach the potential of expanded UC-MSCs as an evolutionary therapeutic strategy in managing COVID-19 illness with a 3-pronged approach: If proven safe and effective on a specific and limited basis…1. Minimize regulatory burden by all agencies so that critically ill COVID-19 patients will have access regardless of their financial circumstance.2. Institute appropriate safeguards to avoid negative consequences from unscrupulous actors.3. With proper informed consent from patients or proxy when necessary, and subject to accumulation of data in that cohort, allow the procedure to be initiated in critically ill patients who are not responding to conventional therapies.KEY WORDS: Coronavirus, COVID-19, cytokine storm, multiorgan failure, expanded umbilical cord mesenchymal stem cells.
2020Neocortical tissue recovery in severe congenital obstructive hydrocephalus after intraventricular administration of bone marrow-derived mesenchymal stem cells.Stem Cell Res TherIn obstructive congenital hydrocephalus, cerebrospinal fluid accumulation is associated with high intracranial pressure and the presence of periventricular edema, ischemia/hypoxia, damage of the white matter, and glial reactions in the neocortex. The viability and short time effects of a therapy based on bone marrow-derived mesenchymal stem cells (BM-MSC) have been evaluated in such pathological conditions in the hyh mouse model.BM-MSC obtained from mice expressing fluorescent mRFP1 protein were injected into the lateral ventricle of hydrocephalic hyh mice at the moment they present a very severe form of the disease. The effect of transplantation in the neocortex was compared with hydrocephalic hyh mice injected with the vehicle and non-hydrocephalic littermates. Neural cell populations and the possibility of transdifferentiation were analyzed. The possibility of a tissue recovering was investigated using H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (H HR-MAS NMR) spectroscopy, thus allowing the detection of metabolites/osmolytes related with hydrocephalus severity and outcome in the neocortex. An in vitro assay to simulate the periventricular astrocyte reaction conditions was performed using BM-MSC under high TNFα level condition. The secretome in the culture medium was analyzed in this assay.Four days after transplantation, BM-MSC were found undifferentiated and scattered into the astrocyte reaction present in the damaged neocortex white matter. Tissue rejection to the integrated BM-MSC was not detected 4 days after transplantation. Hyh mice transplanted with BM-MSC showed a reduction in the apoptosis in the periventricular neocortex walls, suggesting a neuroprotector effect of the BM-MSC in these conditions. A decrease in the levels of metabolites/osmolytes in the neocortex, such as taurine and neuroexcytotoxic glutamate, also indicated a tissue recovering. Under high TNFα level condition in vitro, BM-MSC showed an upregulation of cytokine and protein secretion that may explain homing, immunomodulation, and vascular permeability, and therefore the tissue recovering.BM-MSC treatment in severe congenital hydrocephalus is viable and leads to the recovery of the severe neurodegenerative conditions in the neocortex. NMR spectroscopy allows to follow-up the effects of stem cell therapy in hydrocephalus.
2020Effect of the vinegar-process on chemical compositions and biological activities of Euphorbia kansui: A review.J EthnopharmacolIn traditional Chinese medicine (TCM) the root of Euphorbia kansui S.L.Liou ex S.B.Ho (EK), is used for treating edema and ascites but is also of toxicological concerns. And the clinical applications of EK have been seriously restricted for its severe toxicity. To reduce its toxicity, a commonly used clinical practice is processing it with vinegar.This review aimed to summarize and discuss updated information on biological activities and phytochemistry of EK before and after vinegar-processing, and provide feasible insights for further research on the chemical composition, toxicity and pharmacological effects of EK before and after vinegar-processing.The relevant information on chemical compositions and biological activities of EK before and after vinegar-processing was collected from scientific databases (Google Scholar, PubMed, CNKI, SpringerLink, Web of Science, Wiley Online Library and SciFinder). Additionally, published and unpublished Ph.D. and MSc. dissertations were also obtained from online databases.Diuretic and purgative effect of EK are well documented pharmacologically as are acute, irritant and organic toxic effects. Some of about terpenoids reported have antiproliferative effects on cancer cells and potential antiviral effect. After processing with vinegar, the contents of terpenoids mostly were reduced (ingenane and jatrophane type) with some new compounds being generated (unclear). Also, the toxicity of EK was decreased (using mice, rats and zebrafish embryos model), while the diuretic and purgative effects were retained (using cancerous ascites model rats and mice).While some evidence exists for the reduction of toxicity without compromising the pharmacological effects of EK after vinegar processing, the specific mechanism of action remains unknown. Consequently, further research is necessary to investigate the mechanisms and the relationship between vinegar processing and changes in the chemical composition as well as pharmacological effects/toxicity. This is essential before a safe clinical use can be endorsed.
2019Strategies to Enhance Mesenchymal Stem Cell-Based Therapies for Acute Respiratory Distress Syndrome.Stem Cells IntAcute respiratory distress syndrome (ARDS) is a multifaced disease characterized by the acute onset of hypoxemia, worsened pulmonary compliance, and noncardiogenic pulmonary edema. Despite over five decades of research, specific treatments for established ARDS are still lacking. MSC-based therapies have the advantage of targeting nearly all pathophysiological components of ARDS by means of a variety of secreted trophic factors, exerting anti-inflammatory, antioxidative, immunomodulatory, antiapoptotic, and proangiogenic effects, resulting in significant structural and functional recovery following ARDS in various preclinical models. However, the therapeutic efficacy of transplanted MSCs is limited by their poor engraftment and low survival rate in the injured tissues, major barriers to clinical translation. Accordingly, several strategies have been explored to improve MSC retention in the lung and enhance the innate properties of MSCs in preclinical models of ARDS. To provide a comprehensive and updated view, we summarize a large body of experimental evidence for a variety of strategies directed towards strengthening the therapeutic potential of MSCs in ARDS.
2020Intravenously Infusing the Secretome of Adipose-Derived Mesenchymal Stem Cells Ameliorates Neuroinflammation and Neurological Functioning After Traumatic Brain Injury.Stem Cells DevThe secretome of mesenchymal stem cell (MSC) offers a series of immunoregulatory properties and is regarded as an effective method of mitigating secondary neuroinflammation induced by traumatic brain injury (TBI). The secretome of adipose-derived MSCs (ASC-ST) was collected under hypoxia conditions. Proteomics data were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and concentrations of major components were tested. After the TBI caused by an electric cortical contusion impactor, rats were injected ASC-ST through caudal veins for 7 days. The neurological functional prognosis of TBI rats was significantly improved, and the vasogenic edema of brain tissues that was measured 14 days after TBI was relieved by ASC-ST, corresponding to brain water content levels. ASC-ST ameliorated TBI-induced neuroinflammatory environments that caused the edema, the apoptosis of the neural cells, and the nerve fiber damage by increasing the number of M2 phenotypes present while reducing the number of M1 phenotype microglia present. Furthermore, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels were reduced, whereas transforming growth factor-beta (TGF-β) and tumor necrosis factor-stimulated gene 6 protein (TSG-6) levels were increased after secretome treatment. Altogether, ASC-ST is capable of improving neural functioning by modulating TBI-induced neuroinflammation and its related secondary insults. ASC-ST may be one of the most promising candidates for regulating the secondary inflammatory reactions of central nervous systems for clinical use.
2019Iron nanoparticle-labeled murine mesenchymal stromal cells in an osteoarthritic model persists and suggests anti-inflammatory mechanism of action.PLoS OneOsteoarthritis (OA) is characterized by cartilage degradation and chronic joint inflammation. Mesenchymal stem cells (MSCs) have shown promising results in OA, but their mechanism of action is not fully understood. We hypothesize that MSCs polarize macrophages, which are strongly associated with joint inflammation to more homeostatic sub-types. We tracked ferumoxytol (Feraheme™, iron oxide nanoparticle)-labeled murine MSCs (Fe-MSCs) in murine OA joints, and quantified changes to joint inflammation and fibrosis. 10-week-old C57BL/6 male mice (n = 5/group) were induced to undergo osteoarthritis by destabilization of medical meniscus (DMM) or sham surgery. 3 weeks post-surgery, mice were injected intra-articularly with either fluorescent dye-(DiR) labeled or DiR-Fe-MSC or saline to yield 4 groups (n = 5 per group for each timepoint [1, 2 and 4weeks]). 4 weeks after injection, mice were imaged by MRI, and scored for i) OARSI (Osteoarthritis Research Society International) to determine cartilage damage; ii) immunohistochemical changes in iNOS, CD206, F4/80 and Prussian Blue/Sca-1 to detect pro-inflammatory, homeostatic and total macrophages and ferumoxytol -labeled MSCs respectively, and iii) Masson's Trichrome to detect changes in fibrosis. Ferumoxytol-labeled MSCs persisted at greater levels in DMM vs. SHAM-knee joints. We observed no difference in OARSI scores between MSC and vehicle groups. Sca-1 and Prussian Blue co-staining confirmed the ferumoxytol label resides in MSCs, although some ferumoxytol label was detected in proximity to MSCs in macrophages, likely due to phagocytosis of apoptotic MSCs, increasing functionality of these macrophages through MSC efferocytosis. MRI hypertintensity scores related to fluid edema decreased in MSC-treated vs. control animals. For the first time, we show that MSC-treated mice had increased ratios of %CD206+: %F4/80+ (homeostatic macrophages) (p<0.05), and decreased ratios of %iNOS+: %F4/80+ macrophages (p<0.01), supporting our hypothesis that MSCs may modulate synovial inflammation.
2019The TRIM protein Mitsugumin 53 enhances survival and therapeutic efficacy of stem cells in murine traumatic brain injury.Stem Cell Res TherTraumatic brain injury (TBI) is a common neurotrauma leading to brain dysfunction and death. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) hold promise in the treatment of TBI. However, their efficacy is modest due to low survival and differentiation under the harsh microenvironment of the injured brain. MG53, a member of TRIM family protein, plays a vital role in cell and tissue damage repair. The present study aims to test whether MG53 preserves hUC-MSCs against oxidative stress and enhances stem cell survival and efficacy in TBI treatment.In this study, we performed a series of in vitro and in vivo experiments in hUC-MSCs and mice to define the function of MG53 enhancing survival, neurogenesis, and therapeutic efficacy of stem cells in murine traumatic brain injury.We found that recombinant human MG53 (rhMG53) protein protected hUC-MSCs against HO-induced oxidative damage and stimulated hUC-MSC proliferation and migration. In a mouse model of contusion-induced TBI, intravenous administration of MG53 protein preserved the survival of transplanted hUC-MSCs, mitigated brain edema, reduced neurological deficits, and relieved anxiety and depressive-like behaviors. Co-treatment of MG53 and hUC-MSCs enhanced neurogenesis by reducing apoptosis and improving PI3K/Akt-GSK3β signaling.MG53 enhances the efficacy of hUC-MSCs in the recovery of TBI, indicating that such adjunctive therapy may provide a novel strategy to lessen damage and optimize recovery for brain injury.
2019Exosomes Released by Bone Marrow Mesenchymal Stem Cells Attenuate Lung Injury Induced by Intestinal Ischemia Reperfusion via the TLR4/NF-κB Pathway.Int J Med SciAcute lung injury (ALI) is a primary component of multiple organ dysfunction syndromes triggered by intestinal ischemia-reperfusion (IIR) which results in high mortality. Existing treatment options remain unsatisfactory. Mesenchymal stem cells (MSCs) have shown considerable promise as a biological therapy for ALI in preclinical studies. However, there are many limitations to stem cell treatment. This study aimed to investigate whether MSC-derived exosomes, a non-cellular alternative, are able to act in a protective capacity similar to that of MSCs for ALI triggered by IIR in a rat model and to explore the underlying mechanisms. The IIR model involved occlusion of the superior mesenteric artery of a rat for 75 min then reperfusion for 20 h. Rats then received an intravenous injection of either bone marrow-derived MSCs or MSC-derived exosomes. Pathologic alteration of lung tissue, levels of pro-inflammatory cytokines, apoptotic proteins and TLR4/NF-κB signaling were measured to evaluate the therapeutic effect of treatment with either MSCs or exosomes. Manifestations of acute lung injury after IIR were observed as edema and hemorrhage of alveoli and mesenchyme, and inflammatory cell infiltration. MSCs and MSC-derived exosomes both attenuated IIR-induced lung damage by decreased apoptosis and inflammation accompanied by down-regulation of TLR4 and NF-κB expression. MSC-derived exosomes provide protection similar to that of MSCs against IIR-induced ALI via inhibition of TLR4/NF-κB signaling, suggesting that a potential strategy against IIR-mediated acute lung injury could be therapy with exosomes as a non-cellular alternative to MSC transplantation.
2019High-throughput RNA-sequencing identifies mesenchymal stem cell-induced immunological signature in a rat model of corneal allograft rejection.PLoS OneThe immune rejection mediated by CD4+ T cell and antigen presenting macrophages is the leading cause of corneal transplantation failure. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess robust immunomodulatory potentials, and have been shown by us and others to promote corneal allograft survival. However, the immunological mechanism underlying the protective effects of BM-MSCs remains unclear. Therefore, in the current study, this mechanism was investigated in a BM-MSC-treated rat model of corneal allograft rejection, in the hope to facilitate the search for novel interventional targets to corneal allograft rejection.Lewis rats were subjected to corneal transplantation and then received subconjunctival injections of BM-MSCs (2×106 cells / 100 μl PBS) immediately and at day 3 post-transplantation. The control group received the injections of PBS with the same volume. The clinical parameters of the corneal allografts, including opacity, edema, and neovascularization, were regularly evaluated after transplantation. On day 10 post-transplantation, the corneal allografts were collected and subjected to flow cytometry and high-throughput RNA sequencing (RNA-seq). GO enrichment and KEGG pathways were analyzed. The quantitative realtime PCR (qPCR) and immunohistochemistry (IHC) were employed to validate the expression of the selected target genes at transcript and protein levels, respectively.BM-MSC subconjunctival administration prolonged the corneal allograft survival, with reduced opacity, alleviated edema, and diminished neovascularization. Flow cytometry showed reduced CD4+ T cells and CD68+ macrophages as well as boosted regulatory T cells (Tregs) in the BM-MSC-treated corneal allografts as compared with the PBS-treated counterparts. Moreover, the RNA-seq and qPCR results demonstrated that the transcript abundance of Cytotoxic T-Lymphocyte Associated Protein 4 (Ctla4), Protein Tyrosine Phosphatase, Receptor Type C (Ptprc), and C-X-C Motif Chemokine Ligand 9 (Cxcl9) genes were increased in the allografts of BM-MSC group compared with PBS group; whereas the expression of Heat Shock Protein Family A (Hsp70) Member 8 (Hspa8) gene was downregulated. The expression of these genes was confirmed by IHC at protein level.Subconjunctival injections of BM-MSCs promoted corneal allograft survival, reduced CD4+ and CD68+ cell infiltration, and enriched Treg population in the allografts. The BM-MSC-induced upregulation of Ctla4, Ptprc, Cxcl9 genes and downregulation of Hspa8 gene might contribute to the protective effects of BM-MSCs and subserve the potential interventional targets to corneal allograft rejection.
