Drug: Azithromycin Reasearch on rifapentine

DISEASE TARGET DRUG TARGET-DRUG RELATIONSHIP

Year Title Journal Abstract
2017Drug Susceptibility of 33 Reference Strains of Slowly Growing Mycobacteria to 19 Antimicrobial Agents.Biomed Res Int. Slowly growing mycobacteria (SGM) are prevalent worldwide and cause an extensive spectrum of diseases. . In this study, the antimicrobial susceptibility of 33 reference strains of SGM to 19 antimicrobial agents was tested using a modified microdilution method. . Cefmetazole (32/33) and Azithromycin (32/33) exhibited the highest antimicrobial activity, and dapsone (9/33) exhibited the lowest activity against the tested strains. Cefoxitin (30/33), cefoperazone (28/33), and cefepime (28/33) were effective against a high proportion of strains, and macrolides were also highly effective as well as offering the benefit of convenient oral administration to patients. Linezolid (27/33), meropenem (26/33), sulfamethoxazole (26/33), and tigecycline (25/33) showed the highest activity; clofazimine (20/33) and doxycycline (18/33) showed intermediate activity; and rifapentine (13/33), rifabutin (13/33), and minocycline (11/33) showed low antimicrobial activity, closely followed by thioacetazone (10/33) and pasiniazid (10/33), against the tested organisms. According to their susceptibility profiles, the slowly growing species and were the least susceptible to the tested drugs, whereas , , , , , and were the most susceptible. . In summary, cephalosporins and macrolides, particularly cefmetazole, Azithromycin, clarithromycin, and roxithromycin, showed good antimicrobial activity against the reference strains of SGM.
2017Antimicrobial susceptibility and MIC distribution of 41 drugs against clinical isolates from China and reference strains of nontuberculous mycobacteria.Int J Antimicrob AgentsTo treat nontuberculous mycobacteria (NTM) infections more optimally, further research pertaining to mycobacterial susceptibility to antimicrobial agents is required. A total of 82 species of NTM reference strains and 23 species of NTM clinical isolates were included. Minimum inhibitory concentrations (MICs) for 41 drugs were determined using the microdilution method in cation-adjusted Mueller-Hinton broth. The results showed that most of the NTM were susceptible to aminoglycosides, quinolones, three macrolides (clarithromycin, Azithromycin and roxithromycin), cefmetazole, linezolid and capreomycin. Rapidly growing mycobacterium strains were additionally susceptible to cefoxitin, clofazimine, rifapentine, doxycycline, minocycline, tigecycline, meropenem and sulfamethoxazole, whereas slowly growing mycobacterium strains were additionally susceptible to rifabutin. This study on the susceptibility of NTM includes the largest sample size of Chinese clinical isolates and reference strains. NTM species-specific drug susceptibility patterns suggested that it is urgent to identify the species of NTM, to normalise the treatment of NTM infectious disease and to clarify the resistance mechanisms of NTM.
2015Bacteriological and virulence study of a Mycobacterium chimaera isolate from a patient in China.Antonie Van LeeuwenhoekA clinical isolate from a patient was identified as Mycobacterium chimaera, a recently identified species of nontuberculous Mycobacteria. The biochemical and molecular identity, drug sensitivity and virulence of this isolated strain were investigated. 16S rRNA, the 16S-23S ITS, hsp65 and rpoB were amplified, and their sequence similarities with other mycobacteria were analyzed. The minimum inhibitory concentrations of 22 anti-microbial agents against this isolate were established, and the virulence of the isolate was evaluated by intravenous injection into C57BL/6 mice using Mycobacterium tuberculosis H37Rv as a control strain. Growth and morphological characteristics and mycolic acid profile analysis revealed that this isolated strain was a member of the Mycobacterium avium complex. BLAST analysis of the amplified sequences showed that the isolated strain was closely related to M. chimaera. Susceptibility testing showed that the isolate was sensitive to rifabutin, rifapentine, clarithromycin, Azithromycin, imipenem and cefoxitin. Bacterial load determination and tissue histopathology of the infected mice indicated that the isolate was highly virulent. The first case of M. chimaera infection in China was evaluated. The information derived from this case may offer valuable guidance for clinical diagnosis and treatment.
