Drug: Linezolid Reasearch on rifapentine

DISEASE TARGET DRUG TARGET-DRUG RELATIONSHIP

Year Title Journal Abstract
2020Telacebec (Q203)-containing intermittent oral regimens sterilized mice infected with Mycobacterium ulcerans after only 16 doses.PLoS Negl Trop DisBuruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with a daily combination of rifampin and either injectable streptomycin or oral clarithromycin. An intermittent oral regimen would facilitate treatment supervision. We first evaluated the bactericidal activity of newer antimicrobials against M. ulcerans using a BU animal model. The imidazopyridine amine telacebec (Q203) exhibited high bactericidal activity whereas tedizolid (an oxazolidinone closely related to Linezolid), selamectin and ivermectin (two avermectine compounds) and the benzothiazinone PBTZ169 were not active. Consequently, telacebec was evaluated for its bactericidal and sterilizing activities in combined intermittent regimens. Telacebec given twice a week in combination with a long-half-life compound, either rifapentine or bedaquiline, sterilized mouse footpads in 8 weeks, i.e. after a total of only 16 doses, and prevented relapse during a period of 20 weeks after the end of treatment. These results are very promising for future intermittent oral regimens which would greatly simplify BU treatment in the field.
2020Simple and sensitive method for the analysis of 14 antituberculosis drugs using liquid chromatography/tandem mass spectrometry in human plasma.Rapid Commun Mass SpectromMonitoring plasma concentration and adjusting doses of antituberculosis (TB) drugs are beneficial for improving responses to drug treatment and avoiding adverse drug reactions. A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed to measure the plasma concentrations of 14 anti-TB drugs: ethambutol, isoniazid, pyrazinamide, levofloxacin, gatifloxacin, moxifloxacin, prothionamide, Linezolid, rifampin, rifapentine, rifabutin, cycloserine, p-aminosalicylic acid, and clofazimine.Human plasma was precipitated by acetonitrile and was subsequently separated by an AQ-C18 column with a gradient elution. Drug concentrations were determined using multiple reaction monitoring in positive ion electrospray ionization mode. According to pharmacokinetic data of patients, the peak concentration ranges and the timing of blood collection were determined.Intra- and interday precision was < 14.8%. Linearity, accuracy, extraction recovery, and matrix effect were acceptable for each drug. The stability of the method satisfied different storage conditions.The method allowed the sensitive and reproducible determination of 14 frequently used anti-TB drugs which has already been of benefit for some TB patients.
2017NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans.Sci RepDuring active TB in humans a spectrum of pulmonary granulomas with central necrosis and hypoxia exists. BALB/c mice, predominantly used in TB drug development, do not reproduce this complex pathology thereby inaccurately predicting clinical outcome. We found that Nos2 mice incapable of NO-production in immune cells as microbial defence uniformly develop hypoxic necrotizing lung lesions, widely observed in human TB. To study the impact of hypoxic necrosis on the efficacy of antimycobacterials and drug candidates, we subjected Nos2 mice with TB to monotherapy before or after establishment of human-like pathology. Isoniazid induced a drug-tolerant persister population only when necrotic lesions were present. Rifapentine was more potent than rifampin prior to development of human-like pathology and equally potent thereafter, in agreement with recent clinical trials. Pretomanid, delamanid and the pre-clinical candidate BTZ043 were bactericidal independent of pulmonary pathology. Linezolid was bacteriostatic in TB-infected Nos2 mice but significantly improved lung pathology. Hypoxic necrotizing lesions rendered moxifloxacin less active. In conclusion, Nos2 mice are a predictive TB drug development tool owing to their consistent development of human-like pathology.