2019Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology.Stem Cells IntAlthough mesenchymal stromal cells (MSCs) have demonstrated beneficial effects on experimental acute respiratory distress syndrome (ARDS), preconditioning may be required to potentiate their therapeutic effects. Additionally, administration of cell-free products, such as extracellular vesicles (EVs) obtained from MSC-conditioned media, might be as effective as MSCs. In this study, we comparatively evaluated the effects of MSCs, preconditioned or not with serum collected from mice with pulmonary or extrapulmonary ARDS (ARDSp and ARDSexp, respectively), and the EVs derived from these cells on lung inflammation and remodeling in ARDSp and ARDSexp mice. Administration of MSCs (preconditioned or not), but not their EVs, reduced static lung elastance, interstitial edema, and collagen fiber content in both ARDSp and ARDSexp. Although MSCs and EVs reduced alveolar collapse and neutrophil cell counts in lung tissue, therapeutic responses were superior in mice receiving MSCs, regardless of preconditioning. Despite higher total cell, macrophage, and neutrophil counts in bronchoalveolar lavage fluid in ARDSp than ARDSexp, MSCs and EVs (preconditioned or not) led to a similar decrease. In ARDSp, both MSCs and EVs, regardless of preconditioning, reduced levels of tumor necrosis factor- (TNF-) , interleukin-6, keratinocyte chemoattractant (KC), vascular endothelial growth factor (VEGF), and transforming growth factor- (TGF-) in lung homogenates. In ARDSexp, TNF-, interleukin-6, and KC levels were reduced by MSCs and EVs, preconditioned or not; only MSCs reduced VEGF levels, while TGF- levels were similarly increased in ARDSexp treated either with saline, MSCs, or EVs, regardless of preconditioning. In conclusion, MSCs yielded greater overall improvement in ARDS in comparison to EVs derived from the same number of cells and regardless of the preconditioning status. However, the effects of MSCs and EVs differed according to ARDS etiology.
2019Mesenchymal Stem Cell Therapy Facilitates Donor Lung Preservation by Reducing Oxidative Damage during Ischemia.Stem Cells IntLung transplantation is a lifesaving therapy for people living with severe, life-threatening lung disease. The high mortality rate among patients awaiting transplantation is mainly due to the low percentage of lungs that are deemed acceptable for implantation. Thus, the current shortage of lung donors may be significantly reduced by implementing different therapeutic strategies which facilitate both organ preservation and recovery. Here, we studied whether the anti-inflammatory effect of human umbilical cord-derived mesenchymal stem cells (HUCPVCs) increases lung availability by improving organ preservation. We developed a lung preservation rat model that mimics the different stages by which donor organs must undergo before implantation. The therapeutic schema was as follows: cardiac arrest, warm ischemia (2 h at room temperature), cold ischemia (1.5 h at 4°C, with Perfadex), and normothermic lung perfusion with ventilation (Steen solution, 1 h). After 1 h of warm ischemia, HUCPVCs (1 × 10 cells) or vehicle was infused via the pulmonary artery. Physiologic data (pressure-volume curves) were acquired right after the cardiac arrest and at the end of the perfusion. Interestingly, although lung edema did not change among groups, lung compliance dropped to 34% in the HUCPVC-treated group, while the vehicle group showed a stronger reduction (69%, < 0.0001). Histologic assessment demonstrated less overall inflammation in the HUCPVC-treated lungs. In addition, MPO activity, a neutrophil marker, was reduced by 41% compared with vehicle ( < 0.01). MSC therapy significantly decreased tissue oxidative damage by controlling reactive oxygen species production. Accordingly, catalase and superoxide dismutase enzyme activities remained at baseline levels. In conclusion, these results demonstrate that the anti-inflammatory effect of MSCs protects donor lungs against ischemic injury and postulates MSC therapy as a novel tool for organ preservation.
2019Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis.Stem Cell Res TherEven though mesenchymal stromal cells (MSCs) mitigate lung and distal organ damage in experimental polymicrobial sepsis, mortality remains high. We investigated whether preconditioning with eicosapentaenoic acid (EPA) would potentiate MSC actions in experimental sepsis by further decreasing lung and distal organ injury, thereby improving survival.In C57BL/6 mice, sepsis was induced by cecal hligation and puncture (CLP); sham-operated animals were used as control. Twenty-four hours after surgery, CLP mice were further randomized to receive saline, adipose tissue-derived (AD)-MSCs (10, nonpreconditioned), or AD-MSCs preconditioned with EPA for 6 h (10, EPA-preconditioned MSCs) intravenously. After 24 h, survival rate, sepsis severity score, lung mechanics and histology, protein level of selected biomarkers in lung tissue, cellularity in blood, distal organ damage, and MSC distribution (by technetium-99m tagging) were analyzed. Additionally, the effects of EPA on the secretion of resolvin-D (RvD), prostaglandin E (PGE), interleukin (IL)-10, and transforming growth factor (TGF)-β1 by MSCs were evaluated in vitro.Nonpreconditioned and EPA-preconditioned AD-MSCs exhibited similar viability and differentiation capacity, accumulated mainly in the lungs and kidneys following systemic administration. Compared to nonpreconditioned AD-MSCs, EPA-preconditioned AD-MSCs further reduced static lung elastance, alveolar collapse, interstitial edema, alveolar septal inflammation, collagen fiber content, neutrophil cell count as well as protein levels of interleukin-1β and keratinocyte chemoattractant in lung tissue, and morphological abnormalities in the heart (cardiac myocyte architecture), liver (hepatocyte disarrangement and Kupffer cell hyperplasia), kidney (acute tubular necrosis), spleen (increased number of megakaryocytes and lymphocytes), and small bowel (villi architecture disorganization). EPA preconditioning of MSCs resulted in increased secretion of pro-resolution and anti-inflammatory mediators (RvD, PGE, IL-10, and TGF-β).Compared to nonpreconditioned cells, EPA-preconditioned AD-MSCs yielded further reductions in the lung and distal organ injury, resulting in greater improvement in sepsis severity score and higher survival rate in CLP-induced experimental sepsis. This may be a promising therapeutic approach to improve outcome in septic patients.
2019Mesenchymal Stem Cell Therapy Overcomes Steroid Resistance in Severe Gastrointestinal Acute Graft-Versus-Host Disease.Case Rep TransplantThe authors describe the high effectiveness of human mesenchymal stem cell (hMSC) therapy to treat steroid-refractory gastrointestinal acute graft-versus-host Disease (aGVHD) in a 15-year-old boy with acute lymphoblastic leukemia (ALL). He received allogeneic hematopoietic stem cell transplantation due to high-risk hypodiploid ALL. Around the time of engraftment, he developed severe diarrhea following high-grade fever and erythema. Although methylprednisolone pulse therapy was added to tacrolimus and mycophenolate mofetil, diarrhea progressed up to 5000~6000 ml/day and brought about hypocalcemia, hypoalbuminemia, and edema. Daily fresh frozen plasma (FFP), albumin, and calcium replacements were required to maintain blood circulation. After aGVHD was confirmed by colonoscopic biopsy, MSC therapy was administered. The patient received 8 biweekly intravenous infusions of 2×10 hMSCs/kg for 4 weeks, after which additional 4 weekly infusions were performed. A few weeks after initiation, diarrhea gradually resolved, and at the eighth dose of hMSC, lab data improved without replacements. MSC therapy successfully treated steroid-refractory gastrointestinal GVHD without complications. Despite life-threatening diarrhea, the regeneration potential of children and adolescents undergoing SMC therapy successfully supports restoration of gastrointestinal damage. Even with its high treatment costs, SMC therapy should be proactively considered in cases where young patients suffer from severe gastrointestinal GVHD.
2019Hyaluronan Hydrogels for the Local Delivery of Mesenchymal Stromal Cells to the Injured Vocal Fold.Stem Cells DevMesenchymal stromal cells (MSCs) promote wound healing by expediting the inflammatory phase. Local injection of MSCs into injured vocal folds (VFs) is effective in animal models, suggesting suitability for clinical translation. Despite their therapeutic potential, MSCs do not persist within the VF. This study evaluates whether hyaluronan (HA) hydrogels offer a safe delivery vehicle for local injection of MSCs into VFs, and increase longevity of the cells within the injured tissue. MSCs ± HA hydrogel were exposed to interleukin (IL)1β, IL8, and chemokine (C-C motif) ligand 4, and evaluated for mRNA expression of matrix remodeling genes and secretion of immunomodulatory/prohealing factors. Chemotaxis/invasion in response to inflammation was evaluated. A lapin model of VF injury evaluated in vivo effects of MSCs ± HA hydrogel on enhancing VF healing. Histological evaluation of inflammation, type I collagen expression, HA hydrogel resorption, and MSC persistence was evaluated at 3 and 25 days after injury. MSCs within HA hydrogel were responsive to their extracellular environment, upregulating immunomodulatory factors when exposed to inflammation. Despite delayed migration out of the gel in vitro, the MSCs did not persist longer within the injured tissue in vivo. MSCs ± HA hydrogel exerted equivalent dampening of inflammation in vivo. The gel was resorbed within 25 days and no edema was evident. HA hydrogels can be safely used in the delivery of MSCs to injured VFs, minimizing leakage of administered cells. MSCs within the HA hydrogel did not persist longer than those in suspension, but did exert comparable therapeutic effects.
2019Pericytes in Chronic Lung Disease.Adv Exp Med BiolPericytes are supportive mesenchymal cells located on the abluminal surface of the microvasculature, with key roles in regulating microvascular homeostasis, leukocyte extravasation, and angiogenesis. A subpopulation of pericytes with progenitor cell function has recently been identified, with evidence demonstrating the capacity of tissue-resident pericytes to differentiate into the classic MSC triad, i.e., osteocytes, chondrocytes, and adipocytes. Beyond the regenerative capacity of these cells, studies have shown that pericytes play crucial roles in various pathologies in the lung, both acute (acute respiratory distress syndrome and sepsis-related pulmonary edema) and chronic (pulmonary hypertension, lung tumors, idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease). Taken together, this body of evidence suggests that, in the presence of acute and chronic pulmonary inflammation, pericytes are not associated with tissue regeneration and repair, but rather transform into scar-forming myofibroblasts, with devastating outcomes regarding lung structure and function. It is hoped that further studies into the mechanisms of pericyte-to-myofibroblast transition and migration to fibrotic foci will clarify the roles of pericytes in chronic lung disease and open up new avenues in the search for novel treatments for human pulmonary pathologies.
2019[Effects of Hippo signaling pathway on lung injury repair by mesenchymal stem cells in acute respiratory distress syndrome].Zhonghua Wei Zhong Bing Ji Jiu Yi XueTo investigate the effects of Hippo signaling pathway on lung injury repair of mesenchymal stem cells (MSC) in acute respiratory distress syndrome (ARDS) and its mechanism.Mouse bone marrow-derived MSC (mMSCs) cell lines with low expression of large tumor suppressor 2 (LATS2) were constructed by lentiviral vector transfection. Male C57BL/6 mice aging 6-8 weeks old were divided into four groups according to random number table (n = 36). The ARDS animal model (ARDS group) was reproduced by intratracheally injection of 2 g/L lipopolysaccharide (LPS) 50 μL, the normal saline (NS) control group was injected with an equal volume of NS. After 4 hours of model reproduction, 5×10 mMSCs transfected with blank lentivirus vector (MSC-shcontrol group) or shLATS2 lentivirus vector (MSC-shLATS2 group) were transplanted intratracheally, while NS control group and ARDS group were injected with equal volume of phosphate buffered saline (PBS). Mice were sacrificed at 3, 7, and 14 days after modeling, and lung tissue and bronchoalveolar lavage fluid (BALF) were harvested. Near-infrared fluorescence imaging, immunofluorescence staining and Western Blot were used to track mMSCs in lung tissue. Retension and proportion of mMSC differentiation into type II alveolar epithelial cells (AEC II) were evaluated. Lung tissue wet weight/body weight ratio (LWW/BW) and total protein (TP) and albumin (ALB) in BALF were determined to reflect pulmonary edema. The expression of Occludin protein in lung epithelium was tested by Western Blot to reflect permeability of epithelium. The levels of interleukins (IL-1β, IL-6, IL-10) in BALF were assessed by enzyme-linked immunosorbent assay (ELISA) to reflect lung inflammation. Hematoxylin-eosin (HE) staining and modified Masson staining were carried out, and the scores were assessed to reflect lung injury and evaluate pulmonary fibrosis.The signal intensity of isolated lung fluorescence images at 3 days in the MSC-shLATS2 group was significantly higher than that in the MSC-shcontrol group (fluorescence intensity: 0.039±0.005 vs. 0.017±0.002, P < 0.05), the number of green fluorescent protein (GFP)-positive cells in lung tissue was also significantly higher than that in the MSC-shcontrol group (cells/HP: 29.65±6.98 vs. 17.50±4.58, P < 0.05), but they all decreased with time; and the proportion of mMSCs differentiated into AEC II was significantly increased [(64.12±15.29)% vs. (19.64±3.71)%, P < 0.05]. Compared with the NS control group, the levels of surface active protein C (SPC) and Occludin protein in the ARDS group were significantly decreased, LWW/BW ratio and TP, ALB and inflammatory factors levels in BALF were significantly increased; extensive alveolar and interstitial edema, hemorrhage and diffuse inflammatory cell infiltration were found in lung tissue, and the lung injury score was significantly increased; collagen fibers were deposited in alveolar septum and alveolar cavity, and pulmonary fibrosis score was also increased significantly. Compared with the ARDS group, the expression levels of SPC and Occludin at 14 days in the MSC-shcontrol group and the MSC-shLATS2 group were significantly increased (SPC/β-actin: 0.51±0.12, 0.68±0.10 vs. 0.27±0.08, Occludin/β-actin: 0.49±0.19, 0.79±0.11 vs. 0.25±0.08, all P < 0.05), TP, ALB, IL-1β, IL-6 levels in BALF at 3 days were significantly decreased [TP (g/L): 8.08±1.72, 5.12±0.87 vs. 12.55±2.09; ALB (g/L): 0.71±0.21, 0.44±0.18 vs. 1.18±0.29, IL-1β (ng/L): 99.26±14.32, 60.11±8.58 vs. 161.86±25.17, IL-6 (ng/L): 145.54±13.29, 101.74±11.55 vs. 258.79±27.88, all P < 0.05], and IL-10 was significantly increased (ng/L: 190.83±22.61, 316.65±37.88, both P < 0.05). Furthermore, all the above parameters in the MSC-shLATS2 group were significantly improved as compared with those in the MSC-shcontrol group (all P < 0.05). LWW/BW ratio in the MSC-shLATS2 group was significantly lower than that in the ARDS group and the MSC-shcontrol group (mg/g: 9.85±1.51 vs. 16.78±1.92, 14.88±1.74, both P < 0.05).Inhibiting Hippo signaling pathway by low expression of LATS2 could promote the retention of mMSCs in lung tissue and differentiation into AEC II cells of ARDS mice, improve pulmonary edema and alveolar epithelial permeability, regulate pulmonary inflammatory response, and alleviate pathological damage and fibrosis of lung tissue.
2019Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p.Eur J PharmacolMiR-21-5p is an anti-apoptotic miRNA known to mediate the protective effect of mesenchymal stromal cell-secreted exosomes (MSC-Exo) against oxidative stress-induced cell death. In the present research we employed murine lung ischemia/reperfusion (I/R) model and in vitro hypoxia/reoxygenation (H/R) model using primary murine pulmonary endothelial cells to investigate whether MSC-Exo could alleviate lung IRI by transporting miR-21-5p. Our data suggested that intratracheal administration of MSC-Exo or miR-21-5p agomir significantly reduced lung edema and dysfunction, M1 polarization of alveolar macrophages as well as secretion of HMGB1, IL-8, IL-1β, IL-6, IL-17 and TNF-α. Pre-challenge of MSCs by H/R significant increased miR-21-5p expression level in exosomes they secreted and the anti-IRI effect of these MSC-Exo, while pre-treatment of MSCs with miR-21-5p antagomir showed opposite effect. We further demonstrated that MSC-Exo ameliorated IRI in vivo or H/R induced apoptosis in vitro by inhibiting both intrinsic and extrinsic apoptosis pathway via miR-21-5p targeting PTEN and PDCD4, while artificial overexpressing PTEN or PDCD4 significantly attenuated the anti-apoptotic effect of MSC-Exo in vitro. Treatment with miR-21-5p agomir mimicked the IRI-reducing and anti-apoptotic effect of MSC-Exo. Our data suggested that MSC-Exo alleviate IRI in lung in an exosomal miR-21-5p-dependent manner. Treatment with MSC-Exo or miR-21-5p agomir might ameliorate IRI in lung.
