Target: MTHFR Reasearch on Isoniazid drug

TARGET TARGET-DRUG RELATIONSHIP

Year Title Journal Abstract
2018Frequencies of poor metabolizer alleles of 12 pharmacogenomic actionable genes in Punjabi Sikhs of Indian Origin.Sci RepDiversity in drug response is attributed to both genetic and non-genetic factors. However, there is paucity of pharmacogenetics information across ethnically and genetically diverse populations of India. Here, we have analyzed 21 SNPs from 12 pharmacogenomics genes in Punjabi Sikhs of Indian origin (N = 1,616), as part of the Sikh Diabetes Study (SDS). We compared the allele frequency of poor metabolism (PM) phenotype among Sikhs across other major global populations from the Exome Aggregation Consortium and 1000 Genomes. The PM phenotype of CYP1A2*1 F for slow metabolism of caffeine and carcinogens was significantly higher in Indians (SDS 42%, GIH [Gujarati] 51%, SAS [Pakistani] 45%) compared to Europeans 29% (p = 5.3E-05). Similarly, South Asians had a significantly higher frequency of CYP2C9*3 (12% SDS, 13% GIH, 11% SAS) vs. 7% in Europeans (p = <1.0E-05) and 'T' allele of CYP4F2 (36%) SDS, (43%) GIH, 40% (SAS) vs. (29%) in Europeans (p = <1.0E-05); both associated with a higher risk of bleeding with warfarin. All South Asians -the Sikhs (0.36), GIH (0.34), and SAS (0.36) had a higher frequency of the NAT2*6 allele (linked with slow acetylation of isoniazid) compared to Europeans (0.29). Additionally, the prevalence of the low activity 'C' allele of MTHFR (rs1801131) was highest in Sikhs compared to all other ethnic groups [SDS (44%), GIH (39%), SAS (42%) and European (32%) (p = <1.0E-05)]. SNPs in MTHFR affect metabolism of statins, 5-fluorouracil and methotrexate-based cancer drugs. These findings underscore the need for evaluation of other endogamous ethnic groups of India and beyond for establishing a global benchmark for pre-emptive genotyping in drug metabolizing genes before beginning therapeutic intervention.