2014Bacteriological characterization of a Mycobacterium parascrofulaceum strain isolated from a Chinese pneumonia patient.Int J Infect DisA Mycobacterium parascrofulaceum strain was isolated from a pneumonia patient-the first such reported case from China. The bacteriological characteristics of the strain were determined.Species identification was performed by homologue gene sequence comparison, then a series of biochemical tests was conducted to elucidate the bacteriological characteristics. Drug susceptibility and pathogenicity to mice of the strain were tested.The clinical M. parascrofulaceum strain presented a very similar phenotypic profile to that of Mycobacterium scrofulaceum. The M. parascrofulaceum strain was sensitive to rifabutin, rifapentine, clarithromycin, Azithromycin, cefoxitin, and moxifloxacin in vitro. At week 2 post-infection, the lung tissues of mice demonstrated a local inflammatory response denoted by peri-bronchiolar inflammatory infiltrates. At weeks 4 and 8, the lung tissues showed peri-bronchiolar inflammatory infiltrates with large aggregates of lymphocytes and part of the tissue showed granulomatous lesions; there was no appreciable necrosis. The colony-forming units (CFU) count of infected lung and spleen increased gradually during the 8 weeks of the experiment.The M. parascrofulaceum strain isolated in China was sensitive to rifabutin, rifapentine, clarithromycin, Azithromycin, cefoxitin, and moxifloxacin. The mycobacteria were capable of proliferating in mice and could lead to pathological changes in the lungs of the mice.
2011Pharmacokinetic interactions between etravirine and non-antiretroviral drugs.Clin PharmacokinetEtravirine (formerly TMC125) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) with activity against wild-type and NNRTI-resistant strains of HIV-1. Etravirine has been approved in several countries for use as part of highly active antiretroviral therapy in treatment-experienced patients. In vivo, etravirine is a substrate for, and weak inducer of, the hepatic cytochrome P450 (CYP) isoenzyme 3A4 and a substrate and weak inhibitor of CYP2C9 and CYP2C19. Etravirine is also a weak inhibitor of P-glycoprotein. An extensive drug-drug interaction programme in HIV-negative subjects has been carried out to assess the potential for pharmacokinetic interactions between etravirine and a variety of non-antiretroviral drugs. Effects of atorvastatin, clarithromycin, methadone, omeprazole, oral contraceptives, paroxetine, ranitidine and sildenafil on the pharmacokinetic disposition of etravirine were of no clinical relevance. Likewise, etravirine had no clinically significant effect on the pharmacokinetics of fluconazole, methadone, oral contraceptives, paroxetine or voriconazole. No clinically relevant interactions are expected between etravirine and Azithromycin or ribavirin, therefore, etravirine can be combined with these agents without dose adjustment. Fluconazole and voriconazole increased etravirine exposure 1.9- and 1.4-fold, respectively, in healthy subjects, however, no increase in the incidence of adverse effects was observed in patients receiving etravirine and fluconazole during clinical trials, therefore, etravirine can be combined with these antifungals although caution is advised. Digoxin plasma exposure was slightly increased when co-administered with etravirine. No dose adjustments of digoxin are needed when used in combination with etravirine, however, it is recommended that digoxin levels should be monitored. Caution should be exercised in combining rifabutin with etravirine in the presence of certain boosted HIV protease inhibitors due to the risk of decreased exposure to etravirine. Although adjustments to the dose of clarithromycin are unnecessary for the treatment of most infections, the use of an alternative macrolide (e.g. Azithromycin) is recommended for the treatment of Mycobacterium avium complex infection since the overall activity of clarithromycin against this pathogen may be altered when co-administered with etravirine. Dosage adjustments based on clinical response are recommended for clopidogrel, HMG-CoA reductase inhibitors (e.g. atorvastatin) and for phosphodiesterase type-5 inhibitors (e.g. sildenafil) because changes in the exposure of these medications in the presence of co-administered etravirine may occur. When co-administered with etravirine, a dose reduction or alternative to diazepam is recommended. When combining etravirine with warfarin, the international normalized ratio (INR) should be monitored. Systemic dexamethasone should be co-administered with caution, or an alternative to dexamethasone be found as dexamethasone induces CYP3A4. Caution is also warranted when co-administering etravirine with some antiarrhythmics, calcineurin inhibitors (e.g. ciclosporin) and antidepressants (e.g. citalopram). Co-administration of etravirine with some antiepileptics (e.g. carbamazepine and phenytoin), rifampicin (rifampin), rifapentine or preparations containing St John's wort (Hypericum perforatum) is currently not recommended as these are potent inducers of CYP3A and/or CYP2C and may potentially decrease etravirine exposure. Antiepileptics that are less likely to interact based on their known pharmacological properties include gabapentin, lamotrigine, levetiracetam and pregabalin. Overall, pharmacokinetic and clinical data show etravirine to be well tolerated and generally safe when given in combination with non-antiretroviral agents, with minimal clinically significant drug interactions and no need for dosage adjustments of etravirine in any of the cases, or of the non-antiretroviral agent in the majority of cases studied.