2020Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Cochlear Function in an Experimental Rat Model.Anat Rec (Hoboken)Mesenchymal stem cell (MSC) therapy is an emerging treatment modality for various human diseases. Although induced pluripotent stem cells have been explored for the restoration of hearing, the potential of MSCs as a therapeutic strategy for various cochlear insults is not precisely known. MSCs possess anti-inflammatory, anti-apoptotic and neuroprotective properties, making them an attractive target for the treatment of inner ear disorders such as hair cell damage in response to inflammation. Most of the previous studies have used immunosuppression or the complex surgical techniques to deliver stem cells into the cochlea. However, no information is available regarding the biocompatibility and safety of MSCs in the inner ear in immunocompetent cochlea. The aim of the present study was to determine the effect of non-surgical administration of rodent bone marrow derived MSCs (BM-MSCs) through transtympanic delivery on the cochlear function and to assess any adverse effects on the auditory system employing a rat model without immunosuppression. We observed that the transtympanic administration of BM-MSCs has no significant effect on the hearing thresholds as determined by auditory brainstem response and distortion product otoacoustic emissions. Histopathological examination revealed no recruitment of inflammatory leukocytes and edema in the cochlea of BM-MSCs administrated rats. The results of this study suggest that transtympanic administration of BM-MSCs is safe and can be explored in providing otoprotection against cochlear insults. Anat Rec, 303:487-493, 2020. © 2019 American Association for Anatomy.
2019Coculture with bone marrow‑derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharide‑stimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin‑1 modulating the Toll‑like receptor‑4 signal pathway.Mol Med RepAcute lung injury (ALI) is a common, costly and potentially lethal disease with characteristics of alveolar‑capillary membrane disruption, pulmonary edema and impaired gas exchange due to increased apoptosis and pulmonary inflammation. There is no effective and specific therapy for ALI; however, mesenchymal stem cells (MSCs) have been demonstrated to be a potential option. Lipopolysaccharide (LPS) is a highly proinflammatory molecule that is used to mimic an in vivo inflammatory and damaged state in vitro. The present study investigated the effect of bone marrow‑derived MSCs on an LPS‑induced alveolar epithelial cell (A549 cell line) injury and its underlying mechanisms by a Transwell system. It was identified that a high LPS concentration caused a decrease in cell viability, increases in apoptosis, inflammatory cytokine release and NF‑κB activity, disruption of the caspase‑3/Bcl‑2 ratio, upregulation of Toll‑like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and toll‑interleukin‑1 receptor domain‑containing adaptor inducing interferon (TRIF) expression, and facilitation of TLR4/MyD88 and TLR4/TRIF complex formation in A549 cells. Coculture with MSCs attenuated all of these activities induced by LPS in A549 cells. In addition, an increased level of keratinocyte growth factor (KGF) and angiopoietin‑1 (ANGPT1) secretion from MSCs was observed under inflammatory stimulation. KGF and/or ANGPT1 neutralizing antibodies diminished the beneficial effect of MSC conditioned medium. These data suggest that MSCs alleviate inflammatory damage and cellular apoptosis induced by LPS in A549 cells by modulating TLR4 signals. These changes may be partly associated with an increased secretion of KGF and ANGPT1 from MSCs under inflammatory conditions. These data provide the basis for development of MSC‑based therapies for ALI.
2018Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood-brain barrier preservation.TheranosticsMesenchymal stromal cells (MSCs) are emerging as a novel therapeutic strategy for the acute ischemic stroke (AIS). However, the poor targeted migration and low engraftment in ischemic lesions restrict their treatment efficacy. The ischemic brain lesions express a specific chemokine profile, while cultured MSCs lack the set of corresponding receptors. Thus, we hypothesize that overexpression of certain chemokine receptor might help in MSCs homing and improve therapeutic efficacy. Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we identified that CCL2 is one of the most highly expressed chemokines in the ipsilateral hemisphere. Then, we genetically transduced the corresponding receptor, CCR2 to the MSCs and quantified the cell retention of MSC compared to the MSC control. MSC exhibited significantly enhanced migration to the ischemic lesions and improved the neurological outcomes. Brain edema and blood-brain barrier (BBB) leakage levels were also found to be much lower in the MSC-treated rats than the MSC group. Moreover, this BBB protection led to reduced inflammation infiltration and reactive oxygen species (ROS) generation. Similar results were also confirmed using the BBB model. Furthermore, genome-wide RNA sequencing (RNA-seq) analysis revealed that peroxiredoxin4 (PRDX4) was highly expressed in MSCs, which mainly contributed to their antioxidant impacts on MCAO rats and oxygen-glucose deprivation (OGD)-treated endothelium. Taken together, this study suggests that overexpression of CCR2 on MSCs enhances their targeted migration to the ischemic hemisphere and improves the therapeutic outcomes, which is attributed to the PRDX4-mediated BBB preservation.
2018Intrapulmonary autologous transplant of bone marrow-derived mesenchymal stromal cells improves lipopolysaccharide-induced acute respiratory distress syndrome in rabbit.Crit CareLung diseases such as acute respiratory distress syndrome (ARDS) have a high incidence worldwide. The current drug therapies for ARDS have supportive effects, making them inefficient. New methods such as stromal cell therapy are needed for this problem.This research was performed with ten New Zealand rabbits in two groups. Bone marrow aspiration was performed on the treated group, and mesenchymal stem cells were isolated and cultured. The experimental model of ARDS was induced using LPS from Escherichia coli strain O55:B5. Then, 10 bone marrow mesenchymal stem cells (BM-MSCs) were autologously transplanted intrapulmonary in the treatment group, and 1-2 ml of PBS in the control group. The clinical signs, computed tomographic (CT) scans, echocardiography, blood gas analysis, complete blood count, and cytokine levels were measured before and at 3, 6, 12, 24, 48, 72, and 168 h after BM-MSC transplant. Finally, the rabbits were killed, and histopathological examination was performed.The results showed that BM-MSCs decreased the severity of clinical symptoms, the number of white blood cells and heterophils in the blood, the total cell count, and number of heterophils and macrophages in bronchoalveolar lavage, and balanced the values of arterial blood gases (increase in partial pressure of oxygen and O saturation and decrease in the partial pressure of carbon dioxide). They also downregulated the tumor necrosis factor (TNF)-α and interleukin (IL)-6 concentrations and increased the IL-10 concentrations at different times compared with time 0 and in the control group, significantly. In the CT scan, a significant decrease in the Hounsfield units and total lung volume was found by echocardiography, and in comparing the two groups, a significant difference in the parameters was noticed. The histopathology demonstrated that the BM-MSCs were able to reduce the infiltration of inflammatory cells and pulmonary hemorrhage and edema.This study indicated that BM-MSCs play a significant role in the repair of lung injury.
2018Effect of Pretreatment with the NADPH Oxidase Inhibitor Apocynin on the Therapeutic Efficacy of Human Placenta-Derived Mesenchymal Stem Cells in Intracerebral Hemorrhage.Int J Mol SciSeveral studies have demonstrated the beneficial effect of mesenchymal stem cells (MSCs) on intracerebral hemorrhage (ICH). Enhancement of the therapeutic efficacy of MSCs in ICH is necessary, considering the diseases high association with mortality and morbidity. Various preconditioning methods to enhance the beneficial properties of MSCs have been introduced. We suggested apocynin, a well-known nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, as a novel preconditioning regimen to enhance the therapeutic efficacy of MSCs in ICH. Rat ICH models were made using bacterial collagenase. 24 h after ICH induction, the rats were randomly divided into apocynin-preconditioned MSC-treated (Apo-MSC), naïve MSC-treated and control groups. Hematoma volume, brain edema, and degenerating neuron count were compared at 48 h after the ICH induction. The expression of tight junction proteins (occludin, zona occludens [ZO]-1) were also compared. Hematoma size, hemispheric enlargement and degenerating neuron count were significantly lower in the Apo-MSC group than in the naïve MSC group ( = 0.004, 0.013 and 0.043, respectively), while the expression of occludin was higher ( = 0.024). Apocynin treatment enhances the therapeutic efficacy of MSCs in ICH in the acute stage, through the improvement of the beneficial properties of MSCs, such as neuroprotection and the reinforcement of endovascular integrity of cerebral vasculature.
2019Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats.J Cell PhysiolAcute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and potentially lethal clinical syndromes characterized by acute respiratory failure resulting from excessive pulmonary inflammation, noncardiogenic pulmonary edema, and alveolar-capillary barrier disruption. At present, there is no effective and specific therapy for ALI/ARDS. Mesenchymal stem cells (MSCs) have well-known therapeutic potential in patients with ALI/ARDS. Heme oxygenase-1 (HO-1), a cytoprotective enzyme, possesses antioxidative, anti-inflammatory, and antiapoptotic effects. Thus, a combination of MSC transplantation with HO-1 delivery may have an additional protective effect against ALI/ARDS. This study investigated the effect of HO-1-modified bone-marrow-derived MSCs (MSCs-HO-1) on lipopolysaccharide (LPS)-induced ALI and its underlying mechanisms. We established MSCs-HO-1 through lentiviral transduction. The ALI rat model was established by successive LPS inhalations following injection with MSCs-HO-1. The survival rate, histological changes in the lungs, total protein concentration and neutrophil counts in bronchoalveolar lavage fluid, lung wet/dry weight ratio, cytokine levels in serum and lungs, nuclear transcription factor-κB activity, and protein expression of Toll-like receptor 4 signaling adaptors were examined. Furthermore, the cell viability, apoptosis, and paracrine activity of MSCs-HO-1 were examined under inflammatory stimuli in vitro. MSCs-HO-1 injection improved these parameters compared with primary unmodified MSCs. Moreover, MSCs-HO-1 had superior prosurvival and antiapoptotic properties and enhanced paracrine functions in vitro. Therefore, MSCs-HO-1 exert an enhanced protective effect to alleviate LPS-induced ALI in rats, and the mechanisms may be partially associated with superior prosurvival, antiapoptosis, and enhanced paracrine functions of MSCs-HO-1. These findings provide a novel insight into MSC-based therapeutic strategies for treating ALI/ARDS.
2019Therapeutic Implications of Human Umbilical Cord Mesenchymal Stromal Cells in Attenuating Influenza A(H5N1) Virus-Associated Acute Lung Injury.J Infect DisHighly pathogenic avian influenza viruses can cause severe forms of acute lung injury (ALI) in humans, where pulmonary flooding leads to respiratory failure. The therapeutic benefits of bone marrow mesenchymal stromal cells (MSCs) have been demonstrated in a model of ALI due to influenza A(H5N1) virus. However, clinical translation is impractical and limited by a decline in efficacy as the age of the donor increases. Umbilical cord MSCs (UC-MSCs) are easier to obtain by comparison, and their primitive source may offer more-potent therapeutic effects.Here we investigate the therapeutic efficacy of UC-MSCs on the mechanisms of pulmonary edema formation and alveolar fluid clearance and protein permeability of A(H5N1)-infected human alveolar epithelial cells. UC-MSCs were also tested in a mouse model of influenza ALI.We found that UC-MSCs were effective in restoring impaired alveolar fluid clearance and protein permeability of A(H5N1)-infected human alveolar epithelial cells. UC-MSCs consistently outperformed bone marrow MSCs, partly because of greater growth factor secretion of angiopoietin 1 and hepatocyte growth factor. Conditioned UC-MSC medium and UC-MSC exosomes were also able to recapitulate these effects. However, UC-MSCs only slightly improved survival of A(H5N1)-infected mice.Our results suggest that UC-MSCs are effective in restoring alveolar fluid clearance and protein permeability in A(H5N1)-associated ALI and confer functional in addition to practical advantages over conventional bone marrow MSCs.
2018Human Placenta-Derived Mesenchymal Stem Cells Reduce Mortality and Hematoma Size in a Rat Intracerebral Hemorrhage Model in an Acute Phase.Stem Cells IntIntracerebral hemorrhage (ICH) is a critical disease, highly associated with mortality and morbidity. Several studies have demonstrated the beneficial effect of mesenchymal stem cells (MSCs) on ICH, mostly focused on their mid-to-long-term effect. Acute hematoma expansion is one of the most important prognostic factors of ICH. We hypothesized that MSCs would decrease mortality and hematoma size in acute ICH, based on the findings of a few recent researches reporting their effect on blood-brain barrier and endothelial integrity. Rat ICH models were made using bacterial collagenase. One hour after ICH induction, the rats were randomly divided into MSC-treated and control groups. Mortality, hematoma volume, ventricular enlargement, brain edema, and degenerating neuron count were compared at 24 hours after ICH induction. Expression of tight junction proteins (ZO-1, occludin) and coagulation factor VII mRNA was also compared. Mortality rate (50% versus 8.3%), hematoma size, ventricular size, hemispheric enlargement, and degenerating neuron count were significantly lower in the MSC-treated group ( = 0.034, 0.038, 0.001, 0.022, and <0.001, resp.), while the expression of ZO-1 and occludin was higher ( = 0.007 and 0.012). Administration of MSCs may prevent hematoma expansion in the hyperacute stage of ICH and decrease acute mortality by enhancing the endothelial integrity of cerebral vasculature.
2018Mesenchymal Stem Cell Microvesicles Restore Protein Permeability Across Primary Cultures of Injured Human Lung Microvascular Endothelial Cells.Stem Cells Transl MedOur previous study demonstrated that mesenchymal stem cell (MSC) microvesicles (MV) reduced lung inflammation, protein permeability, and pulmonary edema in endotoxin-induced acute lung injury in mice. However, the underlying mechanisms for restoring lung protein permeability were not fully understood. In this current study, we hypothesized that MSC MV would restore protein permeability across injured human lung microvascular endothelial cells (HLMVEC) in part through the transfer of angiopoietin-1 (Ang1) mRNA to the injured endothelium. A transwell coculture system was used to study the effect of MSC MV on protein permeability across HLMVECs injured by cytomix, a mixture of IL-1β, TNF-α, and IFN-γ (50 ng/ml). Our result showed that cytomix significantly increased permeability to FITC-dextran (70 kDa) across HLMVECs over 24 hours. Administration of MSC MVs restored this permeability in a dose dependent manner, which was associated with an increase in Ang1 mRNA and protein secretion in the injured endothelium. This beneficial effect was diminished when MSC MV was pretreated with an anti-CD44 antibody, suggesting that internalization of MV into the HLMVEC was required for the therapeutic effect. Fluorescent microscopy showed that MSC MV largely prevented the reorganization of cytoskeleton protein F-actin into "actin stress fiber" and restored the location of the tight junction protein ZO-1 and adherens junction protein VE-cadherin in injured HLMVECs. Ang1 siRNA pretreatment of MSC MV prior to administration to injured HLMVECs eliminated the therapeutic effect of MV. In summary, MSC MVs restored protein permeability across HLMVEC in part by increasing Ang1 secretion by injured HLMVEC. Stem Cells Translational Medicine 2018;7:615-624.
2018Conditioned medium from umbilical cord mesenchymal stem cells improves nasal mucosa damage by radiation.Biotechnol LettTo explore therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells (hUC-MSCs) on nasal mucosa radiation damage both in vivo and in vitro.The mucus cilia clearance time (7 and 30 days), degree of mucosal edema (7, 30, 90 and 180 days), cilia coverage (180 days) of concentrated conditioned medium group improved compared with radiotherapy control group. The proliferation and migration abilities of irradiated and non-irradiated nasal epithelial cells significantly increased after culture in bronchial epithelial cell growth medium (BEGM) containing 10% conditioned medium of hUC-MSCs compared to cells cultured in BEGM alone.Soluble factors secreted by hUC-MSCs may promote nasal epithelial cell proliferation and migration. Intranasal administration of hUC-MSC conditioned medium effectively repairs nasal mucosa radiation damage.