Fighting tuberculosis by drugs targeting nonreplicating bacilli.Int J MycobacteriolCurrent tuberculosis (TB) treatment requires 6 months of combination therapy with isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol for active TB and 9 months of INH or 3 months of rifapentine (RFP) + INH for latent TB. The lungs of patients with active and latent TB contain heterogeneous mixtures of cellular and caseous granulomas harboring Mycobacterium tuberculosis bacilli ranging from actively replicating (AR) to nonreplicating (NR), phenotypically drug-resistant stages. Several in vitro models to obtain NR cells were reported, including exposure to hypoxia, nutrient starvation, acid + nitric oxide, and stationary phase. Overall, these models showed that RIF, RFP, PA-824 (PA), metronidazole (MZ), bedaquiline (BQ), and fluoroquinolones were the most active drugs against NR M. tuberculosis. In hypoxia at pH 5.8, some combinations killed AR plus NR cells, as shown by lack of regrowth in liquid media, whereas in hypoxia at pH 7.3 (the pH of the caseum), only RIF and RFP efficiently killed NR bacilli while several other drugs showed little effect. In conventional mouse models, combinations containing RFP, BQ, PA, PZA, moxifloxacin, sutezolid, Linezolid, and clofazimine sterilized animals in ≤2 months, as shown by lack of viable bacilli in lung homogenates after 3 months without therapy. Drugs were less effective in C3HeB/FeJ mice forming caseous granulomas. Overall, in vitro observations and in vivo studies suggest that the search for new TB drugs could be addressed to low lipophilic molecules (e.g., new rpoB inhibitors with clogP < 3) killing NR M. tuberculosis in hypoxia at neutral pH and reaching high rates of unbound drug in the caseum.
2017Drug Susceptibility of 33 Reference Strains of Slowly Growing Mycobacteria to 19 Antimicrobial Agents.Biomed Res Int. Slowly growing mycobacteria (SGM) are prevalent worldwide and cause an extensive spectrum of diseases. . In this study, the antimicrobial susceptibility of 33 reference strains of SGM to 19 antimicrobial agents was tested using a modified microdilution method. . Cefmetazole (32/33) and azithromycin (32/33) exhibited the highest antimicrobial activity, and dapsone (9/33) exhibited the lowest activity against the tested strains. Cefoxitin (30/33), cefoperazone (28/33), and cefepime (28/33) were effective against a high proportion of strains, and macrolides were also highly effective as well as offering the benefit of convenient oral administration to patients. Linezolid (27/33), meropenem (26/33), sulfamethoxazole (26/33), and tigecycline (25/33) showed the highest activity; clofazimine (20/33) and doxycycline (18/33) showed intermediate activity; and rifapentine (13/33), rifabutin (13/33), and minocycline (11/33) showed low antimicrobial activity, closely followed by thioacetazone (10/33) and pasiniazid (10/33), against the tested organisms. According to their susceptibility profiles, the slowly growing species and were the least susceptible to the tested drugs, whereas , , , , , and were the most susceptible. . In summary, cephalosporins and macrolides, particularly cefmetazole, azithromycin, clarithromycin, and roxithromycin, showed good antimicrobial activity against the reference strains of SGM.
2017Antimicrobial susceptibility and MIC distribution of 41 drugs against clinical isolates from China and reference strains of nontuberculous mycobacteria.Int J Antimicrob AgentsTo treat nontuberculous mycobacteria (NTM) infections more optimally, further research pertaining to mycobacterial susceptibility to antimicrobial agents is required. A total of 82 species of NTM reference strains and 23 species of NTM clinical isolates were included. Minimum inhibitory concentrations (MICs) for 41 drugs were determined using the microdilution method in cation-adjusted Mueller-Hinton broth. The results showed that most of the NTM were susceptible to aminoglycosides, quinolones, three macrolides (clarithromycin, azithromycin and roxithromycin), cefmetazole, Linezolid and capreomycin. Rapidly growing mycobacterium strains were additionally susceptible to cefoxitin, clofazimine, rifapentine, doxycycline, minocycline, tigecycline, meropenem and sulfamethoxazole, whereas slowly growing mycobacterium strains were additionally susceptible to rifabutin. This study on the susceptibility of NTM includes the largest sample size of Chinese clinical isolates and reference strains. NTM species-specific drug susceptibility patterns suggested that it is urgent to identify the species of NTM, to normalise the treatment of NTM infectious disease and to clarify the resistance mechanisms of NTM.