2010Neglected diseases caused by bacterial infections.Curr Med ChemBacterial infections represent a major health problem, especially in third world countries. In endemic regions, large populations of people are greatly affected, but the medical care is very limited. In this review, the neglected diseases buruli ulcer and trachoma are elucidated. Buruli ulcer is caused by Mycobacterium ulcerans which produces an outstanding immunosuppressive toxin mycolactone that induces an ulcerative, necrotic skin disease. Until today, only the combination of rifampin/streptomycin is used to treat buruli ulcer. However, this therapy is ineffective and expensive. Here, we report new findings that suggest pharmaceutical formulations such as rifapentine, in combination with clarithromycin or moxifloxacin that have shown promising results in mice footpad trials. Moreover, alternative treatment options such as heat therapy, nitric oxide cremes and French clay show bactericidal effects. The genotyping of M. ulcerans also promises new ways of finding drug targets and vaccines. Trachoma, induced by the bacterium Chlamydia trachomatis, is the primary infectious cause of blindness worldwide. Recurrent infections lead to chronic inflammation of the upper tarsal conjunctiva. As a consequence, scarring and distortion of the eye lids occur, eventually resulting in blindness. First-line medications for trachoma treatment are bacteriostatic agents such as topically applied tetracylines and systematically administered Azithromycin. Surgery, environmental improvements and personal hygiene are further crucial factors in controlling trachoma. Moreover, efforts are being undertaken towards the development of vaccine systems, with the major outer membrane protein and the polymorphic membrane protein acting as attractive candidates.
2002[Prospects for development of new antituberculous drugs].KekkakuTuberculosis (TB) is a growing international health concern, since it is the leading infectious cause of death in the world today. Moreover, the resurgence of TB in industrialized countries and the worldwide increase in the prevalence of Mycobacterium avium complex (MAC) infections in immunocompromised hosts have prompted the quest for new antimycobacterial drugs. In particular, the appearance of multidrug-resistant (MDR) strains of M. tuberculosis, which exhibit in vitro resistance to at least two major antituberculous drug (usually INH and RFP) and cause intractable TB, has greatly contributed to the increased incidence of TB. Because of the global health problems of TB, the increasing rate of MDR-TB and the high rate of a co-infection with HIV, the development of potent new antituberculous drugs without cross-resistance with known antimycobacterial agents is urgently needed. In this article, I reviewed the following areas. First, I briefly reviewed some new findings (mainly reported after 2000) on the pharmacological status of rifamycin derivatives (rifabutin, rifapentine, and rifalazil), fluoroquinolones (ciprofloxacin, ofloxacin, sparfloxacin, levofloxacin, gatifloxacin, sitafloxacin, moxifloxacin, and others), and new macrolides (clarithromycin, Azithromycin, and roxithromycin). Second, I described other types of agents which are being developed as antimycobacterial drugs. Some of the agents discussed are already under preliminary clinical investigation, and others appear to be promising candidates for future development. In this review, the status of the development of new antimycobacterial, especially antituberculous agents including oxazolidinone (PNU-100480), 5'-nitroimidazole (CGI 17341), 2-pyridone (ABT-255), new riminophenazines, nitroimidazopyran (PA-824), new ketolides (ABT-773, telithromycin) and defensins (human neutrophil peptide-I), was examined. Third, the development of new antitubercular drugs was discussed according to the potential pharmacological target. New critical information on the whole genome of M. tuberculosis recently elucidated and increasing knowledge on various mycobacterial virulence genes will promote the progression in the identification of genes that code for new drug targets. Using such findings on mycobacterial genomes, drug development using quantitative structure-activity relationship may be possible in the near future. In this review, I described the screening of drugs that have an inhibitory activity against dTDP-rhamnose synthesis of M. tuberculosis, as a new drug target of the organism. In addition, I discussed the usefulness of antisense oligo DNAs specific to mycobacterial genes encoding certain metabolic enzymes or virulence factors