2018Influence of Mussel-Derived Bioactive BMP-2-Decorated PLA on MSC Behavior in Vitro and Verification with Osteogenicity at Ectopic Sites in Vivo.ACS Appl Mater InterfacesOsteoinductive activity of the implant in bone healing and regeneration is still a challenging research topic. Therapeutic application of recombinant human bone morphogenetic protein-2 (BMP-2) is a promising approach to enhance osteogenesis. However, high dose and uncontrolled burst release of BMP-2 may introduce edema, bone overgrowth, cystlike bone formation, and inflammation. In this study, low-dose BMP-2 of 1 μg was used to design PLA-PD-BMP for functionalization of polylactic acid (PLA) implants via mussel-inspired polydopamine (PD) assist. For the first time, the binding property and efficiency of the PD coating with BMP-2 were directly demonstrated and analyzed using an antigen-antibody reaction. The obtained PLA-PD-BMP surface immobilized with this low BMP-2 dose can endow the implants with abilities of introducing strong stem cell adhesion and enhanced osteogenicity. Furthermore, in vivo osteoinduction of the PLA-PD-BMP-2 scaffolds was confirmed by a rat ectopic bone model, which is marked as the "gold standard" for the evidence of osteoinductive activity. The microcomputed tomography, Young's modulus, and histology analyses were also employed to demonstrate that PLA-PD-BMP grafted with 1 μg of BMP-2 can induce bone formation. Therefore, the method in this study can be used as a model system to immobilize other growth factors onto various different types of polymer substrates. The highly biomimetic mussel-derived strategy can therefore improve the clinical outcome of polymer-based medical implants in a facile, safe, and effective way.
2018Intravenous C16 and angiopoietin-1 improve the efficacy of placenta-derived mesenchymal stem cell therapy for EAE.Sci RepThe placenta has emerged as an attractive source of mesenchymal stem cells (MSCs) because of the absence of ethical issues, non-invasive access, and abundant yield. However, inflammatory cell invasion into grafts negatively impacts the survival and efficacy of transplanted cells. Previous studies have shown that synthetic C16 peptide can competitively block the transmigration of leukocytes into the central nerve system, while angiopoietin-1 (Ang-1) can inhibit inflammation-induced blood vessel leakage and inflammatory cell infiltration in rats with experimental allergic encephalomyelitis (EAE). In this study, we investigated the effects of intravenous administration of C16 and Ang-1 on the efficacy of placenta-derived MSC (PMSC) transplantation in a rat model of EAE. We found that, compared with PMSCs alone, treatment with PMSCs along with intravenously administered C16 and Ang-1 was more effective at ameliorating demyelination/neuronal loss and neurological dysfunction, reducing inflammatory cell infiltration, perivascular edema, and reactive astrogliosis (p < 0.05). Mechanistic studies revealed that intravenous C16 and Ang-1 increased PMSC engraftment in the central nervous system and promoted expression of the neurotropic proteins brain-derived neurotrophic factor, growth-associated protein 43, and p75 neurotrophin receptor as well as the neuronal-glial lineage markers neurofilament protein 200 and myelin basic protein in the engrafted PMSCs.
2018Long term treatment by mesenchymal stem cells conditioned medium modulates cellular, molecular and behavioral aspects of adjuvant-induced arthritis.Cell Mol Biol (Noisy-le-grand)Neuroinflammation plays a crucial role in expression of symptoms of numerous autoimmune and neurodegenerative diseases such as pain during rheumatoid arthritis. Overproduction of pro-inflammatory cytokines and activation of intracellular signaling pathways have been strongly implicated in the generation of pathological pain states, particularly at central nervous system sites and induction of spinal neuroinflammatory symptoms. The wide ranges of research to define new therapeutic approaches, including neuroimmune-modulators like stem cells are in progress. Mesenchymal stem cells conditioned medium (MSC-CM) has anti-inflammatory factors which can regulate the immune responses. The aim of this study was to investigate the effect of administration of MSC-CM on behavioral, cellular and molecular aspects of adjuvant-induced arthritis in male Wistar rats. Complete Freund's adjuvant (CFA)-induced arthritis (AA) was caused by single subcutaneous injection of CFA into the rat's hind paw on day 0. MSC-CM was administered daily (i.p.) and during the 21 days of the study after injection. Hyperalgesia, Edema, Serum TNF-α levels and p38MAPK and NF-κB activities were assessed on days 0,7,14 and 21 of the study. The results of this study indicated the role of MSC-CM in reducing inflammatory symptoms, serum TNF-α levels and activity of intracellular signaling pathway factors during different phases of inflammation caused by CFA. It seems that MSC-CM treatment due to its direct effects on inhibition of intracellular signaling pathways and pro-inflammatory cytokines can alleviate inflammatory symptoms and pain during CFA-induced arthritis.
2018Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy.ImmunobiologyDiabetic retinopathy (DR) is a multifactorial microvascular disease induced by hyperglycemia and subsequent metabolic abnormalities. The resulting cell stress causes a sequela of events that ultimately can lead to severe vision impairment and blindness. The early stages are characterized by activation of glia and loss of pericytes, endothelial cells (EC) and neuronal cells. The integrity of the retinal microvasculature becomes affected, and, as a possible late response, macular edema may develop as a common reason for vision loss in patients with non-proliferative DR. Moreover, the local ischemia can trigger vasoproliferation leading to vision-threating proliferative DR (PDR) in humans. Available treatment options include control of metabolic and hemodynamic factors. Timely intervention of advanced DR stages with laser photocoagulation, intraocular anti-vascular endothelial growth factor (VEGF) or glucocorticoid drugs can reduce vision loss. As the pathology involves cell loss of both the vascular and neuroglial compartments, cell replacement strategies by stem and progenitor cells have gained considerable interest in the past years. Compared to other disease entities, so far little is known about the efficacy and potential mode of action of cell therapy in treatment of DR. In preclinical models of DR different cell types have been applied ranging from embryonic or induced pluripotent stem cells, hematopoietic stem cells, and endothelial progenitor cells to mesenchymal stromal cells (MSC). The latter cell population can combine various modes of action (MoA), thus they are among the most intensely tested cell types in cell therapy. The aim of this review is to discuss the rationale for using MSC as potential cell therapy to treat DR. Accordingly, we will revise identified MoA of MSCs and speculate how these may support the repair of the damaged retina.
2018Anti-inflammatory roles of mesenchymal stromal cells during acute Streptococcus pneumoniae pulmonary infection in mice.CytotherapyPneumonia is the fourth leading cause of death worldwide, and Streptococcus pneumoniae is the most commonly associated pathogen. Increasing evidence suggests that mesenchymal stromal cells (MSCs) have anti-inflammatory roles during innate immune responses such as sepsis. However, little is known about the effect of MSCs on pneumococcal pneumonia.Bone marrow-derived macrophages (BMDMs) were stimulated with various ligands in the presence or absence of MSC-conditioned medium. For in vivo studies, mice intranasally-inoculated with S. pneumoniae were intravenously treated with MSCs or vehicle, and various parameters were assessed.After stimulation with toll-like receptor (TLR) 2, TLR9 or TLR4 ligands, or live S. pneumoniae, TNF-α and interleukin (IL)-6 levels were significantly decreased, whereas IL-10 was significantly increased in BMDMs cultured in MSC-conditioned medium. In mice, MSC treatment decreased the number of neutrophils in bronchoalveolar lavage fluid (BALF) after pneumococcal infection, and this was associated with a decrease in myeloperoxidase activity in the lungs. Levels of proinflammatory cytokines, including TNF-α, IL-6, GM-CSF and IFN-γ, were significantly lower in MSC-treated mice, and the bacterial load in the lung after pneumococcal infection was significantly reduced. In addition, histopathologic analysis confirmed a decrease in the number of cells recruited to the lungs; however, lung edema, protein leakage into the BALF and levels of the antibacterial protein lipocalin 2 in the BALF were comparable between the groups.These results indicate that MSCs could represent a potential therapeutic application for the treatment of pneumonia caused by S. pneumoniae.
2017Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death.Respir ResLung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs.C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs.Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix.These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.
2018The Role of Dexamethasone Implant in the Management of Tubercular Uveitis.Ocul Immunol InflammTo study the safety and efficacy of intravitreal injection of dexamethasone implant in the management of posterior segment involvement in tubercular uveitis (TBU).In this study, retrospective analysis of safety and efficacy of intravitreal injection of dexamethasone implant for various indications such as cystoid macular edema (CME), vitritis, or paradoxical worsening in TB-related intermediate uveitis, retinal vasculitis, and multifocal serpiginoid choroiditis (MSC) was performed.The study included 17 patients (19 eyes; 7 males). IOP increased from 14.88 ± 2.68 mm Hg to 16.4 ± 5.82 mm Hg (p = 0.18) at 3 months. BCVA improved from 0.37 ± 0.35 to 0.27 ± 0.21 at 3 months (p = 0.03). CME resolved at 3 months and two patients with paradoxical worsening showed resolution within 1 month.Intravitreal dexamethasone implant is safe and efficacious as an adjunct to ATT in reducing the central macular thickness, vitritis, and progression of choroiditis lesions in paradoxical worsening of MSC.
2017Combination therapy of human umbilical cord mesenchymal stem cells and FTY720 attenuates acute lung injury induced by lipopolysaccharide in a murine model.OncotargetALI/ARDS remain the main reason of morbidity and mortality in the critically ill. Studies have indicated that human umbilical cord mesenchymal stem cells (hUC-MSCs) can be useful in the treatment of ALI/ARDS. Sphingosine-1-phosphate (S1P) and its analog FTY720 significantly reduce lipopolysaccharide (LPS)-induced lung edema and inflammatory lung injury. This study aimed to assess the therapeutic effects of hUC-MSCs combined with FTY720 in an LPS-induced murine model of ALI. Eight-week-old female C57BL/6 mice were divided into a normal control group, an LPS group, an hUC-MSC group, an FTY720 group, and an hUC-MSCs+FTY720 group randomly. At 24 hours post injury, mice were administrated hUC-MSCs via the tail vein and/or intraperitoneally injected with FTY720. We assessed histopathology and histologic scores, lung wet/dry weight ratio, micro-CT scans, and total protein in the bronchoalveolar lavage fluid (BALF), as well as cytokines in the BALF at 48 h post injury. All treatment groups showed higher survival rates and attenuated lung injuries. The hUC-MSCs+FTY720 group yielded better results than hUC-MSCs or FTY720 alone. While the underlying mechanism requires further study, we anticipate that combination therapy of hUC-MSCs and FTY720 could be an effective strategy for ALI.
2017Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury.Int J NeurosciMesenchymal stem cells (MSCs), which are regarded as promising candidates for cell replacement therapies, are able to regulate immune responses after traumatic brain injury (TBI). Secondary immune response following the mechanical injury is the essential factor leading to the necrosis and apoptosis of neural cells during and after the cerebral edema has subsided and there is lack of efficient agent that can mitigate such neuroinflammation in the clinical application. By means of three molecular pathways (prostaglandin E2 (PGE2), tumor-necrosis-factor-inducible gene 6 protein (TSG-6), and progesterone receptor (PR) and glucocorticoid receptors (GR)), MSCs induce the activation of macrophages/microglia and drive them polarize into the M2 phenotypes, which inhibits the release of pro-inflammatory cytokines and promotes tissue repair and nerve regeneration. The regulation of MSCs and the polarization of macrophages/microglia are dynamically changing based on the inflammatory environment. Under the stimulation of platelet lysate (PL), MSCs also promote the release of pro-inflammatory cytokines. Meanwhile, the statue of macrophages/microglia exerts significant effects on the survival, proliferation, differentiation and activation of MSCs by changing the niche of cells. They form positive feedback loops in maintaining the homeostasis after TBI to relieving the secondary injury and promoting tissue repair. MSC therapies have obtained great achievements in several central nervous system disease clinical trials, which will accelerate the application of MSCs in TBI treatment.
2017The genus Achyranthes: A review on traditional uses, phytochemistry, and pharmacological activities.J EthnopharmacolAchyranthes L. (Amaranthaceae), also known as Chaff Flower and Niuxi/, mainly includes two famous medicinal species namely A. bidentata and A. aspera. A. bidentata has been widely used as blood-activating and stasis-resolving medicine for the treatment of various diseases including amenorrhea, dysmenorrhea, lumbago, gonalgia, paraplegia, edema, stranguria, headache, dizziness, odontalgia, oral ulcer, hematemesis, and epistaxis. A. aspera has been widely used to treat various diseases, including gynecological disorder, asthma, ophthalmia, odontalgia, haemorrhoids, and abdominal tumor, and has been applied to difficult labour, wound healing, insect and snake bites.This review aims to provide systematically reorganized information on distributions, botanical characteristics, ethnopharmacology, chemical constituents, qualitative and quantitative analysis, pharmacological activities, and toxicity of Achyranthes species to support their therapeutic potential.The relevant information on Achyranthes species was gathered from worldwide accepted scientific databases via electronic search (Google Scholar, Web of Science, ScienceDirect, ACS Publications, PubMed, Wiley Online Library, SciFinder, CNKI). Information was also obtained from International Plant Names Index, Chinese Pharmacopoeia, Chinese herbal classic books, PhD and MSc dissertations, etc.A comprehensive analysis of literatures obtained through the above- mentioned sources confirms that the ethnomedicinal uses of Achyranthes species are mainly recorded in China, India, Korea, Pakistan, Ethiopia, Kenya, Sri Lanka, Bangladesh, Philippines, etc. Phytochemical investigations revealed that the major bioactive substances of Achyranthes plants are polysaccharides, polypeptides, triterpenoid saponins, and ketosteroids. Achyranthes plants have been shown to not only act on immune system, nervous system, bone metabolism, and reproduction, but also possess a wide range of biological activities, including blood-activating, anti-tumor, anti-inflammation, anti-arthritis, anti-oxidation, anti-aging, wound healing, etc. Toxicity studies indicated that A. bidentata and A. aspera seem non-toxic at the common therapeutic doses.A. bidentata and A. aspera are very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. There are, however, needs for further in-depth studies to confirm some ethnomedicinal uses of Achyranthes plants and to elucidate the scientific connotation of the widely documented property of conducting drug downward of A. bidentata. In addition, other widespread Achyranthes species like A. japonica and A. rubrofusca ought to be studied. Likewise, systematic comparative studies of the chemical constituents of medicinal Achyranthes plants resources with the same local name are also needed. Furthermore, not only should the investigations on the structure-activity relationship of the main bioactive compounds triterpenoid saponins and ketosteroids be carried out, but the pathways of absorption, distribution, metabolism, and excretion ought to be clarified. Last but not least, there is also a need to evaluate the long-term chronic toxicity and acute toxicity in vivo of the main bioactive compounds.
2017Therapeutic Benefits of Mesenchymal Stromal Cells in a Rat Model of Hemoglobin-Induced Hypertensive Intracerebral Hemorrhage.Mol CellsPrevious studies have shown that bone marrow mesenchymal stromal cell (MSC) transplantation significantly improves the recovery of neurological function in a rat model of intracerebral hemorrhage. Potential repair mechanisms involve anti-inflammation, anti-apoptosis and angiogenesis. However, few studies have focused on the effects of MSCs on inducible nitric oxide synthase (iNOS) expression and subsequent peroxynitrite formation after hypertensive intracerebral hemorrhage (HICH). In this study, MSCs were transplanted intracerebrally into rats 6 hours after HICH. The modified neurological severity score and the modified limb placing test were used to measure behavioral outcomes. Blood-brain barrier disruption and neuronal loss were measured by zonula occludens-1 (ZO-1) and neuronal nucleus (NeuN) expression, respectively. Concomitant edema formation was evaluated by H&E staining and brain water content. The effect of MSCs treatment on neuroinflammation was analyzed by immunohistochemical analysis or polymerase chain reaction of CD68, Iba1, iNOS expression and subsequent peroxynitrite formation, and by an enzyme-linked immunosorbent assay of pro-inflammatory factors (IL-1β and TNF-α). The MSCs-treated HICH group showed better performance on behavioral scores and lower brain water content compared to controls. Moreover, the MSC injection increased NeuN and ZO-1 expression measured by immunochemistry/immunofluorescence. Furthermore, MSCs reduced not only levels of CD68, Iba1 and pro-inflammatory factors, but it also inhibited iNOS expression and peroxynitrite formation in perihematomal regions. The results suggest that intracerebral administration of MSCs accelerates neurological function recovery in HICH rats. This may result from the ability of MSCs to suppress inflammation, at least in part, by inhibiting iNOS expression and subsequent peroxynitrite formation.
