Drug: Gentamicin Reasearch on rifapentine

DISEASE TARGET DRUG TARGET-DRUG RELATIONSHIP

Year Title Journal Abstract
1994Antimycobacterial drugs.Semin Respir InfectThis review consists of the following three sections: (1) General principles in selecting antimycobacterial drugs for the treatment regimens, (2) The antimicrobial activity in vitro with an emphasis on inhibitory and bactericidal potency of various agents, and (3) Drug susceptibility testing including methodology and interpretation of the test results. Each of these sections addresses three groups of antimycobacterial agents: (1) against tuberculosis, (2) against Mycobacterium avium complex infections, and (3) against infections caused by M. fortuitum and M chelonae. The following are the drugs examined in the sections and subsections of this review: isoniazid, ethionamide, thiacetazone, rifampin, rifabutin, rifapentine, KRM-1648, pyrazinamide, streptomycin, kanamycin, amikacin, capreomycin, Gentamicin, tobramycin, ethambutol, para-aminosalicylic acid, D-cycloserine, ofloxacin, levofloxacin, ciprofloxacin, sparfloin, clofazimine, clarithromycin, azithromycin, erythromycin, cefoxitin, cefmetazole, imipenem, sulfamethoxazole, sulfisoxazole, sulfadiazine, sulfathiazole, trimethoprim, and doxycycline.
1992Epithelial cells in culture as a model for the intestinal transport of antimicrobial agents.Antimicrob Agents ChemotherThe bioavailabilities of orally administered drugs depend to a great extent on their capability of being transported across the intestinal mucosa. In an attempt to develop an in vitro model for studying the intestinal transport of drugs, we used an intestinal epithelial cell line (Caco 2) derived from a human colon adenocarcinoma. A renal epithelial cell line (MDCK) was also used to determine the tissue specificity of drug transport. These cell lines, which were grown on filters, form a monolayer of well-polarized cells coupled by tight junctions and can be used for transcellular transport experiments. We studied the transport of nine antimicrobial agents with different physicochemical and pharmacokinetic characteristics using these epithelial cell monolayers to determine whether this model could be predictive of oral bioavailability. The transepithelial passage was assayed from the apical (AP) to the basolateral (BL) side and in the opposite direction (BL to AP) in both cell lines. Radioactively labeled mannitol was used to monitor the intactness of the cell monolayer during drug passage. The results indicated that all antimicrobial agents tested tended to behave in vitro generally according to their known in vivo absorptive characteristics. In addition, the use of epithelia from different tissues enabled us to divide the drugs into four groups according to their behaviors and suggested the existence of different transport mechanisms. In particular, two antibiotics, Gentamicin and teicoplanin, showed no passage in either direction or cell line, in accordance with their very poor in vivo absorbances after oral administration. In contrast, rifapentine, rifampin, and nalidixic acid passed very efficiently at similar rates in both directions and cell lines in a concentration-dependent, nonsaturable manner, which is suggestive of passive diffusion down a concentration gradient. Of the remaining drugs, isoniazid and novobiocin sodium showed some differences in passage between the two cell lines and, given their ionized state at the pH that was used, may use the paracellular route. Finally, trimethoprim and D-cycloserine exhibited differences in passage both with respect to polarity and cell line; in particular, trimethoprim had a faster rate of passage only in Caco 2 cells and in the BL to AP direction, while D-cycloserine was exclusively transported by Caco 2 cells in the AP to BL direction. In both cases it is possible that active transport mechanisms are involved.
1992TLC G-65 in combination with other agents in the therapy of Mycobacterium avium infection in beige mice.J Antimicrob ChemotherThe activity of TLC G-65 (a liposomal Gentamicin preparation), alone and in combination with rifapentine, clarithromycin, clofazimine and ethambutol, was evaluated in the beige mouse (C57BL/6J--bgj/bgj) model of disseminated Mycobacterium avium infection. TLC G-65 was found to be more active than amikacin. The combination of rifapentine and TLC G-65 was more active than either agent alone. The activity of clarithromycin in combination with TLC G-65 was similar to that of either agent alone. Clofazimine improved the activity of TLC G-65 with respect to the spleen, while ethambutol improved the activity with respect to the liver. Clofazimine and ethambutol enhanced the activity of TLC G-65 against bacteria in the lungs. TLC G-65 in combination with rifapentine appears to be an attractive regimen for the treatment of infections caused by bacteria in the M. avium complex.
1985In vitro activities of rifapentine and rifampin, alone and in combination with six other antibiotics, against methicillin-susceptible and methicillin-resistant staphylococci of different species.Antimicrob Agents ChemotherThe antistaphylococcal activity of rifapentine, a new rifamycin SV derivative, was evaluated in vitro and compared with that of rifampin. A total of 313 staphylococcal strains freshly isolated from clinical material and including representatives of all currently recognized Staphylococcus species of human origin were used. The susceptibility to methicillin of all the test strains was determined preliminarily. Despite minor differences with some species, the MICs of rifapentine were found to be substantially similar to those of rifampin. Methicillin-resistant strains of all species were most resistant to rifapentine and rifampin than were their methicillin-susceptible counterparts. For most strains tested, the MBCs of both rifamycins exceeded by twofold the respective MICs. Both the checkerboard dilution and time-kill methods were used to determine the interactions of rifapentine or rifampin with six different antibiotics: cefamandole, vancomycin, teicoplanin, Gentamicin, erythromycin, and fusidic acid. No significant differences between the two rifamycins in the combinations were observed against either methicillin-susceptible or methicillin-resistant strains. Minor differences were noted depending on the second antibiotic tested or the staphylococcal species examined. Antagonism was never observed, and indifference was the prevalent response. Cases of synergism were observed occasionally with the checkerboard method and slightly more often with the time-kill method.