that play roles in the bacterial escape from antimicrobial mechanisms of host macrophages. Fourth, I reviewed the drug vehicles which enable efficacious drug delivery to their target in vivo. The usefulness of poly (DL-lactide-co-glycolide) microsphere technology, which enables the encapsulated drugs to deliver the requested doses of them for prolonged time periods by a single shot without causing any toxicity and, moreover, enables the highly targeted delivery of the drugs to host macrophages, was discussed. Fifth, I described adjunctive immunotherapy for the management of patients with mycobacterial infections by giving certain immunomodulators in combination with antimycobacterial drugs. Adjuvant clinical trials using IL-2 or GM-CSF have been found to be efficacious to some extent in improving patients with tuberculosis or disseminated MAC infections. However, it seems that these immunopotentiating cytokines as well as IFN-gamma and IL-12 are not so promising for the therapeutic agents of mycobacterial infections because of the possible induction of immunosuppressive cytokines during adjuvant therapy and, in some cases, severe side-effect. Thus, the development of new classes of immuno-modulators other than cytokines, particularly those with no severe side-effect, is needed. This review dealt with ATP and its analogues which potentiate macrophage antimycobacterial activity via a purinergic P2X7 receptor. Finally, I described the roles of type II alveolar epithelial cells in the establishment of mycobacterial infections in the host lungs and the profiles of drug susceptibilities of M. tuberculosis and MAC organisms replicating within the type II pneumocytes. These findings are useful to precisely assess or predict the in vivo therapeutic activity of a given antimycobacterial drug from its in vitro activity. In this article, I have thoroughly reviewed the status of the development of new antimycobacterial drugs. There are a number of difficulties in the drug-design for the development of new drug formulations with increased potential for antimycobacterial effects, excellent pharmacokinetics, and tolerability. It should be emphasized that the most urgent goal of chemotherapy of tuberculosis and MAC infections, especially that associated with HIV infection, is to develop highly active, low-cost drugs which can be used not only in industrialized countries but also in developing countries, since the incidences of AIDS-associated intractable tuberculosis is rapidly increasing in the latter.
2000Prospects for development of new antimycobacterial drugs.J Infect ChemotherIn this article, I have thoroughly reviewed the status of development of new antimycobacterial drugs, particularly fluoroquinolones (ciprofloxacin, ofloxacin, sparfloxacin, levofloxacin, gatifloxacin, sitafloxacin, and moxifloxacin), new macrolides (clarithromycin, Azithromycin, and roxithromycin), rifamycin derivatives (rifabutin, rifapentine, and KRM-1648), and others. The main purpose of this review was to describe the in-vitro and in-vivo activities of these drugs against Mycobacterium tuberculosis and Mycobacterium avium complex. In addition, the therapeutic efficacy of these drugs in the clinical treatment of mycobacterial infections has also been briefly mentioned.
2001Treatment alternatives for Mycobacterium kansasii.J Antimicrob ChemotherMycobacterium kansasii was administered intravenously to congenitally athymic (nude) mice. Beginning 1 week later, rifapentine, Azithromycin, ethambutol or combined therapy was initiated orally. All three drugs were highly active individually. Although there was no evidence of antagonism, combined therapy was not more effective than either component used alone.
2000Prospects for development of new antimycobacterial drugs, with special reference to a new benzoxazinorifamycin, KRM-1648.Arch Immunol Ther Exp (Warsz)In this article, I have thoroughly reviewed the status of development of new antimycobacterial drugs, in particular, rifamycin derivatives (rifabutin, rifapentine, and a new benzoxazinorifamycin, KRM-1648), fluoroquinolones (ciprofloxacin, ofloxacin, sparfloxacin, levofloxacin, gatifloxacin, sitafloxacin, moxifloxacin, and others), new macrolides (clarithromycin, Azithromycin, roxithromycin), and others. In this review, I have mainly described the in vitro and in vivo activities of these drugs against Mycobacterium tuberculosis and atypical mycobacteria, especially Mycobacterium avium complex. In addition, therapeutic efficacy of these drugs in cases of clinical treatment of mycobacterial infections have also been briefly mentioned.