2017Therapeutic Prospective of Infused Allogenic Cultured Mesenchymal Stem Cells in Traumatic Brain Injury Mice: A Longitudinal Proton Magnetic Resonance Spectroscopy Assessment.Stem Cells Transl MedImproved therapeutic assessment of experimental traumatic brain injury (TBI), using mesenchymal stem cells (MSCs), would immensely benefit its therapeutic management. Neurometabolite patterns at injury site, measured with proton magnetic resonance spectroscopy (1H-MRS) after MSCs transplantation, may serve as a bio-indicator of the recovery mechanism. This study used in vivo magnetic resonance imaging and 1H-MRS to evaluate the therapeutic prospects of implanted MSCs at injury site in experimental mice longitudinally up to 21 days. Negative tissue contrast and cytotoxic edema formation were observed in susceptibility-based contrast (T2*) and an apparent diffusion coefficient map, respectively. Lesion site showed decreased N-acetylaspartate, total choline, myo-inositol, total creatine, glutamate-glutamine complex, and taurine neurometabolic concentrations by 1H-MRS investigation. There was a considerable decrease in locomotor activity, depression index, and cognitive index after TBI. It may, therefore, be inferred that MSC transplantation prompted recovery by decreasing negative signals and edema, restoring metabolites to baseline concentrations, and enhancing behavioral activity. Overall findings support the potential of MSC transplantation for the enhancement of endogenous neuroprotective responses, which may provide future clinical applications for translating laboratory research into therapeutic clinical advances. Stem Cells Translational Medicine 2017;6:316-329.
2016Regulation of S1P receptors and sphingosine kinases expression in acute pulmonary endothelial cell injury.PeerJAcute lung injury and acute respiratory distress syndrome (ALI/ARDS) is a severe clinical syndrome with mortality rate as high as 30-40%. There is no treatment yet to improve pulmonary endothelial barrier function in patients with severe pulmonary edema. Developing therapies to protect endothelial barrier integrity and stabilizing gas exchange is getting more and more attention. Sphingosine-1-phosphate (S1P) is able to enhance the resistance of endothelial cell barrier. S1P at physiological concentrations plays an important role in maintaining endothelial barrier function. Proliferation, regeneration and anti-inflammatory activity that mesenchymal stem cells (MSCs) exhibit make it possible to regulate the homeostatic control of S1P.By building a pulmonary endothelial cell model of acute injury, we investigated the regulation of S1P receptors and sphingosine kinases expression by MSCs during the treatment of acute lung injury using RT-PCR, and investigated the HPAECs Micro-electronics impedance using Real Time Cellular Analysis.It was found that the down-regulation of TNF- expression was more significant when MSC was used in combination with S1P. The combination effection mainly worked on S1PR2, S1PR3 and SphK2. The results show that when MSCs were used in combination with S1P, the selectivity of S1P receptors was increased and the homeostatic control of S1P concentration was improved through regulation of expression of S1P metabolic enzymes.The study found that, as a potential treatment, MSCs could work on multiple S1P related genes simultaneously. When it was used in combination with S1P, the expression regulation result of related genes was not simply the superposition of each other, but more significant outcome was obtained. This study establishes the experimental basis for further exploring the efficacy of improving endothelial barrier function in acute lung injury, using MSCs in combination with S1P and their possible synergistic mechanism.
2016Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia.Mol Ther Methods Clin DevNumerous clinical trials are utilizing mesenchymal stem cells (MSC) to treat critical limb ischemia, primarily for their ability to secrete signals that promote revascularization. These cells have demonstrated clinical safety, but their efficacy has been limited, possibly because these paracrine signals are secreted at subtherapeutic levels. In these studies the combination of cell and gene therapy was evaluated by engineering MSC with a lentivirus to overexpress vascular endothelial growth factor (VEGF). To achieve clinical compliance, the number of viral insertions was limited to 1-2 copies/cell and a constitutive promoter with demonstrated clinical safety was used. MSC/VEGF showed statistically significant increases in blood flow restoration as compared with sham controls, and more consistent improvements as compared with nontransduced MSC. Safety of MSC/VEGF was assessed in terms of genomic stability, rule-out tumorigenicity, and absence of edema or hemangiomas in vivo. In terms of retention, injected MSC/VEGF showed a steady decline over time, with a very small fraction of MSC/VEGF remaining for up to 4.5 months. Additional safety studies completed include absence of replication competent lentivirus, sterility tests, and absence of VSV-G viral envelope coding plasmid. These preclinical studies are directed toward a planned phase 1 clinical trial to treat critical limb ischemia.
2016Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats.J Vet SciSevere acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchlorate (1 × 10⁷ cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs.
2016Mesenchymal stem cells enhance lung recovery after injury, shock, and chronic stress.SurgeryNormal lung healing is impaired when lung contusion (LC) is followed by hemorrhagic shock (HS), and chronic stress (CS). Mesenchymal stem cells (MSCs) are immunomodulatory, pluripotent cells that are under investigation for use in wound healing and tissue regeneration. We hypothesized that treatment with MSCs can reverse the impaired healing seen after LC combined with HS and CS (LCHS/CS).Male Sprague-Dawley rats (n = 6/group) underwent LCHS with or without a single intravenous dose of 5 × 10(6) Sprague-Dawley rat MSCs after resuscitation. Thereafter, rats were subjected to 2 hours of CS daily on days 1-6 and were humanely killed on day 7. Lung histology was scored according to a well-established lung injury score (LIS) that included interstitial and pulmonary edema, alveolar integrity, and inflammatory cells. Scoring ranges from 0 (normal lung) to 11 (most severely injured). Whole blood was analyzed for the presence of CD4(+)CD25(+)FoxP3(+) T-regulatory cells (Treg) by flow cytometry.Seven days after isolated LC, LIS had returned to 0.8 ± 0.4; however, after LCHS/CS healing is significantly delayed (7.2 ± 2.2; P < .05). Addition of MSC to LCHS/CS decreased LIS to 2.0 ± 1.3 (P < .05) and decreased all subgroup scores (inflammatory cells, interstitial and pulmonary edema, and alveolar integrity) significantly compared with LCHS/CS (P < .05). The percentage of Tregs found in the peripheral blood of animals undergoing LCHS/CS did not change from LC alone (10.5 ± 3.3% vs 6.7 ± 1.7%; P > .05). Treatment with MSCs significantly increased the Treg population compared with LCHS/CS alone (11.7 ± 2.7% vs 6.7 ± 1.7%; P < .05) CONCLUSION: In this model, severe impairment of wound healing observed 1 week after LCHS/CS is reversed by a single treatment with MSCs immediately after resuscitation. This improvement in lung healing is associated with a decrease in the number of inflammatory cells and lung edema and a significant increase in peripheral Tregs. Further study into the timing of administration and mechanisms by which cell-based therapy using MSCs modulate the immune system and improve wound healing is warranted.
2016Propranolol and Mesenchymal Stromal Cells Combine to Treat Traumatic Brain Injury.Stem Cells Transl MedMore than 6.5 million patients are burdened by the physical, cognitive, and psychosocial deficits associated with traumatic brain injury (TBI) in the U.S. Despite extensive efforts to develop neuroprotective therapies for this devastating disorder, there have been no successful outcomes in human clinical trials to date. Retrospective studies have shown that β-adrenergic receptor blockers, specifically propranolol, significantly decrease mortality of TBI through mechanisms not yet fully elucidated but are thought to counterbalance a hyperadrenergic state resulting from a TBI. Conversely, cellular therapies have been shown to improve long-term behavior following TBI, likely by reducing inflammation. Given the nonredundancy in their therapeutic mechanisms, we hypothesized that a combination of acute propranolol followed by mesenchymal stem cells (MSCs) isolated from human bone marrow would have additive effects in treating a rodent model of TBI. We have found that the treatments are well-tolerated individually and in combination with no adverse events. MSCs decrease BBB permeability at 96 hours after injury, inhibit a significant accumulation of activated microglia/macrophage in the thalamic region of the brain both short and long term, and enhance neurogenesis short term. Propranolol decreases edema and reduces the number of fully activated microglia at 7 days and the number of semiactivated microglia at 120 days. Combinatory treatment improved cognitive and memory functions 120 days following TBI. Therefore, the results here suggest a new, efficacious sequential treatment for TBI may be achieved using the β-blocker propranolol followed by MSC treatment.Despite continuous efforts, traumatic brain injury (TBI) remains the leading cause of death and disability worldwide in patients under the age of 44. In this study, an animal model of moderate-severe TBI was treated with an acute dose of propranolol followed by a delayed dose of human mesenchymal stem cells (MSCs), resulting in improved short- and long-term measurements. These results have direct translational application. They reinforce the inevitable clinical trial of MSCs to treat TBI by demonstrating, among other benefits, a notable decrease in chronic neuroinflammation. More importantly, these results demonstrate that MSCs and propranolol, which is increasingly being used clinically for TBI, are compatible treatments that improve overall outcome.
2015Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury.Intensive Care Med ExpThe potential for mesenchymal stem cells (MSCs) to reduce the severity of experimental lung injury has been established in several pre-clinical studies. We have recently demonstrated that MSCs, and MSC-secreted factors (secretome), enhance lung repair and regeneration at 48 h following ventilation-induced lung injury (VILI). We wished to determine the potential for MSC therapy to exert beneficial effects in the early recovery phase following VILI when ongoing injury coexists with processes of repair, and to compare the efficacy of MSC therapy to the use of the secretome alone.Male Sprague-Dawley rats were anesthetized, oro-tracheally intubated, and subjected to high stretch mechanical ventilation until lung compliance had declined by 50 % of baseline. Animals were then weaned from mechanical ventilation, and anesthesia discontinued. Once awake and spontaneously ventilating, animals received an intravenous injection of either rodent MSCs (10 million/kg), MSC-conditioned medium, fibroblasts (10 million/kg), or vehicle. Thereafter, the animals were allowed to recover and the extent of lung injury/repair was determined after 4 h.Treatment with MSCs diminished injury and enhanced recovery following VILI to a greater extent compared to MSC-conditioned medium, with fibroblasts proving ineffective. MSCs, but not their conditioned medium, attenuated indices of lung injury including oxygenation, respiratory compliance, and lung edema. Total lung water as assessed by wet:dry ratio, bronchoalveolar lavage total inflammatory cell, neutrophil counts, and alveolar IL-6 concentrations were reduced in the animals that received MSC therapy.The immunomodulating and/or reparative effect of MSCs is evident early after VILI in this model. MSC-conditioned medium was not as effective as the cells themselves in diminishing injury and restoring lung structure and function.
2016Injection of Dental Pulp Stem Cells Promotes Healing of Damaged Bladder Tissue in a Rat Model of Chemically Induced Cystitis.Cell TransplantDental pulp stem cells (DPSCs) are reported as sources of mesenchymal stem cells (MSCs). MSCs are used as cell therapy options for various diseases. The present study examined the healing effects of DPSC injection on damaged bladder tissue in a chemically induced cystitis rat model. Cystitis was induced by hydrochloride injection into the bladder of female F344/NSlc rats. On the following day, DPSCs suspended in phosphate-buffered saline (PBS) were injected into the bladder and maintained for 1 h (DPSC injection group), while PBS alone was injected as the standard for comparison (PBS injection group). After 2 days following injection, considerable submucosal edema, vascular structure destruction, hemorrhage, and inflammatory cell invasion were observed both in the DPSC and PBS injection groups, with no difference in their degree of submucosal edema and hemorrhage. Six days after injection, vascular structure regeneration was observed in both groups; however, unlike the DPSC injection group, the PBS injection group showed traces of submucosal edema and hemorrhage. These results correlated with tissue concentrations of myeloperoxidase (MPO) and the inflammatory cytokines IL-1β, IL-6, and TNF-α. Furthermore, the intercontraction interval was prolonged, and the frequency of nociceptive behaviors was reduced in the DPSC injection group compared with the PBS injection group. DPSCs were found on the bladder epithelium until day 3 after injection. In the DPSC-conditioned media (CM), the trophic factors FGF-2, VEGF, and the C-C and C-X-C families of chemokines were detected. The results of DPSC injection into the cystitis rat model suggested that the injected cells promote the healing of the damaged bladder tissue by exerting various trophic effects while localizing on the bladder epithelium and that MSC injection is a potential novel therapy for interstitial cystitis/painful bladder syndrome.
2015Mesenchymal stem cells increase T-regulatory cells and improve healing following trauma and hemorrhagic shock.J Trauma Acute Care SurgRodent lungs undergo full histologic recovery within 1 week following unilateral lung contusion (LC). However, when LC is followed by hemorrhagic shock (HS), healing is impaired. We hypothesize that the intravenous administration of mesenchymal stem cells (MSCs) in animals undergoing combined LC followed by HS (LCHS) will improve wound healing.Male Sprague-Dawley rats (n = 5-6 per group) were subjected to LCHS with or without the injection of a single intravenous dose of 5 × 10 MSCs following return of shed blood after HS. Rats were sacrificed 7 days following injury. Flow cytometry was used to determine the T-regulatory cell (Treg) population in peripheral blood. Lung histology was graded using a well-established lung injury score (LIS). Components of the LIS include average inflammatory cells per high-power field over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity, with total scores ranging from 0 to 11. Data were analyzed by analysis of variance followed by Tukey's multiple comparison test, expressed as mean (SD). p < 0.05 was considered significant.Seven days following isolated LC, animals demonstrated lung healing with an LIS unchanged from naive. The addition of HS resulted in a persistently elevated LIS score, whereas the addition of MSCs to LCHS decreased the LIS score back to naive levels. The change in LIS was driven by a significant decrease in edema scores. In rats undergoing LC alone, 10.5% (3.3%) of CD4 cells were Tregs. The addition of HS caused no significant change in Treg population (9.3% [0.7%]), whereas LCHS + MSC significantly increased the population to 18.2% (6.8%) in peripheral blood (p < 0.05 vs. LCHS).Impaired wound healing following trauma and HS is improved by a single dose of MSCs given immediately after injury. This enhanced healing is associated with an increase in the Treg population and a significant decrease in lung edema score as compared with animals undergoing LCHS. Further study into the role of Tregs in MSC-mediated wound healing is warranted.