2017Tackling Drug-Resistant Tuberculosis: Current Trends and Approaches.Mini Rev Med ChemTuberculosis is very much rampant in our society and accounts for a large number of deaths annually. In spite of consistent efforts being made, the disease has not been curtailed yet. The emergence of MDR and XDR strains in the society along with an increase in the number of HIV cases and that of latent TB, have further aggravated the problem making the disease very much persistent. The current situation clearly manifests the need to discover and develop new potent molecules/approaches that could help to tackle drug resistance. Various molecules, such as derivatives of fluoroquinolones (e.g. gatifloxacin, moxifloxacin and DC-159a), rifamycins (rifapentine), oxazolidinones (Linezolid, sutezolid/PNU-100480), diarylquinolines (TMC207/bedaquiline), antifungal azoles, pyrrole (LL3858), nitroimidazopyran (PA824), nitroimidazole (OPC67683, TBA-354), diamine (SQ109) and benzothiazinone (BTZ043) are being developed in an attempt to combat the disease. This review presents a general introduction to the current status of the disease, the biology of the pathogen as well as the state of drug development against tuberculosis (TB) with emphasis on the major problems and bottlenecks associated with the same. Starting from the first drug against TB, the review discusses the entire history and the course of development of the drugs which are available today in the market as well as those which are under various phases of clinical and pre-clinical trials along with their mechanism of action. It also talks about the possible role of nanosciences in combating TB.
2016Characterization of 22 Antituberculosis Drugs for Inhibitory Interaction Potential on Organic Anionic Transporter Polypeptide (OATP)-Mediated Uptake.Antimicrob Agents ChemotherWe investigated the inhibitory interaction potential of 22 currently marketed antituberculosis (TB) drugs on organic anion-transporting polypeptide 1B1 (OATP1B1)-, OATP2B1-, and OATP1B3-mediated uptake using in vitro Xenopus oocytes and HEK cells. Rifabutin, ethambutol, amoxicillin, Linezolid, p-amino salicylic acid, and rifapentine exhibited mild to moderate inhibitory effects on OATP-mediated uptake of estrone-3 sulfate, estradiol 17β-d-glucuronide, and rosuvastatin. The 50% inhibitory concentration (IC50) values of rifabutin, amoxicillin, ethambutol, p-amino salicylic acid, and Linezolid were 35.4, 36.2, 57.6, 72.6, and 65.9 μM, respectively, for uptake mediated by organic anionic transporter polypeptide 1B1 (OATP1B1) and 28.8, 28.9, 53.9, 31.5, and 61.0 μM, respectively, for uptake mediated by organic anionic transporter polypeptide 1B3 (OATP1B3). Streptomycin and Linezolid showed greater inhibition of organic anionic transporter polypeptide 2B1 (OATP2B1)-mediated uptake, with IC50 values of 33.2 and 35.6 μM, respectively, along with mild inhibition of other drugs. Furthermore, rifabutin, amoxicillin, and rifapentine significantly inhibited OATP1B1-mediated rosuvastatin uptake, with IC50 values of 12.3, 13.0, and 11.0 μM, respectively, which showed a similar profile to estrone-3 sulfate uptake. The calculated R values ([I]u inlet,max/Ki, where [I]u inlet,max represents the maximum estimated inhibitor concentration inlet to the liver and Ki is the inhibition constant) as the drug-drug interaction (DDI) indexes of PAS, ethambutol, and amoxicillin were 26.1, 6.5, and 4.3 for OATP1B1 and 52.0, 8.0, and 4.6 for OATP1B3, and those for streptomycin, amikacin, and Linezolid were 5.0, 4.2, and 4.4 for OATP2B1, respectively, suggesting a higher possibility of in vivo DDIs. This study is the first comprehensive report to show the novel inhibitory potential of 22 marketed anti-TB drugs on OATP-mediated uptake, providing evidence for future in vivo clinical DDI studies.