1998In vitro susceptibilities of aerobic and facultative non-spore-forming gram-positive bacilli to HMR 3647 (RU 66647) and 14 other antimicrobials.Antimicrob Agents ChemotherThe comparative in vitro activity of the ketolide HMR 3647 (RU 66647) and those of structurally related macrolide-lincosamide-streptogramin compounds (erythromycin, roxithromycin, Azithromycin, clarithromycin, josamycin, lincomycin, pristinamycin, and quinupristin-dalfopristin) as well as those of benzylpenicillin, doxycycline, vancomycin, teicoplanin, levofloxacin, and rifapentine against 247 aerobic and facultative non-spore-forming gram-positive bacilli were determined by an agar dilution method. The ketolide was active against most organisms tested except Corynebacterium striatum, coryneform CDC group 12, and Oerskovia spp. The frequency of resistance to erythromycin and other macrolides as well as that to lincomycin was high. Pristinamycin and, to a lesser extent, quinupristin-dalfopristin were very active, but resistance to these agents was present in some strains of Rhodococcus equi, Listeria spp., C. striatum, Erysipelothrix rhusiopathiae, and Oerskovia spp. HMR 3647 was very active against all erythromycin-sensitive and many erythromycin-nonsusceptible strains, especially Corynebacterium minutissimum, Corynebacterium pseudodiphtheriticum, Corynebacterium amycolatum, and Corynebacterium jeikeium. In vitro resistance to benzylpenicillin was common, but doxycycline, vancomycin, and teicoplanin were very active against most organisms tested except E. rhusiopathiae, against which glycopeptide antibiotics were not active. The in vitro activity of levofloxacin was remarkable, but resistance to this agent was common for C. amycolatum, Corynebacterium urealyticum, C. jeikeium, and Oerskovia spp. strains. Rifapentine was also very active in vitro against many organisms, but resistance to this agent was always present in E. rhusiopathiae and was very common in C. striatum and C. urealyticum.
1998In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to two ketolides (HMR 3004 and HMR 3647), four macrolides (azithromycin, clarithromycin, erythromycin A, and roxithromycin), and two ansamycins (rifampin and rifapentine).Antimicrob Agents ChemotherWhen tested by agar dilution on Mueller-Hinton agar supplemented with 5% horse blood, the ketolides HMR 3004 and HMR 3647 were slightly more active (MIC at which 90% of the isolates were inhibited [MIC90], 0.03 microg/ml) against Bordetella pertussis than Azithromycin, clarithromycin, erythromycin A, and roxithromycin. Azithromycin (MIC90, 0.06 microg/ml) was the most active compound against B. parapertussis. Rifampin and rifapentine were considerably less active.
1994Intermittent azithromycin for treatment of Mycobacterium avium infection in beige mice.Antimicrob Agents ChemotherThe activity of Azithromycin (AZI) was evaluated in the beige mouse model of disseminated Mycobacterium avium infection. Mice were infected intravenously with approximately 10(7) viable avium ATCC 49601. AZI at 50, 100, or 200 mg/kg of body weight or clarithromycin (CLA) at 200 mg/kg was given by gavage 5 days per week for 4 weeks. Groups of treated mice were compared with untreated control animals. A dose-related reduction in cell counts in organs was observed with AZI treatment. AZI at 200 mg/kg was more active than CLA at 200 mg/kg against organisms in spleens. The activities of these two agents at 200 mg/kg were comparable against organisms in lungs. In a second study, AZI at 200 mg/kg was given daily for 5 days; this was followed by intermittent AZI treatment for the next 3 weeks. The activities of AZI given on a three-times- and five-times-per-week basis in the continuation phase were comparable. AZI given on a once-weekly basis was less active. The regimen of AZI given in combination with rifapentine on a once-weekly basis for 8 weeks showed promising activity. Clinical evaluation of AZI and rifapentine will help to define the roles of these agents in the treatment of disseminated M. avium complex infection.