2015Study of Bone Marrow and Embryonic Stem Cell-Derived Human Mesenchymal Stem Cells for Treatment of Escherichia coli Endotoxin-Induced Acute Lung Injury in Mice.Stem Cells Transl Med: Mesenchymal stem cells (MSCs) can be derived from multiple tissue sources. However, the optimal source of MSCs for cell-based therapy for acute lung injury (ALI) is unclear. In the present experiments, we studied bone marrow (BM)-derived and embryonic stem cell-derived human MSC (ES-MSCs) as a therapeutic agent in Escherichia coli endotoxin-induced ALI in mice. We hypothesized that ES-MSCs would be more potent than BM-MSCs owing to its more primitive source of origin. ALI was induced by the intratracheal instillation of endotoxin at 4 mg/kg into 10-12-week-old C57BL/6 mice with or without BM-MSCs, ES-MSCs, or normal human lung fibroblasts as a cellular control. Compared with the endotoxin-injured mice at 48 hours, the administration of ES-MSCs provided results similar to those of BM-MSCs, significantly reducing the influx of white blood cells and neutrophils and decreasing the secretion of the inflammatory cytokines, macrophage inflammatory protein-2 and tumor necrosis factor-α, in the injured alveolus. BM-MSCs also reduced extravascular lung water, a measure of pulmonary edema, by 60% and the total protein levels, a measure of lung permeability, by 66%. However, surprisingly, ES-MSCs did not have these protective effects, which was partially explained by the increased secretion of matrix metallopeptidase 9 by ES-MSCs, an enzyme known to increase lung protein permeability. In conclusion, both BM-MSCs and ES-MSCs markedly decreased endotoxin-induced inflammation. However, ES-MSCs did not show any beneficial effect on reducing pulmonary edema and lung protein permeability compared with BM-MSCs, suggesting that not all MSCs behave in a similar fashion. Our results highlight the need perhaps for a disease-specific potency assay for MSCs.To determine the optimal source of mesenchymal stem cells (MSCs) for cell-based therapy for acute lung injury, bone marrow (BM)- and embryonic stem cell-derived human MSC (ES-MSCs) were compared as therapeutic agents for Escherichia coli endotoxin-induced lung injury in mice. ES-MSCs behaved similarly to BM-MSCs by markedly decreasing the inflammatory response induced by endotoxin. However, unlike BM-MSCs, ES-MSCs provided no protective effects against increasing lung water and protein permeability, in part because of an increase in expression of matrix metallopeptidase 9 by ES-MSCs. In patients with acute respiratory distress syndrome, impaired alveolar fluid clearance (i.e., no resolution of pulmonary edema fluid) has been associated with higher mortality rates. Although ES-MSCs might ultimately be found to have properties superior to those of BM-MSCs, such as for immunomodulation, these results highlight the need for a disease-specific potency assay for stem cell-based therapy.
2015Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria.Stem Cell Res TherMalaria is the most relevant parasitic disease worldwide, and still accounts for 1 million deaths each year. Since current antimalarial drugs are unable to prevent death in severe cases, new therapeutic strategies have been developed. Mesenchymal stromal cells (MSC) confer host resistance against malaria; however, thus far, no study has evaluated the therapeutic effects of MSC therapy on brain and distal organ damage in experimental cerebral malaria.Forty C57BL/6 mice were injected intraperitoneally with 5 × 10(6) Plasmodium berghei-infected erythrocytes or saline. After 24 h, mice received saline or bone marrow (BM)-derived MSC (1x10(5)) intravenously and were housed individually in metabolic cages. After 4 days, lung and kidney morphofunction; cerebrum, spleen, and liver histology; and markers associated with inflammation, fibrogenesis, and epithelial and endothelial cell damage in lung tissue were analyzed.In P. berghei-infected mice, BM-MSCs: 1) reduced parasitemia and mortality; 2) increased phagocytic neutrophil content in brain, even though BM-MSCs did not affect the inflammatory process; 3) decreased malaria pigment detection in spleen, liver, and kidney; 4) reduced hepatocyte derangement, with an increased number of Kupffer cells; 5) decreased kidney damage, without effecting significant changes in serum creatinine levels or urinary flow; and 6) reduced neutrophil infiltration, interstitial edema, number of myofibroblasts within interstitial tissue, and collagen deposition in lungs, resulting in decreased lung static elastance. These morphological and functional changes were not associated with changes in levels of tumor necrosis factor-α, keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8), or interferon-γ, which remained increased and similar to those of P. berghei animals treated with saline. BM-MSCs increased hepatocyte growth factor but decreased VEGF in the P. berghei group.BM-MSC treatment increased survival and reduced parasitemia and malaria pigment accumulation in spleen, liver, kidney, and lung, but not in brain. The two main organs associated with worse prognosis in malaria, lung and kidney, sustained less histological damage after BM-MSC therapy, with a more pronounced improvement in lung function.
2015The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6.J NeuroinflammationMesenchymal stem cells (MSCs) are well known having beneficial effects on intracerebral hemorrhage (ICH) in previous studies. The therapeutic mechanisms are mainly to investigate proliferation, differentiation, and immunomodulation. However, few studies have used MSCs to treat blood-brain barrier (BBB) leakage after ICH. The influence of MSCs on the BBB and its related mechanisms were investigated when MSCs were transplanted into rat ICH model in this study.Adult male Sprague-Dawley (SD) rats were randomly divided into sham-operated group, PBS-treated (ICH + PBS) group, and MSC-treated (ICH + MSC) group. ICH was induced by injection of IV collagenase into the rats' brains. MSCs were transplanted intravenously into the rats 2 h after ICH induction in MSC-treated group. The following factors were compared: inflammation, apoptosis, behavioral changes, inducible nitric oxide synthase (iNOS), matrix metalloproteinase 9 (MMP-9), peroxynitrite (ONOO(-)), endothelial integrity, brain edema content, BBB leakage, TNF-α stimulated gene/protein 6 (TSG-6), and nuclear factor-κB (NF-κB) signaling pathway.In the ICH + MSC group, MSCs decreased the levels of proinflammatory cytokines and apoptosis, downregulated the density of microglia/macrophages and neutrophil infiltration at the ICH site, reduced the levels of iNOS and MMP-9, attenuated ONOO(-) formation, and increased the levels of zonula occludens-1 (ZO-1) and claudin-5. MSCs also improved the degree of brain edema and BBB leakage. The protective effect of MSCs on the BBB in ICH rats was possibly invoked by increased expression of TSG-6, which may have suppressed activation of the NF-κB signaling pathway. The levels of iNOS and ONOO(-), which played an important role in BBB disruption, decreased due to the inhibitory effects of TSG-6 on the NF-κB signaling pathway.Our results demonstrated that intravenous transplantation of MSCs decreased the levels of ONOO(-) and degree of BBB leakage and improved neurological recovery in a rat ICH model. This strategy may provide a new insight for future therapies that aim to prevent breakdown of the BBB in patients with ICH and eventually offer therapeutic options for ICH.
2015Can mesenchymal stem cells reverse chronic stress-induced impairment of lung healing following traumatic injury?J Trauma Acute Care SurgOne week following unilateral lung contusion (LC), rat lungs demonstrate full histologic recovery. When animals undergo LC plus the addition of chronic restraint stress (CS), wound healing is significantly delayed. Mesenchymal stem cells (MSCs) are pluripotent cells capable of immunomodulation, which have been the focus of much research in wound healing and tissue regeneration. We hypothesize that the addition of MSCs will improve wound healing in the setting of CS.Male Sprague-Dawley rats (n = 6-7 per group) were subjected to LC/CS with or without the injection of MSCs. MSCs were given as a single intravenous dose of 5 × 10 cells in 1 mL Iscove's Modified Dulbecco's Medium at the time of LC. Rats were subjected to 2 hours of restraint stress on Days 1 to 6 following LC. Seven days following injury, rats were sacrificed, and the lungs were examined for histologic evidence of wound healing using a well-established histologic lung injury score (LIS) to grade injury. LIS examines inflammatory cells/high-power field (HPF) averaged over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity, with scores ranging from 0 (normal) to 11 (highly damaged). Peripheral blood was analyzed by flow cytometry for the presence of T-regulatory (C4CD25FoxP3) cells. Data were analyzed by analysis of variance followed by Tukey's multiple comparison test, expressed as mean (SD).As previously shown, 7 days following isolated LC, LIS has returned to 0.83 (0.41), with a subscore of zero for inflammatory cells/HPF. The addition of CS results in an LIS of 4.4 (2.2), with a subscore of 1.9 (0.7) for inflammatory cells/HPF. Addition of MSC to LC/CS decreased LIS to 1.7 (0.8), with a subscore of zero for inflammatory cells/HPF. Furthermore, treatment of animals undergoing LC/CS with MSCs increased the %T-regulatory cells by 70% in animals undergoing LC/CS alone (12.9% [2.4]% vs. 6.2% [1.3%]).Stress-induced impairment of wound healing is reversed by the addition of MSCs given at the time of injury in this rat LC model. This improvement in lung healing is associated with a decrease in the number of inflammatory cells and an increase in the number of T-regulatory cells. Further study into the mechanisms by which MSCs hasten wound healing is warranted.
2015Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.PLoS OneThe effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice.
2014Mesenchymal stem cell pretreatment of non-heart-beating-donors in experimental lung transplantation.J Cardiothorac SurgLung transplantation (LTx) is still limited by organ shortage. To expand the donor pool, lung retrieval from non-heart-beating donors (NHBD) was introduced into clinical practice recently. However, primary graft dysfunction with inactivation of endogenous surfactant due to ischemia/reperfusion-injury is a major cause of early mortality. Furthermore, donor-derived human mesenchymal stem cell (hMSC) expansion and fibrotic differentiation in the allograft results in bronchiolitis obliterans syndrome (BOS), a leading cause of post-LTx long-term mortality. Therefore, pretreatment of NHBD with recipient-specific bone-marrow-(BM)-derived hMSC might have the potential to both improve the postischemic allograft function and influence the long-term development of BOS by the numerous paracrine, immunomodulating and tissue-remodeling properties especially on type-II-pneumocytes of hMSC.Asystolic pigs (n = 5/group) were ventilated for 3 h of warm ischemia (groups 2-4). 50x106 mesenchymal-stem-cells (MSC) were administered in the pulmonary artery (group 3) or nebulized endobronchially (group 4) before lung preservation. Following left-lung-transplantation, grafts were reperfused, pulmonary-vascular-resistance (PVR), oxygenation and dynamic-lung-compliance (DLC) were monitored and compared to control-lungs (group 2) and sham-controls (group 1). To prove and localize hMSC in the lung, cryosections were counter-stained. Intra-alveolar edema was determined stereologically. Statistics comprised ANOVA with repeated measurements.Oxygenation (p = 0.001) and PVR (p = 0.009) following endovascular application of hMSC were significantly inferior compared to Sham controls, whereas DLC was significantly higher in endobronchially pretreated lungs (p = 0.045) with overall sham-comparable outcome regarding oxygenation and PVR. Stereology revealed low intrapulmonary edema in all groups (p > 0.05). In cryosections of both unreperfused and reperfused grafts, hMSC were localized in vessels of alveolar septa (endovascular application) and alveolar lumen (endobronchial application), respectively.Preischemic deposition of hMSC in donor lungs is feasible and effective, and endobronchial application is associated with significantly better DLC as compared to sham controls. In contrast, transvascular hMSC delivery results in inferior oxygenation and PVR. In the long term perspective, due to immunomodulatory, paracrine and tissue-remodeling effects on epithelial and endothelial restitution, an endobronchial NHBD allograft-pretreatment with autologous mesenchymal-stem-cells to attenuate limiting bronchiolitis-obliterans-syndrome in the long-term perspective might be promising in clinical lung transplantation. Subsequent work with chronic experiments is initiated to further elucidate this important field.
2014Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia.Stem CellsCerebral ischemia upregulates aquaporin-4 expression, increases blood-brain barrier (BBB) permeability, and induces brain edema. Mesenchymal stem cells (MSCs) can repress inflammatory cytokines and show great potential for ischemic stroke therapy. However, the effect of MSCs regarding the protection of ischemia-induced BBB break down is unknown.We test whether MSCs therapy protects BBB integrity and explore the molecular mechanisms of aquaporin-4 on BBB integrity.Two hundred and twenty-eight adult CD1 male mice underwent 90 minutes transient middle cerebral artery occlusion and received 2 × 10(5) MSCs intracranial transplantation. The neurological severity score was improved and both ischemia-induced brain edema and BBB leakage were reduced in MSC-treated mice. MSCs therapy reduced astrocyte apoptosis and inhibited ischemia-induced aquaporin-4 upregulation. In addition, small-interfering RNA knockdown of aquaporin-4 after cerebral ischemia effectively reduced aquaporin-4 expression, brain edema, BBB leakage, and astrocyte apoptosis. Conditional medium from lipopolysaccharide (LPS)-activated microglia enhanced aquaporin-4 expression, p38 and JNK phosphorylation, and apoptosis of cultured astrocytes. MSC treatment reduced the expression of inflammatory cytokines in LPS-activated microglia, and subsequently reduced aquaporin-4 expression and apoptosis of astrocytes. Knockdown of aquaporin-4 in cultured astrocytes also reduced apoptosis. Treatment with p38 and JNK inhibitors showed that p38, but not the JNK signaling pathway, was responsible for the aquaporin-4 upregulation.MSCs protected BBB integrity by reducing the apoptosis of astrocytes after ischemic attack, which was due to the attenuation of inflammatory response and downregulation of aquaporin-4 expression via p38 signaling pathway.
2014Mesenchymal stem cells: new players in retinopathy therapy.Front Endocrinol (Lausanne)Retinopathies in human and animal models have shown to occur through loss of pericytes resulting in edema formation, excessive immature retinal angiogenesis, and neuronal apoptosis eventually leading to blindness. In recent years, the concept of regenerating terminally differentiated organs with a cell-based therapy has evolved. The cells used in these approaches are diverse and include tissue-specific endogenous stem cells, endothelial progenitor (EPC), embryonic stem cells, induced pluripotent stem cells (iPSC) and mesenchymal stem cells (MSC). Recently, MSC derived from the stromal fraction of adipose tissue have been shown to possess pluripotent differentiation potential in vitro. These adipose stromal cells (ASC) have been differentiated in a number of laboratories to osteogenic, myogenic, vascular, and adipocytic cell phenotypes. In vivo, ASC have been shown to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. Furthermore, these cells either in paracrine mode or physical proximity with endothelial cells, promoted angiogenesis, improved ischemia-reperfusion, protected from myocardial infarction, and were neuroprotective. Owing to the easy isolation procedure and abundant supply, fat-derived ASC are a more preferred source of autologous mesenchymal cells compared to bone marrow MSC. In this review, we present evidence that these readily available ASC from minimally invasive liposuction will facilitate translation of ASC research into patients with retinal diseases in the near future.
2014Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli-induced acute lung injury in mice.CytotherapyStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow-derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli-induced acute lung injury (ALI) in mice by controlling the oxidative stress status.Eighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli-induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.Pre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.Systemic bone marrow-derived MSC injection was effective in modulating the oxidative stress status in E coli-induced acute lung injury in mice.
2013Therapeutic effect of human umbilical cord-derived mesenchymal stem cells in rat severe acute pancreatitis.Int J Clin Exp PatholTo investigate the therapeutic effect of umbilical cord-derived mesenchymal stem cells (UC-MSCs) on rat severe acute pancreatitis (SAP).Rats were randomly divided into three groups (n = 15 per group): control group, SAP group, and SAP+MSCs group. SAP was established by retrograde pancreatic duct injection of 3% sodium taurocholate. In SAP+MSCs group, UC-MSCs at 1 × 10(7) cells/kg were injected via the tail vein 12 h after SAP. Rats (n = 5 per group) were sacrificed on days 1, 3 and 5, and the blood and pancreatic tissues were collected. The levels of serum amylase, lipase, inflammatory cytokines, and anti-inflammatory cytokines were determined. Pathological changes of the pancreas (HE staining) and apoptotic acinar cells (TUNEL staining) were observed under light microscope.The levels of serum amylase and lipase in SAP group were significantly higher than those in control group (P<0.05). The pancreas in SAP group showed significantly massive edema, inflammation, hemorrhage and necrosis when compared with control group. There were numerous TUNEL-positive apoptotic acinar cells after SAP. However, in SAP+MSCs group, the levels of serum amylase were significantly reduced on days 1, 3, and 5 after MSC transplantation (P<0.01). The serum lipase level in SAP+MSCs group was significantly lower than that in SAP group on days 3 and 5 (P<0.01). The edema formation, inflammatory cell infiltration, hemorrhage, and necrosis were reduced significantly attenuated in SAP+MSCs group as compared to SAP group (P<0.05). MSCs significantly reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), but increased the levels of anti-inflammatory cytokines (IL-4 and IL-10) in SAP rats. The number of TUNEL-positive acinar cells was significantly reduced on days 3 and 5 after MSCs transplantation (P<0.01).Transplantation of UC-MSCs significantly inhibits inflammation and decreases pancreatic injury secondary to SAP.
