Research on (Isoniazid)-CLEC4E-edema


TARGET-SYDROM RELATIONSHIP DRUG-TARGET-SYDROM RELATIONSHIP

Year Title Journal Abstract
2015Macrophage-Inducible C-Type Lectin/Spleen Tyrosine Kinase Signaling Pathway Contributes to Neuroinflammation After Subarachnoid Hemorrhage in Rats.StrokeMacrophage-inducible C-type lectin (Mincle, CLEC4E) receptor is reported involved in neuroinflammation in cerebral ischemia and traumatic brain injury. This study was designed to investigate the role of Mincle and its downstream spleen tyrosine kinase (Syk) signal pathway in early brain injury after subarachnoid hemorrhage (SAH) in a rat model.Two hundred fifteen male Sprague-Dawley rats (280-320 g) were subjected to endovascular perforation model of SAH. SAH grade, neurological score, and brain water content were measured at 24 hours after SAH. Mincle/Syk, as well as CARD9 (a member of the caspase-associated recruitment domain [CARD], involved in innate immune response), interleukin-1β,and myeloperoxidase expressions were analyzed by Western blot at 24 hours after SAH. Specific cell types that expressed Mincle were detected with double immunofluorescence staining. Mincle small interfering RNA, recombinant SAP130, and a selective Syk phosphorylation inhibitor piceatannol were used for intervention.Brain water content increased and neurological functions decreased in rats after SAH. The expression of SAP130, Mincle, Syk, and p-Syk increased at 12 hours and peaked at 24 hours after SAH. Mincle small interfering RNA reduced interleukin-1β and infiltration of myeloperoxidase positive cells, decreased brain water content, and improved neurological functions at 24 hours after SAH. Recombinant SAP130 upregulated the expression of p-Syk and CARD9 and increased the levels of interleukin-1β and myeloperoxidase, even though it did not increase brain water content nor it deteriorated neurological function at 24 hours after SAH. Syk inhibitor piceatannol reduced brain edema at 24 hours after SAH.Mincle/Syk is involved in early brain injury after SAH, and they may serve as new targets for therapeutic intervention.