1994Antimycobacterial drugs.Semin Respir InfectThis review consists of the following three sections: (1) General principles in selecting antimycobacterial drugs for the treatment regimens, (2) The antimicrobial activity in vitro with an emphasis on inhibitory and bactericidal potency of various agents, and (3) Drug susceptibility testing including methodology and interpretation of the test results. Each of these sections addresses three groups of antimycobacterial agents: (1) against tuberculosis, (2) against Mycobacterium avium complex infections, and (3) against infections caused by M. fortuitum and M chelonae. The following are the drugs examined in the sections and subsections of this review: isoniazid, ethionamide, thiacetazone, rifampin, rifabutin, rifapentine, KRM-1648, pyrazinamide, streptomycin, kanamycin, amikacin, capreomycin, gentamicin, tobramycin, ethambutol, para-aminosalicylic acid, D-cycloserine, ofloxacin, levofloxacin, ciprofloxacin, sparfloin, clofazimine, clarithromycin, Azithromycin, erythromycin, cefoxitin, cefmetazole, imipenem, sulfamethoxazole, sulfisoxazole, sulfadiazine, sulfathiazole, trimethoprim, and doxycycline.
1993In vitro activities of new macrolides and rifapentine against Brucella spp.Antimicrob Agents ChemotherWe have tested the in vitro activities of streptomycin, rifampin, tetracyclines, trimethoprim-sulfamethoxazole, erythromycin, four new macrolides (roxithromycin, Azithromycin, clarithromycin, and dirithromycin), and rifapentine against 62 strains of Brucella spp. Azithromycin and clarithromycin were, respectively, eight- and twofold more active than erythromycins (MIC for 90% of strains = 2, 8, and 16 micrograms/ml, respectively). The activity of rifapentine was similar to that of rifampin (MIC for 90% of strains = 1 microgram/ml).
1993Azithromycin, rifabutin, and rifapentine for treatment and prophylaxis of Mycobacterium avium complex in rats treated with cyclosporine.Antimicrob Agents ChemotherAzithromycin, rifabutin, and rifapentine were used to treat or prevent disseminated Mycobacterium avium complex (MAC) infections produced in rats immunosuppressed with cyclosporine. Animals with bacteremic infections were treated 1 week after intravenous inoculation with 10(7) CFU of MAC with Azithromycin, 100 mg/kg of body weight administered subcutaneously for 5 days and then 75 mg/kg on Monday, Wednesday, and Friday, or with rifabutin or rifapentine, 20 mg/kg administered intraperitoneally on Monday through Friday. All three drugs showed efficacy after 1 and 2 months. Rifabutin cleared the organisms from tissues more rapidly than Azithromycin or rifapentine. To approximate prophylaxis, treatment was started 2 weeks before intravenous inoculation with 10(4) organisms. MAC infections were undetectable in treated animals after 4 months, while control animals had disseminated infections. These findings support the rationale for clinical trials of treatment and prophylaxis with these agents. The cyclosporine-treated rat appears to be a useful model in which to evaluate compounds for the treatment and prophylaxis of disseminated MAC infections.
1991Activities of sparfloxacin, azithromycin, temafloxacin, and rifapentine compared with that of clarithromycin against multiplication of Mycobacterium avium complex within human macrophages.Antimicrob Agents ChemotherThe activities of sparfloxacin, Azithromycin, temafloxacin, and rifapentine against two virulent strains of the Mycobacterium avium complex isolated from patients with AIDS were evaluated in a model of intracellular infection and were compared with that of clarithromycin. Human monocyte-derived macrophages were infected with the M. avium complex at day 6 of culture. The intracellular CFU was counted 60 min after inoculation. The intracellular and supernatant CFU was counted on days 4 and 7 after inoculation. The concentrations used, which were equal to peak levels in serum, were 10 micrograms of rifapentine per ml (MICs for the two strains, 4 and 16 micrograms/ml), 4 micrograms of clarithromycin per ml (MICs, 8 and 4 micrograms/ml), 1 microgram of Azithromycin per ml (MICs, 32 and 16 micrograms/ml), 4 micrograms of temafloxacin per ml (MICs, 2 and 16 micrograms/ml), and 1 microgram of sparfloxacin per ml (MICs, 0.5 and 2 micrograms/ml). Compared with controls on day 7 after inoculation, clarithromycin (P less than 0.001), sparfloxacin (P less than 0.001), and Azithromycin (P less than 0.001 for the first strain, P less than 0.02 for the second) slowed intracellular replication. Rifapentine (P less than 0.001) and temafloxacin (P less than 0.001) slowed intracellular replication of the first strain but not of the second strain. Azithromycin plus sparfloxacin was as effective as sparfloxacin alone. In this macrophage model, sparfloxacin or clarithromycin (difference not significant) exhibited a better efficacy than rifapentine, Azithromycin, or temafloxacin against intracellular M. avium complex infection.