2014Mesenchymal stromal cells versus betamethasone can dampen disease activity in the collagen arthritis mouse model.Clin Exp MedThe objective of this study was to compare between the effects of mesenchymal stem cell (MSC) and betamethasone in the treatment of rheumatoid arthritis. Sixty male albino mice were divided equally into 2 models. They are MSC model, group 1: saline control group, group 2: collagen-induced arthritis (CIA), group 3: induced arthritis mice that received intravenous injection of MSCs. Betamethasone model, group 1: phosphate buffer saline, group 2: CIA, group 3: induced arthritis mice that received intraperitoneal injection of betamethasone. Mice arthritis models were assessed by clinical paw edema and X-rays, at the proper time of sacrefaction, tissues were collected and examined using real-time PCR, and synovial tissue was examined for interleukin-10, tumor necrosis factor α, cartilage oligomeric matrix protein and matrix metalloproteinase 3. While serum levels of rheumatoid factor and C-reactive protein were detected by enzyme-linked immunosorbent assay kits. Also blood erythrocyte sedimentation rate was detected. Histopathological, paw edema and PCR results showed improvement in the groups that received MSC compared with the diseased group and the groups which received betamethasone. MSC significantly enhanced the effect of collagen-induced arthritis treatment, which is superior to betamethasone treatment, likely through the modulation of the expression of various cytokines.
2014Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice.Stem CellsWe previously found that human mesenchymal stem cells (MSC) or its conditioned medium restored lung protein permeability and reduced alveolar inflammation following Escherichia coli endotoxin-induced acute lung injury (ALI) in an ex vivo perfused human lung in part through the secretion of soluble factors such as keratinocyte growth factor (KGF). Recently, MSC were found to release microvesicles (MVs) that were biologically active because of the presence of mRNA or miRNA with reparative properties. MVs are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the surface membranes. These studies were designed to determine if MVs released by human bone marrow derived MSCs would be effective in restoring lung protein permeability and reducing inflammation in E. coli endotoxin-induced ALI in C57BL/6 mice. The intratracheal instillation of MVs improved several indices of ALI at 48 hours. Compared to endotoxin-injured mice, MVs reduced extravascular lung water by 43% and reduced total protein levels in the bronchoalveolar lavage (BAL) fluid by 35%, demonstrating a reduction in pulmonary edema and lung protein permeability. MVs also reduced the influx of neutrophils and macrophage inflammatory protein-2 levels in the BAL fluid by 73% and 49%, respectively, demonstrating a reduction in inflammation. KGF siRNA-pretreatment of MSC partially eliminated the therapeutic effects of MVs released by MSCs, suggesting that KGF protein expression was important for the underlying mechanism. In summary, human MSC-derived MVs were therapeutically effective following E. coli endotoxin-induced ALI in mice in part through the expression of KGF mRNA in the injured alveolus.
2014Effects and safety of allogenic mesenchymal stem cell intravenous infusion in active ankylosing spondylitis patients who failed NSAIDs: a 20-week clinical trial.Cell TransplantOur objective was to evaluate the feasibility, safety, and efficacy of intravenous (IV) infusion of allogenic mesenchymal stem cells (MSCs) in ankylosing spondylitis (AS) patients who are refractory to or cannot tolerate the side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). AS patients enrolled in this study received four IV infusions of MSCs on days 0, 7, 14, and 21. The percentage of ASAS20 responders (the primary endpoint) at the fourth week and the mean ASAS20 response duration (the secondary endpoint) were used to assess treatment response to MSC infusion and duration of the therapeutic effects. Ankylosing Spondylitis Disease Activity Score Containing C-reactive Protein (ASDAS-CRP) and other preestablished evaluation indices were also adopted to evaluate the clinical effects. Magnetic resonance imaging (MRI) was performed to detect changes of bone marrow edema in the spine. The safety of this treatment was also evaluated. Thirty-one patients were included, and the percentage of ASAS20 responders reached 77.4% at the fourth week, and the mean ASAS20 response duration was 7.1 weeks. The mean ASDAS-CRP score decreased from 3.6 ± 0.6 to 2.4 ± 0.5 at the fourth week and then increased to 3.2 ± 0.8 at the 20th week. The average total inflammation extent (TIE) detected by MRI decreased from 533,482.5 at baseline to 480,692.3 at the fourth week (p > 0.05) and 400,547.2 at the 20th week (p < 0.05). No adverse effects were noted. IV infusion of MSCs is a feasible, safe, and promising treatment for patients with AS.
2012Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model.World J Stem CellsTo investigate the effect of human umbilical cord stem cells, both mesenchymal and hematopoietic (CD34+), in the treatment of arthritis.Mesenchymal stem cells (MSCs) and hematopoietic (CD34+) stem cells (HSC) were isolated from human umbilical cord blood obtained from the umbilical cord of healthy pregnant donors undergoing full-term normal vaginal delivery. MSC, HSC, methotrexate (MTX) and sterile saline were injected intra-articularly into the rat hindpaw with complete freunds adjuvant (CFA) induced arthritis after the onset of disease (day 34), when arthritis had become well established (arthritis score ≥ 2). Arthritic indices were evaluated and the levels of interleukin (IL)-1, tumor necrosis factor (TNF)-α and interferon (IFN)-γ and anti-inflammatory cytokine IL-10 in serum were determined using enzyme-linked immunosorbent assay. Animals of all groups were sacrificed 34 d after beginning treatment, except positive control (PC) which was sacrificed at 10, 21 and 34 d for microscopic observation of disease progression. We used hematoxylin, eosin and Masson's trichrome stains for histopathological examination of cartilage and synovium.The mean arthritis scores were similar in all groups at 12 and 34 d post immunization, with no statistical significant difference. Upon the injection of stem cells (hematopoietic and mesenchymal), the overall arthritis signs were significantly improved around 21 d after receiving the injection and totally disappeared at day 34 post treatment in MSC group. Mean hindpaw diameter (mm) in the MSC rats was about half that of the PC and MTX groups (P = 0.007 and P = 0.021, respectively) and 0.6 mm less than the HSC group (P = 0.047), as indicated by paw swelling. Associated with these findings, serum levels of TNF-α, IFN-γ and IL-1 decreased significantly in HSC and MSC groups compared to PC and MTX groups (P < 0.05), while the expression of IL-10 was increased. Histopathological examination with H and E stain revealed that the MTX treated group showed significant reduction of leucocytic infiltrate and hypertrophy of the synovial tissue with moderate obliteration of the joint cavity. Stem cells treated groups (both hematopoietic CD34+ and mesenchymal), showed significant reduction in leucocytic infiltrate and hypertrophy of the synovial tissue with mild obliteration of the joint cavity. With Masson's trichrome, stain sections from the PC group showed evidence of vascular edema of almost all vessels within the synovium in nearly all arthritic rats. Vacuoles were also visible in the outer vessel wall. The vessel became hemorrhagic and finally necrotic. In addition, there was extensive fibrosis completely obliterating the joint cavity. The mean color area percentage of collagen in this group was 0.324 ± 0.096, which was significantly increased when compared to the negative control group. The mean color area percentage of collagen in hematopoietic CD34+ and mesenchymal groups was 0.176 ± 0.0137 and 0.174 ± 0.0197 respectively, which showed a marked decrement compared to the PC group, denoting a mild increase in synovial tissue collagen fibers.MSC enhance the efficacy of CFA-induced arthritis treatment, most likely through the modulation of the expression of cytokines and amelioration of pathological changes in joints.
2012[Investigation of the role of mesenchymal stem cells on keratoplasty rejection].Zhonghua Yan Ke Za ZhiTo investigate the effect of mesenchymal stem cells (MSC) on keratoplasty rejection in a rat mode.MSC from bone marrow of Wistar rats was cultured. Corneas of Wistar rats (donors) were transplanted to Lewis rats (recipients). Transplanted rats were randomly divided into A, B, C three groups. Rats in group B were injected with MSC suspended in PBS via the tail vein continually for three days before the surgery, while rats in group C accepted similar MSC transplantation after the surgery. The rats in group A were given the same volume of PBS. Grafts were scored for corneal transparency, edema and extent of neovascularization by slit lamp observation. Expressions of CD(4), CD(8), CD(25) and CD(45) in corneas 10 days after transplantation were examined by immunohistochemistry.The survival time of the corneal grafts in group C [(9.9 ± 0.69) d] was significantly prolonged compared with that of the group A and group B [(11.83 ± 0.54), (16.89 ± 1.91) d] (F = 5.732, P = 0.001, 0.019). Expression level of CD(4), CD(8), CD(25) of the corneal grafts in group C was lower than that of group A and group B (t = 2.477, 2.359, 2.445, P = 0.024, 0.042, 0.030).Post-operative injection of MSCs could inhibit keratoplasty rejection and prolong the corneal allografts survival in a rat model.
2012Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action.Am J Physiol Lung Cell Mol PhysiolMortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.
2012Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats.J Inflamm (Lond)Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs) could ameliorate lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in a rat model.ALI was induced via injection of LPS. Rats were divided into three groups: (1) saline group(control), (2) LPS group, and (3) MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF), and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology.UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO) activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA) production and increased Heme Oxygenase-1 (HO-1) protein production and activity in the lung tissue.UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.
2012Protective effect of transplanted bone marrow-derived mesenchymal stem cells on pancreatitis-associated lung injury in rats.Mol Med RepSevere acute pancreatitis (SAP) is initiated by the premature activation of digestive enzymes within the pancreatic acinar cells, leading to self-digestion and inflammatory responses in pancreatic ductal cells, thus giving rise to systemic inflammatory response syndrome (SIRS). The most common and serious SIRS is pancreatitis-associated lung injury, and inflammatory mediators play an important role in its pathogenesis. Bone marrow-derived mesenchymal stem cells (MSCs) are differentiated into alveolar endothelial cells to replace the damaged alveolar endothelial cells and inhibit inflammatory response in the injured lung tissues. In this study, we aimed to investigate the therapeutic effect of bone marrow-derived MSCs in rats with pancreatitis-associated lung injury. Experimental SAP was induced by a retrograde injection of 5% sodium taurocholate into the biliopancreatic duct of 75 male Sprague-Dawley rats, which were divided into the SAP group (n=25), the MSC group (n=25) and the sham-operated group (n=25) to explore the pathology and function of lung tissues and the regulation of inflammatory mediators. Pulmonary edema was estimated by measuring water content in the lung tissues. Pulmonary myeloperoxidase (MPO) activity was detected using spectrophotometry. Serum amylase was detected using the Automatic Biochemistry Analyzer. Tumor necrosis factor-α (TNF-α) and substance P (SP) mRNA levels were determined by quantitative reverse transcriptase-polymerase chain reaction. Our results showed that serum amylase activity was significantly decreased in the MSC group compared to the SAP group. Pulmonary edema was significantly diminished (p<0.05) in the MSC group compared to the SAP group. Typical acute lung injury was observed in the SAP group, and the pathological changes were mild in the MSC group. The expression of TNF-α and SP mRNA in lung tissue was diminished in the MSC group compared to the SAP group. In conclusion, MSC transplantation attenuates pulmonary edema and inflammation, and reduces the mRNA expression of TNF-α and SP in pancreatitis-associated lung injury.
2012Therapeutic effect of intravenous bone marrow-derived mesenchymal stem cell transplantation on early-stage LPS-induced acute lung injury in mice.Nan Fang Yi Ke Da Xue Xue BaoTo investigate the effect of intravenous bone marrow-derived mesenchymal stem cell (MSC) transplantation for early intervention of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice.Thirty-six mice were randomized into control group, PBS-treated ALI group, and MSC-treated ALI group. In the latter two groups, mouse models of ALI were established by intranasal instillation of LPS, and 1 h later, the 4th passage of MSCs isolated from the bone marrow of mice or PBS were administered via the tail vein. The histological findings, lung wet/dry (W/D) weight ratio, neutrophil count and protein and cytokine contents in the bronchoalveolar lavage fluid (BALF), and myeloperoxidase (MPO) level in the lung tissue were analyzed at 24 h after MSC administration. Engraftment of MSCs in the recipient lung was determined by fluorescent PKH26 staining and flow cytometry.Compared with the control group, PBS-treated ALI group showed significantly higher protein levels, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and neutrophil count in the BALF and MPO content in the lung tissue, with also severe damage of lung histology. MSCs administration significantly reduced the lung W/D weight ratio, the levels of protein, TNF-α, IL-6 and neutrophil count in the BALF and MPO content in the lung tissue, and obviously lessened the lung injury 24 h after the transplantation. MSC administration also significantly increased the level of IL-10 in the BALF.Intravenous MSC transplantation can effectively improve the lung histology, attenuate the inflammatory response, reduce pulmonary edema in the early stage of LPS-induced ALI in mice, and such effects are independent of MSC engraftment in the lungs.
2011Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock.PLoS OneHemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat "fixed volume" model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury.
2011Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions.CytotherapyBACKGROUND AIMS. The use of allogeneic mesenchymal stem cells (MSC) to treat acute equine lesions would greatly expand equine cellular therapy options; however, the safety and antigenicity of these cells have not been well-studied. We hypothesized that equine allogeneic umbilical cord tissue (UCT)-derived MSC would not elicit acute graft rejection or a delayed-type hypersensitivity response when injected intradermally. METHODS. Six Quarterhorse yearlings received 12 intradermal injections (autologous MSC, allogeneic MSC, positive control and negative control, in triplicate) followed by the same series of 12 injections, 3-4 weeks later, at another site. Wheals were measured and palpated at 0.25, 4, 24, 48, 72 h and 7 days post-injection. Biopsies were obtained at 48 and 72 h and 7 days post-injection. Mixed leukocyte reactions were performed 1 week prior to the first injections and 3 weeks after the second injections. RESULTS. There were no adverse local or systemic responses to two intradermal injections of allogeneic MSC. MSC injection resulted in minor wheal formation, characterized by mild dermatitis, dermal edema and endothelial hyperplasia, that fully resolved by 48-72 h. No differences were noted between allogeneic and autologous MSC. The second injection of MSC did not elicit more significant physical or histomorphologic alterations compared with the first MSC injection. Neither allogeneic nor autologous UCT-derived MSC stimulated or suppressed baseline T-cell proliferation in vitro prior to or after two MSC administrations. CONCLUSIONS. Equine allogeneic UCT MSC may be safely administered intradermally on multiple occasions without eliciting a measurable cellular immune response.
2010Bedside ultrasonography of musculoskeletal complications in brain injured patients.J UltrasoundThe aim of this study was to evaluate the role of bedside ultrasonography (US) in early diagnosis of musculoskeletal complications (MSC) of acquired brain injuries, to describe its incidence and US features in a neurorehabilitation setting.All 163 patients admitted in tertiary-level neurorehabilitation unit with diagnosis of stroke or severe brain injury (SBI), with symptoms or signs of musculoskeletal pathology, underwent bedside US.MSC were diagnosed in 51.5%. In 86.9% US clarified diagnosis and/or modified therapeutic approach. Shoulder pain was observed in 27.6%. US showed a shoulder subluxation in 73.3% and a frozen shoulder in 8.8% of painful shoulders. In all the cases rotator cuff abnormalities were noted. Wrist-hand syndrome was observed in 29.4%. US showed mild effusion in wrist joints and tendon sheaths and subcutaneous edema without significant vascularity. Neurogenic heterotopic ossification was observed in 1.8%. US demonstrated the "zone phenomenon" or heterogeneously hypoechoic mass with low resistance vessels within the lesions. Contractures and spasticity were observed in 18.4%. US allowed reliable guidance for Botulinum toxin A injection. Relapsing osteoarthritis and acute arthritis were diagnosed in 15.3% and 7.3% respectively. Patients with MSC had lower Functional Independence Measurement (FIM) and Katz index scores in discharge (p < 0.04 and p < 0.0294 respectively) and more length of hospital stay (p = 0.0024).Musculoskeletal pathology frequently complicates the course of acquired brain injuries and it delays functional recovery. Bedside US is a cheap and sensitive diagnostic tool and it can aid clinicians to define diagnosis and to choose therapeutic approach.