2016Interspecies scaling of excretory amounts using allometry - retrospective analysis with rifapentine, aztreonam, carumonam, pefloxacin, miloxacin, trovafloxacin, doripenem, imipenem, cefozopran, ceftazidime, linezolid for urinary excretion and rifapentine, cabotegravir, and dolutegravir for fecal excretion.Xenobiotica1. Interspecies allometry scaling for prediction of human excretory amounts in urine or feces was performed for numerous antibacterials. Antibacterials used for urinary scaling were: rifapentine, pefloxacin, trovafloxacin (Gr1/low; <10%); miloxacin, Linezolid, PNU-142300 (Gr2/medium; 10-40%); aztreonam, carumonam, cefozopran, doripenem, imipenem, and ceftazidime (Gr3/high; >50%). Rifapentine, cabotegravir, and dolutegravir was used for fecal scaling (high; >50%). 2. The employment of allometry equation: Y = aW(b) enabled scaling of urine/fecal amounts from animal species. Corresponding predicted amounts were converted into % recovery by considering the respective human dose. Comparison of predicted/observed values enabled fold difference and error calculations (mean absolute error [MAE] and root mean square error [RMSE]). Comparisons were made for urinary/fecal data; and qualitative assessment was made amongst Gr1/Gr2/Gr3 for urine. 3. Average correlation coefficient for the allometry scaling was >0.995. Excretory amount predictions were largely within 0.75- to 1.5-fold differences. Average MAE and RMSE were within ±22% and 23%, respectively. Although robust predictions were achieved for higher urinary/fecal excretion (>50%), interspecies scaling was applicable for low/medium excretory drugs. 4. Based on the data, interspecies scaling of urine or fecal excretory amounts may be potentially used as a tool to understand the significance of either urinary or fecal routes of elimination in humans in early development.
2015Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China.Biomed Res IntSeveral species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012.Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates.M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, Linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents.Our results suggest that tigecycline, Linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.
2015Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis.Dis Model MechMice are the most commonly used species for non-clinical evaluations of drug efficacy against tuberculosis (TB). Unlike commonly used strains, C3HeB/FeJ mice develop caseous necrosis in the lung, which might alter the representation of drug efficacy in a way that is more like human TB. Because the development of such pathology requires time, we investigated the effect of infection incubation period on the activity of six drugs in C3HeB/FeJ and BALB/c mice. Mice were aerosol infected and held for 6, 10 or 14 weeks before receiving therapy with rifampin (RIF), rifapentine (RPT), pyrazinamide (PZA), Linezolid (LZD), sutezolid (PNU) or metronidazole (MTZ) for 4-8 weeks. Outcomes included pathological assessments, pH measurements of liquefied caseum and assessment of colony-forming unit (CFU) counts from lung cultures. Remarkable heterogeneity in the timing and extent of disease progression was observed in C3HeB/FeJ mice, largely independent of incubation period. Likewise, drug efficacy in C3HeB/FeJ mice was not affected by incubation period. However, for PZA, LZD and PNU, dichotomous treatment effects correlating with the presence or absence of large caseous lesions were observed. In the case of PZA, its poor activity in the subset of C3HeB/FeJ mice with large caseous lesions might be explained by the pH of 7.36±0.09 measured in liquefied caseum. This study highlights the potential value of C3HeB/FeJ mice for non-clinical efficacy testing, especially for investigating the interaction of lesion pathology and drug effect. Careful use of this model could enhance the bridging of non-clinical results with clinical outcomes.
2012Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis.Antimicrob Agents ChemotherMycobacterium tuberculosis 18b, a streptomycin (STR)-dependent mutant that enters a viable but nonreplicating state in the absence of STR, has been developed as a simple model for drug testing against dormant bacilli. Here, we further evaluated the STR-starved 18b (SS18b) model both in vitro and in vivo by comparing the behavior of 22 approved and experimental tuberculosis drugs. Using the resazurin reduction microplate assay (REMA), rifampin (RIF), rifapentine (RPT), TMC207, clofazimine (CFM), and Linezolid (LIN) were found to be active against SS18b in vitro, and their bactericidal activity was confirmed by determining the number of CFU. A latent 18b infection was established in mice, and some of the above-mentioned drugs were used for treatment, either alone or in combination with RIF. RIF, RPT, TMC207, CFM, and pyrazinamide (PZA) were all active in vivo, while cell wall inhibitors were not. A comparative kinetic study of rifamycin efficacy was then undertaken, and the results indicated that RPT clears latent 18b infection in mice faster than RIF. Intrigued by the opposing responses of live and dormant 18b cells to cell wall inhibitors, we conducted a systematic analysis of 14 such inhibitors using REMA. This uncovered an SS18b signature (CWPRED) that accurately predicted the activities of cell wall inhibitors and performed well in a blind study. CWPRED will be useful for establishing the mode of action of compounds with unknown targets, while the SS18b system should facilitate the discovery of drugs for treating latent tuberculosis.