2010Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1.J Biol ChemAcute lung injury is characterized by injury to the lung epithelium that leads to impaired resolution of pulmonary edema and also facilitates accumulation of protein-rich edema fluid and inflammatory cells in the distal airspaces of the lung. Recent in vivo and in vitro studies suggest that mesenchymal stem cells (MSC) may have therapeutic value for the treatment of acute lung injury. Here we tested the ability of human allogeneic mesenchymal stem cells to restore epithelial permeability to protein across primary cultures of polarized human alveolar epithelial type II cells after an inflammatory insult. Alveolar epithelial type II cells were grown on a Transwell plate with an air-liquid interface and injured by cytomix, a combination of IL-1beta, TNFalpha, and IFNgamma. Protein permeability measured by (131)I-labeled albumin flux was increased by 5-fold over 24 h after cytokine-induced injury. Co-culture of human MSC restored type II cell epithelial permeability to protein to control levels. Using siRNA knockdown of potential paracrine soluble factors, we found that angiopoietin-1 secretion was responsible for this beneficial effect in part by preventing actin stress fiber formation and claudin 18 disorganization through suppression of NFkappaB activity. This study provides novel evidence for a beneficial effect of MSC on alveolar epithelial permeability to protein.
2010Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis.Inflamm ResThe objective of this study was to investigate the efficacy of mesenchymal stem cell (MSC) in the treatment of arthritis.Mesenchymal stem cells were injected intravenously into mice with collagen-induced arthritis (CIA). Arthritic indexes were evaluated, and the levels of the pro- and anti-inflammatory cytokines interleukin-10 (IL-10), gamma interferon (IFN-gamma)-inducible protein 10 (IP-10), chemokine (C-X-C motif) receptor 3 (CXCR3), interleukin-17A (IL-17A), and tumor necrosis factor alpha (TNF-alpha) in serum or splenic cells were determined using real-time RT-PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA). The proliferation of dendritic cell line D2SC cells was determined using (3)H-TdR incorporation assay.Upon injection of MSCs, overall arthritis symptoms were significantly improved in the CIA mouse models as indicated by the paw edema. Consistent with this observation, serum levels of pro-inflammatory cytokine TNF-alpha and inflammatory cell infiltration decreased significantly 12 days after MSC injection, while the expression of anti-inflammatory cytokines IL-10, IP-10, and CXCR3 was increased in splenocytes. In addition, we provided evidence that MSCs may directly promote the proliferation of D2SC cells and the expression of IP-10 in D2SC cells in vitro.Mesenchymal stem cells significantly enhance the efficacy of collagen-induced arthritis treatment, likely through the modulation of the expression of various cytokines.
2009Receptor for advanced glycation end-products (RAGE) is an indicator of direct lung injury in models of experimental lung injury.Am J Physiol Lung Cell Mol PhysiolReceptor for advanced glycation end-products (RAGE) is a marker of alveolar type I cells and is elevated in the pulmonary edema fluid of patients with acute lung injury (ALI). We tested the hypothesis that RAGE in the bronchoalveolar lavage (BAL) would be elevated in experimental models of direct ALI characterized by alveolar epithelial cell injury. We developed ELISA measurements for RAGE and studied ALI (direct and indirect) mouse models and collected BAL at specified endpoints to measure RAGE. We also tested whether levels of BAL RAGE correlated 1) with the severity of lung injury in acid and hyperoxia-induced ALI and 2) with the beneficial effect of a novel treatment, mesenchymal stem cells (MSC), in LPS-induced ALI. In ALI models of direct lung injury induced by intratracheal instillation of acid, LPS, or Escherichia coli, the BAL RAGE was 58-, 22-, and 13-fold elevated, respectively. In contrast, BAL RAGE was not detectable in indirect models of ALI induced by an intraperitoneal injection of thiourea or by an intravenous injection of MHC I monoclonal antibody that produces a mouse model of transfusion-related ALI. BAL RAGE did correlate with the severity of lung injury in acid and hyperoxia-induced ALI. In addition, with LPS-induced ALI, BAL RAGE was markedly reduced with MSC treatment. In summary, BAL RAGE is an indicator of ALI, and it may be useful in distinguishing direct from indirect models of ALI as well as assessing the response to specific therapies.
2009Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo.CirculationThe importance and therapeutic value of stem cells in lymphangiogenesis are poorly understood. We evaluated the potential of human and murine mesenchymal stem cells (MSCs) to acquire a lymphatic phenotype in vitro and to enhance lymphatic regeneration in vivo.We assessed the lymphendothelial differentiation of human and murine MSCs after induction with supernatant derived from human dermal microvascular endothelial cells, isolated lymphatic endothelial cells, and purified vascular endothelial growth factor (VEGF)-C in vitro. We used human or murine progenitor MSC lines and then characterized the lymphatic phenotype by morphology, migratory capacity, and the expression of lymphatic markers such as Prox-1, podoplanin, Lyve-1, VEGF receptor-2, and VEGF receptor-3. Using a murine lymphatic edema model, we assessed the potential of these cells to form a functional lymphatic vasculature in vivo after injection of syngeneic MSCs. Incubation with supernatant from lymphatic endothelial cells induced an endothelium-like morphology and the expression of lymphendothelial markers in both human and murine MSCs in vitro. MSCs showed migratory activity along a VEGF-C gradient, which was enhanced by VEGF-C conditioning. In vivo, the local application of MSCs resulted in a significant decrease in edema formation (-20.1%; P<0.01 versus untreated tails) after 3 weekly cell injections and restored the drainage of intradermally injected methylene blue after 7 weekly injections.MSCs were capable of expressing a lymphatic phenotype when exposed to lymph-inductive media and purified VEGF-C. Migratory activity toward VEGF-C in vitro suggests homing capability in vivo. Restoration of lymphatic drainage after injection of MSCs in a lymphedema model indicates that MSCs play a role in lymphatic regeneration. The potential clinical application of MSC in wound healing and reduction of lymphatic edema warrants further research.
2008Deletion of angiotensin II type 2 receptor attenuates protective effects of bone marrow stromal cell treatment on ischemia-reperfusion brain injury in mice.StrokeProtective effects of bone marrow stromal cells (MSCs) on ischemic brain damage have been highlighted. We examined the possibility that deletion of AT(2) receptor could attenuate the cerebroprotective effects of MSC using AT(2) receptor-deficient mice (Agtr2 (-)) and the effect of selective AT(1) receptor blocker.Wild-type mice (Agtr2 (+)) were subjected to 3 hours of focal brain ischemia followed by reperfusion (ischemia-reperfusion injury). Simultaneously, Agtr2 (+)-MSC, Agtr2 (-)-MSC, or saline was injected through the tail vein.Survival rates at 6 days after ischemia-reperfusion injury were as follows: approximately 50% in saline-injected mice, 80% in Agtr2 (+)-MSC-injected mice, and 20% in Agtr2 (-)-MSC-injected mice. Neurological deficit after ischemia-reperfusion injury was improved in Agtr2 (+)-MSC-injected mice, but not in Agtr2 (-)-MSC-injected mice. After 48 hours of ischemia-reperfusion injury, brain infarct size was reduced in Agtr2 (+)-MSC-injected mice, but not in Agtr2 (-)-MSC-injected mice. Moreover, brain edema was significantly ameliorated in Agtr2 (+)-MSC-treated mice but not in Agtr2 (-)-MSC-treated mice. Furthermore, the increase in mRNA expression of tumor necrosis factor-alpha and monocyte chemoattractant protein-1 in the ischemic brain was less in Agtr2 (+)-MSC-treated mice in the ipsilateral site, but was similar in the contralateral hemisphere. Tumor necrosis factor-alpha level was increased in both the contralateral hemisphere and ipsilateral hemisphere of Agtr2 (-)-MSC-treated mice. In contrast, monocyte chemoattractant protein-1 levels tended to increase Agtr2 (-)-MSC-treated mice without a significant difference. Treatment of MSC with an AT(1) receptor blocker, valsartan, significantly improved survival rates in Agtr2 (-)-MSC-injected mice.These results suggest that AT(2) receptor signaling in MSC attenuated brain damage and neurological deficit (deleted).
2007Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice.J ImmunolRecent in vivo and in vitro work suggests that mesenchymal stem cells (MSC) have anti-inflammatory properties. In this study, we tested the effect of administering MSC directly into the airspaces of the lung 4 h after the intrapulmonary administration of Escherichia coli endotoxin (5 mg/kg). MSC increased survival compared with PBS-treated control mice at 48 h (80 vs 42%; p < 0.01). There was also a significant decrease in excess lung water, a measure of pulmonary edema (145 +/- 50 vs 87 +/- 20 microl; p < 0.01), and bronchoalveolar lavage protein, a measure of endothelial and alveolar epithelial permeability (3.1 +/- 0.4 vs 2.2 +/- 0.8 mg/ml; p < 0.01), in the MSC-treated mice. These protective effects were not replicated by the use of further controls including fibroblasts and apoptotic MSC. The beneficial effect of MSC was independent of the ability of the cells to engraft in the lung and was not related to clearance of the endotoxin by the MSC. MSC administration mediated a down-regulation of proinflammatory responses to endotoxin (reducing TNF-alpha and MIP-2 in the bronchoalveolar lavage and plasma) while increasing the anti-inflammatory cytokine IL-10. In vitro coculture studies of MSC with alveolar macrophages provided evidence that the anti-inflammatory effect was paracrine and was not cell contact dependent. In conclusion, treatment with intrapulmonary MSC markedly decreases the severity of endotoxin-induced acute lung injury and improves survival in mice.
2004[Ultrastructural changes in muscular tissues of dystrophin/utrophin double-knockout mice after bone marrow-derived mesenchymal stem cell transplantation].Di Yi Jun Yi Da Xue Xue BaoTo observe the ultrastructural changes in the muscular tissues of Duchenne muscular dystrophy mouse models with dystrophin/utrophin double-knockout (DKO) after transplantation of bone marrow-derived mesenchymal stem cells (MSCs).The fifth passage of in vitro cultured MSCs from SD rats were transplanted into the DKO mice via the tail vein, and the ultrastructural changes in the gastrocnemius of the recipient rats were observed using transmission electron microscope 15 weeks after the transplantation.The fifth passage of the in vitro cultured MSCs growing in colonies possessed good homogeneity with low immunogenic activity for transplantation via the tail vein. After transplantation, the DKO mice exhibited improved motor function and prolonged survival period. Ultrastructural observation of the gastrocnemius of the recipient DKO mice revealed much alleviated sarcolemmal disruption, dissociation and edema of the subsarcolemmal tissues, central nuclear shift, loosening of the local myofibrils, inflammatory cell infiltration and connective tissue hyperplasia in comparison with the tissues from the DKO mice without MSC transplantation. Fusion of several immature nuclei was observed in the subsarcolemmal region.MSCs possess strong plasticity in vitro and in vivo, and after transplantation, the MSCs may migrate to lesioned muscular tissues via the blood circulation to participate in the repair and regeneration the atrophied muscular tissues.
2002[Lifetime achievements of Bogomir B. Mrsulja. 1940-1944].Srp Arh Celok LekBogomir Mrshulja was born on September 18th, 1940 in Lendava. He finished both elementary school and high school in Belgrade and subsequently graduated from the School of Medicine, University of Belgrade in 1965. As an undergraduate he was an assistant at the Biochemistry Department and the subject became his profession for life. The University of Belgrade awarded him a scholarship and in 1968 he defended his MSc thesis entitled Glycogen of the Central Nervous System--Methods of Separation, Fraction Isolation, Regional Distribution and Variations in Different Levels of Deprivation of Paradoxical Sleep. Soon after, in 1970, he defended his PhD thesis, as well: Brain Glycogen and Deprivation of Paradoxical Sleep--Biochemical and Pharmacological Aspects of Glycogenolysis. In the period 1973-1975 he spent 18 months in the capacity of a visiting scientist in the Laboratory for Neuropathology and Neuroanatomic Sciences of the National Institute of Health in Bethesda (USA), and again, twelve more months in the same institution (Laboratory for Neurochemistry) in the capacity of a special expert of this institution (1983-84) where he was the chief investigator of neurochemical sequelae of experimental cerebral ischemia. He started his university career as an assistant professor in 1965; he was elected associated professor in 1970, promoted adjunct professor in 1978, while in 1984 he received the full professorship of biochemistry at the School of Medicine, University of Belgrade. In 1970 he was elected research associate of the "Sinisha Stankovitsh" Institute of Biological Research. He was professor of neurochemistry and Head of Department of Neurosciences of the Center for Multidisciplinary Studies, University of Belgrade. He was the Head of the Institute of Biochemistry and Head, Department of Biochemistry and Specialized Courses in Clinical Biochemistry at the School of Medicine, University of Belgrade. Owing to his original hypothesis on mechanisms of the occurrence of ischemic cerebral edema and possible therapeutic approach, Bogomir Mrshulja was frequently invited to lecture in university centers of USA, Canada, Japan, Germany and former USSR. He also participated at over 50 international congresses and symposia worldwide. In the mid seventies, Bogomir Mrshulja started more intensive studies of pathophysiological events in the course of cerebral ischemia and already with his early papers intrigued the professional circles which was reflected in an exceptionally high number of his citations in international scientific and referential literature, including the textbooks. The research activities of Bogomir Mrshulja was impressively fruitful: he published 183 papers in extenso, out of which 42 in books of international publishers and 6 invited review articles. In all these papers he illustrated extensive knowledge, maturity, originality, critical attitude, high level of creativity and, finally, courage to oppose the conventional principles. It should be pointed out that in his works Bogomir Mrshulja tended to draw conclusions that stimulated both himself and his colleagues, researchers in the related fields, insisting on extensive evaluation and testing of hypotheses, which is easily illustrated by the number of citations of his papers. According to the Science Citation Index, by 1995 he was cited 1700 times in the world literature, and in the period 1995-2002 he was cited 250 more times. Besides, he set up and headed the Laboratory for pathological neurochemistry at the School of Medicine in Belgrade that was the cradle for many outstanding researchers and lecturers that now work at the Schools of Medicine in Belgrade, Nish and Kragujevac, Military Medical Academy, and other institutions countrywide. He insisted on indispensable link between laboratory and clinical work, and, at least in the field of neurosciences, he is one of the pioneers of this kind of dialogue. In the year in which he left us for good (1994) scientific contribution of Bogomir Mrshulja was recognized by his election for the corresponding fellow of the Serbian Academy of Sciences and Arts. In the same year, he also received the October Award of the City of Belgrade for research.
1992The bioavailability of morphine in controlled-release 30-mg tablets per rectum compared with immediate-release 30-mg rectal suppositories and controlled-release 30-mg oral tablets.PharmacotherapyThe bioavailability of controlled-release morphine 30-mg tablets (MSC) administered orally or rectally and immediate-release morphine (RMS) 30-mg suppositories per rectum, was compared in this 14-subject, randomized, single-dose, analytically blinded, crossover study. Rectal MSC plasma morphine area under the curve from 0-24 hours (AUC0-24) was 50.8% of RMS and was similar for MSC administered by either route (rectal MSC = 90% oral MSC). Rectal MSC had a significantly delayed time to peak plasma level (5.4 vs 1.07 and 2.5 hrs for rectal MSC vs RMS and oral MSC, respectively) and a significantly attenuated time to maximum concentration (6.1 vs 25.4 and 9.7 ng/ml, respectively). Proctoscopy 24 hours after insertion revealed seven instances of mild, transient mucosal erythema or edema with rectal MSC and 12 with RMS. The number of nonlocal adverse effects was 14 with rectal MSC, 19 with RMS, and 18 with oral MSC. Further studies must determine the therapeutic consequences of pharmacokinetic differences and establish guidelines for rectal MSC use. The product is currently not recommended by the manufacturer for rectal administration.