2012New drugs for the treatment of tuberculosis: hope and reality.Int J Tuberc Lung DisThe objective of this review is to report evidence about the efficacy and potential of currently licensed drugs and new molecules beyond pre-clinical development for improving the chemotherapy of tuberculosis (TB). Rifapentine, a rifamycin with low minimum inhibitory concentration, long half-life and potent sterilizing activity in mice did not confirm its potential in a recent short-term clinical trial and is being extensively re-evaluated. Moxifloxacin, a fluoroquinolone, improved the activity of the standard drug regimen when substituted for ethambutol (EMB). It is being studied to shorten the duration of treatment for fully drug-susceptible TB (Remox study). Clofazimine, a fat-soluble dye with experimental activity against TB, but used only for leprosy in the last 50 years, requires further study because it has been included in a successful short 9-month combined drug regimen for the treatment of multidrug-resistant TB. The diarylquinoline TMC207 is the most promising among the new TB drugs because of its experimental and clinical rate of culture conversion. Also exciting, 200 mg daily doses in humans of the nitroimidazo-oxazine PA-824 and the nitro-dihydro-imidazooxazole OPC-67683 were safe and induced a bactericidal effect of respectively 0.098 ± 0.072 log(10) and 0.040 ± 0.056 log(10) per day. The new oxazolidinones PNU-100480 and AZD-5847 might be at least as active as Linezolid and much less toxic. SQ109 is an EMB analogue that does not have cross-resistance with EMB and might have synergistic activity in combined regimens. Benzothiazinones and dinitrobenzamides show exciting in vitro anti-microbial activity and deserve careful attention.
[Present and future in the use of anti-tubercular drugs].PneumologiaAfter several decades without any notable progress, there are encouraging results in research and development of anti-TB drugs, the result of a large number of projects now in competition. Along with developing new drugs to treat tuberculosis (TMC207, SQ109, LL3858) are being reassessed others to optimize their effectiveness in order to shorten and simplify therapy (rifampin and rifapentine) and three other drugs, currently used for other indications, were forwarded towards TB (gatifloxacin and moxifloxacin, Linezolid). Time to approval as a antiTB drug is 10-15 years, consisting of phases of preclinical and clinical research. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis resulted in a small but statistically nonsignificant increase in 8th- week culture negativity. TMC207, a diarylquinoline with a unique way to address Mycobacterial ATP synthetase, shows high activity in vitro against Mycobacterial strains sensitive or resistant to all drugs in the first and second line, including fluoroquinolones, demonstrating exceptional qualities in vivo against several species of mycobacteria, in various animal models. TMC207 was added to a basic standard regimen in a study of MDR-TB patients. After two months and satisfactory tolerability, sputum conversion rate in culture was 48% (versus 9% in the placebo group). Two nitroimidazole (PA-824 and OPC-67683) are currently in clinical development. PA-824 demonstrated good safety and tolerability in adult patients with pulmonary TB in South Africa, when given once daily for 7 days. Associating isoniazid, would prevent the selection of mutants resistant to Isoniazid. Linezolid 600 mg is currently being tested in a Phase II for treatment of XDR-TB in the Republic of Korea. PNU-100480, analogous to the previous one, has the potential to significantly shorten the treatment in cases where there is sensitivity and in those with resistance to drugs. 300 mg dose is under investigation in a phase II pilot study in MDR-TB in South Africa. With this interest and commitment, it appears that there is a chance of having a new drug available soon.
2011The activity of several newer antimicrobials against logarithmically multiplying M. leprae in mice.Lepr RevMoxifloxacin, rifampicin, rifapentine, Linezolid, and PA 824, alone and in combination, have been previously administered, as single doses and five times daily doses, to M. leprae infected mice during lag phase multiplication and were each found to have some bactericidal activity.The fluroquinolones, ofloxacin, moxifloxacin and gatifloxacin, (50 mg/kg, 150 mg/kg and 300 mg/kg) and the rifamycins (5 mg/kg, 10 mg/kg, and 20 mg/kg), rifampicin and rifapentine, were evaluated alone and in combination for bactericidal activity against M. leprae using the mouse footpad model during logarithmic multiplication. Linezolid and PA 824 were similarly evaluated alone and Linezolid in combination with rifampicin, minocycline and ofloxacin.The three fluroquinolones and rifamycins were found alone and in combination to be bactericidal at all dosage schedules. PA 824 had no activity against M. leprae, while Linezolid at a dose of 25 mg/kg was bacteriostatic, and progressively more bactericidal at doses of 50 mg/kg and 100 mg/kg. No antagonisms were detected between any of these drugs when used in combinations.Moxifloxacin, gatifloxacin, rifapentine and Linezolid were found bactericidal against rapidly multiplying M. leprae.
2011New drugs for tuberculosis treatment.Enferm Infecc Microbiol ClinAvailable data on anti-tuberculosis drug research reveal different properties of the agents and provoke speculation about future directions. Higher doses of the rifamycins are promising and are currently being evaluated in regimens of shorter duration that the isoniazid plus rifampin-based, six-to-nine month-course therapy. Moxifloxacin and gatifloxacin might shorten tuberculosis treatment as well, possibly in combination with rifapentine, while SQ109 could enhance the activity of rifampin-containing regimens. On the other hand, co-administration of moxifloxacin and PA-824 could be active against latent tuberculosis, whereas Linezolid, PA-824 and TMC207 are candidates for a rifampin-free regimen in multidrug-resistant and extensively-resistant tuberculosis. Unfortunately, shorter than existent treatment regimens based on the new agents discussed here are likely to take at least another decade to be fully developed and implemented in clinical practice.
2010Drugs in development for tuberculosis.DrugsTuberculosis (TB) drug research and development efforts have resurged in the past 10 years to meet urgent medical needs, but enormous challenges remain. These urgent needs are largely driven by the current long and arduous multidrug regimens, which have significant safety, tolerability and compliance issues; rising and disturbing rates of multidrug- and extensively drug-resistant TB; the existence of approximately 2 billion individuals already latently infected with Mycobacterium tuberculosis, the causative pathogen of TB; and a global TB-HIV co-epidemic. Stakeholders in TB drug development are moving to enable and streamline development and registration of novel, multidrug treatment regimens, comprised of multiple new chemical entities with novel mechanisms of action that do not demonstrate cross-resistance to current first- and second-line TB drugs. Ideally, these new regimens will ultimately provide a short, simple treatment suitable for essentially all TB patients, whether sensitive or resistant to the current anti-TB agents, whether HIV-positive or -negative, and irrespective of patient age. This article reviews the challenges faced by those trying to develop these novel regimens and the key agents currently in clinical testing for TB; the latter are organized for discussion into three categories: (i) novel drugs (TMC207, SQ109, sudoterb [LL3858]); (ii) present first-line TB drugs being re-evaluated to optimize their efficacy (rifampicin, rifapentine); and (iii) currently licensed drugs for other indications and 'next-generation' compounds of the same chemical class being repurposed for TB (gatifloxacin and moxifloxacin; Linezolid, PNU100480 and AZD5847; metronidazole, OPC-67683 and PA-824).
2006Bactericidal activities of R207910 and other newer antimicrobial agents against Mycobacterium leprae in mice.Antimicrob Agents ChemotherAs measured by a proportional bactericidal technique in the mouse footpad system, the bactericidal activity against Mycobacterium leprae of R207910 was equal to that of rifapentine, rifampin, or moxifloxacin and significantly greater than those of minocycline, PA-824, and Linezolid. These data suggest that R207910 may play an important role in treatment of leprosy.
1998Susceptibilities of Legionella spp. to newer antimicrobials in vitro.Antimicrob Agents ChemotherThe in vitro activities of 13 antimicrobial agents against 30 strains of Legionella spp. were determined. Rifapentine, rifampin, and clarithromycin were the most potent agents (MICs at which 90% of isolates are inhibited [MIC90s], < or = 0.008 microgram/ml). The ketolide HMR 3647 and the fluoroquinolones levofloxacin and BAY 12-8039 (MIC90s, 0.03 to 0.06 microgram/ml) were more active than erythromycin A or roxithromycin. The MIC90s of dalfopristin-quinupristin and Linezolid were 0.5 and 8 micrograms/ml, respectively. Based on class characteristics and in vitro activities, several of these agents may have potential roles in the treatment of Legionella infections.